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ABSTRACT 

A general type of catch curve can be derived from Schaefer model based on 

mathematical development of this model.  This curve provides an useful tool for 

estimating the intrinsic growth rate and carrying capacity.  In order to get the more 

precise estimations, a conversion factor and iterative calculation are necessary.  As a 

numerical example, catch and effort data of South Pacific albacore stocks exploited by 
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tuna longline fisheries were used to fit this method.  Without conversion factor, the 

results revealed that K=97,985 metric tons and r=1.28374.  Based on the best 

estimation of the conversion factor δ=0.409768, the results revealed that K=166,081 

metric tons and r=2.17591.   
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Population dynamics 

In nature, population growth of any species should be sigmoid curve.  It can not 

be a decay equation or this species will approach extinction.  Also, it can not be an 

increasing equation, or the species will growth infinitely.  This is the common sense.  

Hence, the relationships between net production and biomass should be a dome shape 

curve (Figure 1) under the same environmental conditions.  This dome shape curve 

might be symmetric or non-symmetric.  There is unique peak where biomass is BMNP 

with the maximum net production (MNP).  Figure 1 also reflects the mechanism of self 

regulations of the species as follows. 

Without disturbance, no fishing with stable environmental conditions, the stock 

dynamics is purely depending on the current status of biomass.  When the current 

biomass is greater than BMNP, then the stock is still in better conditions.  Hence, the 
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crisis of life is correspondingly lower.  Due to loose the competition and to avoid the 

infinite growth, the stock will reduce the net production.   Hence, the greater biomass 

always implies the less net production.   

Contrary, when the current biomass is less than BMNP, then the stock has been in 

worse conditions.  Hence, the crisis of life is correspondingly higher.  Due to 

strengthen the competition and to avoid the collapse of the species, the stock will 

increase the net production.  Hence, the greater biomass always implies the greater net 

production.  As stated above, any species is endowed such common characteristics.  

They try to avoid the collapse and approach the stable status.  They try to approach the 

carrying capacity, i.e., commensurate with the environmental conditions (Figure 1).  

If there is any disturbance, exploitation or any changes of the environmental 

conditions, they also reflect the similar characteristics.  However, the stock dynamics 

will depend on both of the current status of biomass and the strength of the disturbance.  

When the current biomass is greater than BMNP, the stock is still in better conditions.  In 

this case, no matter how strength of the disturbance is, the biomass will converge to the 

disturbance.  The species tends to adjust itself to adapt the disturbance.  It seems 

implying that there is some sluggishness of the species in nature.  When biomass is still 

in better conditions, the species tend to go with tide or to adapt itself to circumstance 

only.   
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Contrary, when the current biomass is less than BMNP, it means that the stock has 

been in worse conditions.  If the disturbance is greater than the net production of the 

current biomass, then the biomass will decrease continuously and approaching collapse.  

Contrary, if the disturbance is less than the net production, then the biomass will 

increase continuously till greater than BMNP and then converge to the disturbance.  

Clearly, the response of the species is quite different and depending on the strength of 

the disturbance.  The crisis of life will stimulate the growth ability of the species.  If 

the growth ability of the species can not cover the coming disturbance, then the stock 

will approach collapse.  Contrary, if the growth ability can cover the disturbance, then 

the species will increase continuously over BMNP and converge to the disturbance.   

As stated above, without any mathematical model, Figure 1 revealed the clear life 

strategy of the species.  The different strategies are depending on the current biomass 

and the strength of the disturbance.  When the biomass is greater than BMNP, then no 

matter how large the disturbance is, the biomass tends to converge to the disturbance.  

It means that the species tends to adapt itself to circumstance.  Contrary, when the 

biomass has been less than BMNP, then the biomass is divergent and depending on the 

strength of disturbance.  If the disturbance is greater than the net production, then the 

biomass is approaching collapse.  If the disturbance is less than the net production, 

then the biomass will increase continuously and into the convergent status.  It means 
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that the species will face the elimination through selection or competition. 

 

Schaefer model 

Schaefer model (Schaefer 1954; 1957) is a simple, useful and convenient method 

for assessing fish stocks.  Generally, it is written as follows. 
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Where, Bt= biomass at time t, r= intrinsic growth rate, K= carrying capacity, t= time.  

Integrated equation (1), then following equation can be obtained. 
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This is a sigmoid curve of population growth.  Set the net prodution as follows. 
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Equation (3) can be rewritten as follows. 
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This is the dome shape curve with the peak equal to rK/4 at Bt=BMNP=K/2.  Hence, 

Schaefer model might be the simplest model representing the population dynamics.  

This model includes two parameters only.  One is the intrinsic growth rate combining 

all growth ability including the reproduction and growth.  Another one is the carrying 

capacity combining all outer limitations including all biotic and non-biological factors.  

These two parameters provide the basic information of the population dynamics; the 
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growth ability of the species and the constraint of the population growth.  In ecology, 

r-selection and K-selection were extensively discussed (MacArthur and Wilson 1967; 

Pianka 1970; Stearns 1980; 1992).  The problem is how to estimate these two 

parameters.    

In fishery science, Schaefer model and its improvements was extensively used in 

assessing fish stocks (Pella and Tomlinson 1969; Fox 1970; Schnute 1977; Walters and 

Hilborn 1976; Yeh and Wang 1996).  Under fishing, it can be rewritten as follows. 
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Where, Ft=fishing mortality rate at time t.  Applied it in assessing fish stocks, 

generally it needs to assume that catch is at equilibrium or not. 

 

General type of catch curve 

Under exploitation, set F=constant and Fr −=α  and Kr /=β  during the unit 

time period t~t+1, then  

 )/1( 2
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Integrated equation (6), following equation can be obtained.   
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Where, Bt= biomass at the beginning of this time period and Bt+1= biomass at the end of 

this time period.  Expressing the initial biomass by Bo then the biomass at time t can be 

expressed as follows.  
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Hence, the catch Y can be obtained as follows. 
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Set this time period to be one year, then annual catch can be expressed as follows. 
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If catch is at equilibrium then 1,, += titi BB , it implies that 
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Hence, equation (10) is the general type of catch curve derived from Schaefer model.  

It is an useful tool for estimating the parameters.   

 

Approximate estimation  

Set iii XYU /= , then equation (10) can be rewritten as follows. 
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Where, q= catchability, X= fishing efforts, U= CPUE= catch per unit of fishing effort.  

At equilibrium then biomass will be stable, hence 1,, += titi BB  implies follows.  
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Base on catch at equilibrium, equation (13) is always used to estimate the maximum 

sustainable yield (MSY).  No matter catch is at equilibrium or not, equation (12) can 
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be used to estimate the parameters r, q and K, directly. 

Approximately, 2/)( 1, iiti UUB += −  and 2/)( 11, ++ += iiti UUB  are adopted and 

rewritten equation (12) as follows.  
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Where rKqArqKqKA /  ,/A   , 2
321 −=== .  If catch and effort data are available, 

then the coefficients A1, A2 and A3 can be estimated.  Hence, the parameters r, q and K 

can be obatined by 3212321 /  ,/   ,/ AAAKAAqAAr −=−== , respectively.  

 

More precise estimation 

    Generally, the biomass at the beginning and the end of the time period is unknown. 

Approximately, they are replaced by the average of CPUE of two successive years.  In 

order to get more precise estimations, it needs a conversion factor δ to adjust it.  That is 

set 
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Hence, equation (14) becomes follows.   

})](ln[11{
1

1
i

ii

ii
i X

r
q

UU
UU

r
qKU −

+
+

+=
+

−δ      …..(15) 

This is equal to follows.  
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The problem is how to estimate the conversion factor δ and to get the best estimation of 

the parameters.   

As shown in equation (15), over estimation of δ impies under estimation of K, and 

vice versa.  Hence, the best solution of δ can be obtained as two successive estimations 

of δ are equal.  If they are unequal, then searching work should be kept going on.  On 

the other hand, equation (16) can be rewritten as follows.    
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Theoretically, q’ and q should be equal.  Hence based on equation (17), q can be 

estimated by given q’.  By the iterative calculation, they will converge to the same 

value of q’=q.  By iterative calculation, the estimated δ and q will converge to the best 

solutions.  Hence, the best estimation of δ and q can be obtained as follows.  

1. Start of iterative calculation. 

2. Set δ=1 in equation (15) to get the initial estimation of r, q and K. 

3. Set q’=q and substituted q’ and K in equation (17) to get Zi . 

4. Fitting catch and effort data to equation (17) to get the new estimation of r, q and δ. 

5. If q is unequal to q’ , it needs back to step-3 to get the new estimation of r, q and δ. 

until they are equal. 

6. If q is equal to q’, then the new estimation of δ can be obtained and expressed by δ’. 
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7. If δ’ is not equal to δ, then set δ=δ’ and substituted it in equation (15) to get the new 

estimation of r, q and K and back to step-3. 

8. If δ’ is equal to δ, then δ’=δ might be the best estimation of the conversion factor δ.   

9. Substituted the best estimation of the conversion factor δ in equation (15), the best 

estimation of r, q and K can be obtained. 

10. End of iterative calculation. 

As stated above, the best estmation of the conversion factor δ and hence the parameters r, 

q and K can be obtained.   

 

Time varied carrying capacities 

If carrying capacity is time-varied, then equation (10) should be rewritten as 

follows.  
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It means that 
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By the above improved Schaefer model, if the parameters r, q and δ can be obtained, 

then the time-varied carrying capacity can be evaluated year by year as follows. 
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     Since q is available, the fishing mortality rate Fi can be evaluated year by year by 

Fi=qXi.  If the relationships between Fi and Ki are good enough, then empirically the 

carrying capacity of the virgin stock can be evaluated by set Fi=0.  This is the virgin 

stock of this species; biomass just before the fishery entered.   

 

Numerical example 

    Catch and effort data of South Pacific albacore stocks ( Thunnus alalunga) are used 

to fit above methods.  Table 1 showed the catch, standardized effort and catch per unit 

of fishing effort of tuna longline fishery operating in the South Pacific Ocean.  As 

shown in Table 2, K=97,985 metric tons and r=1.28374 without the adjustment of the 

conversion factor δ=1.  Based on the best estimation of the conversion factor 

δ=0.409768, then K=166,081 metric tons and r=2.17591.  They have the same 

estimation of q=6.02115E-09 (Table 2). 

    The time-varied carrying capacities are shown in Table 2.  Without the adjustment 

of conversion factor, the estimated carrying capacities are varied in the ranges of 73,734 

~ 266,732 metric tons.   Mean of the carring capacities is about 101,807 metric tons 

with MSY=32,673 metric tons.  MSY is closing the results estimated by other 

researches (Skillman, 1975; Wetherall et al, 1979; Wetherall and Yong, 1984, 1987; 
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Wang et al, 1988; Yeh and Wang, 1996).  However, they are based on constant carrying 

capacity and without the adjustment of conversion factor.  Based on the conversion 

factor, the best estimations of the carrying capacity are varied in the ranges of 124,976 ~ 

452,103 metric tons.  Mean of the carrying capacities is about 172,560 metric tons with 

MSY=93,869 metric tons.  Clearly, the current catch is still far less than the MSY, even 

if all of other fisheries are included.       

    As shown in Figure 2, the relationships between the estimated carrying capacities 

and fishing mortality rates are good enough for estimating the virgin stocks.  The 

correlation coefficient is about 0.8579.  Without the adjustment of conversion factor, it 

is about 218,667 metric tons.  With the adjustment of conversion factor, it is about 

370,633 metric tons.  Based on the virgin stocks, MSY is about 70,178 and 201,616 

metric tons, respectively.   

 

Conclusions 

Commonly, population growth can be expressed by a sigmoid curve.  The 

relationships between biomass and net production of any stock revealed a dome shape 

curve.  Peak of this curve implies the biomass with the maximum net production.  

Before the peak or biomass less than that having the maximum net production, any 

disturbance will cause the biomass to be divergent.  After the peak or biomass greater 
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than that having the maximum net production, any disturbance will cause the biomass to 

be convergent.   

General type of catch curve can be derived from Schaefer model based on the 

mathematical development of this model.  This curve provides a useful tool for 

estimating the intrinsic growth rate and carrying capacity.  A conversion factor and 

iterative calculation are necessary to get the more precise estimation.  This curve also 

provides a useful tool for estimating the time-varied carrying capacities.  They are 

useful and helpful in the fields of ecological researches.   

As a numerical example, catch and effort data of South Pacific albacore stocks 

were used to fit this curve.  Without conversion factor, the results revealed that 

K=97,985 metric tons and r=1.28374.  Based on the best estimation of the conversion 

factor δ=0.409768, the results revealed that K=166,081 metric tons and r=2.17591.   
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Dear Editor: 
As you know, the influences of the changes of environmental conditions are not 

negligible in many fields of biological researches.  Unfortunately, how to get the 
indicator of the environmental conditions is still a problem.   

Really, Schaefer model is too simple to provide sufficient information of the fish 
stocks.  However, it includes K, an index of the environmental conditions.  Hence, I 
think Schaefer model might be a useful tool for estimating K, evenly the time-varied 
K.  As shown in this paper, a general type of catch curve can be obtained from 
Schaefer model directly.  This curve is a useful tool for estimating the parameters. 

In this manuscript, I try to show the simplest model of the population dynamics 
(Figure) to the most complicated model (estimating the time-varied carrying 
capacities). 

 
 
I hope it is valuable to acceptable by your Journal 
 
With my best regards 
 
Chien-Hsiung Wang 
March 24 2005. 
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Figure 1. Theoretical considerations of the  relationships between biomass
  and net production.
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Figure 2.  Empirical relationships between carrying capacities and fishing mortality rates.Figure 2.  Empirical relationships between carrying capacities and fishing mortality rates.Figure 2.  Empirical relationships between carrying capacities and fishing mortality rates.Figure 2.  Empirical relationships between carrying capacities and fishing mortality rates.
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Table 1.   Catch, standardized effort and catch per uint of fishing
effort of South Pacific albacore exploited by tuna longline fishery. 

including other fisheries 
YEAR U (kg/100 hooks) X (million hooks) Y (metric tons) Y (metric tons)
1967 75.118 53.673 40318 40323
1968 62.788 46.268 29051 29065
1969 58.452 41.675 24360 24360
1970 62.325 52.290 32590 32740
1971 42.760 81.169 34708 34808
1972 42.836 79.004 33842 34232
1973 35.405 106.338 37649 38274
1974 22.388 138.400 30985 32692
1975 31.829 82.098 26131 26877
1976 30.314 79.521 24106 24231
1977 33.734 103.307 34849 35570
1978 31.011 112.405 34858 36644
1979 24.288 118.326 28739 29653
1980 25.771 120.395 31027 32596
1981 19.651 166.060 32632 34722
1982 20.657 137.186 28339 30780
1983 23.365 104.013 24303 25086
1984 19.865 102.390 20340 24704
1985 27.731 97.861 27138 32328
1986 23.735 137.523 32641 36590
1987 19.808 135.689 26877 29950
1988 22.626 139.356 31531 41110
1989 18.288 121.601 22238 52576
1990 25.077 90.218 22624 37382
1991 23.188 106.548 24706 34014
1992 26.707 113.259 30248 36902
1993 23.105 129.786 29987 34427
1994 25.440 130.638 33235 40555
1995 27.941 91.811 25653 33604
1996 25.889 93.167 24120 31673
1997 32.158 100.728 32392 37225
1998 28.194 142.372 40141 46531
1999 33.766 106.684 36023 39626
2000 24.634 161.719 39838 45947
2001 21.560 212.826 45886 51689
2002 17.410 264.032 45969 50858
mean 30.828 113.898 31113 35565

tuna longline fishery only

Table



Table 2.  Estimated population parameters. 

δ=1.00000 δ=0.40977
K = 97,985 mt 166,081 mt 
r= 1.28374 2.17591
q= 6.02115E-09 6.02115E-09

K v = 218,667 mt 370,633 mt



Table 3.  Estimated time-varied carrying capacities.

approximate solutions precise solutions
(1000 metric tons) (1000 metric tons)

YEAR Ki as δ=1.00000 Ki as δ=0.40977
1968 118.0537 200.0975
1969 120.2185 203.7668
1970 119.9204 203.2616
1971 91.1538 154.5030
1972 101.7142 172.4026
1973 79.7613 135.1930
1974 92.8121 157.3138
1975 103.9261 176.1517
1976 83.4222 141.3982
1977 110.4968 187.2888
1978 86.4697 146.5636
1979 77.1921 130.8383
1980 83.7530 141.9589
1981 103.8818 176.0765
1982 119.1711 201.9916
1983 73.7336 124.9763
1984 74.1710 125.7176
1985 95.9278 162.5948
1986 81.2425 137.7036
1987 85.7436 145.3328
1988 100.2625 169.9420
1989 79.0253 133.9456
1990 84.4006 143.0565
1991 81.1797 137.5971
1992 94.3584 159.9348
1993 93.2906 158.1249
1994 134.8649 228.5920
1995 82.4448 139.7416
1996 85.2654 144.5223
1997 107.4145 182.0645
1998 150.2035 254.5905
1999 102.7621 174.1787
2000 96.4635 163.5029
2001 266.7318 452.1025

maximum 266.7318 452.1025
minimum 73.7336 124.9763

mean 101.8068 172.5596




