Summary of seabird bycatch rates recorded in the Western and Central Pacific

BirdLife International

Paper submitted to the Second Session of the WCPFC Ecosystem and Bycatch SWG Manila, 10th August 2006

Abstract

This paper summarises data on seabird bycatch rates in pelagic longline fisheries within the Western and Central Pacific, including data from vessels using seabird bycatch mitigation measures.

Seabird bycatch data

Table 1 summarises seabird bycatch data from observer programs on pelagic longline fisheries in the Western and Central Pacific. This table represents a work in progress: some data are not yet included.

The data highlight four key points:

- 1. Seabird bycatch rates are highly variable, but high levels have been recorded on vessels where no seabird bycatch mitigation measures are being used (Table 1a).
- 2. Data highlight the effectiveness of a range of seabird bycatch mitigation measures in reducing seabird bycatch (Table 1b). Comparisons of the effectiveness of seabird bycatch mitigation measures are best obtained from experimental designs (e.g. Table 2). Such experiments have recorded an 80-100% reduction in seabird bycatch rates using mitigation measures such as setting hooks at night, streamer (tori) lines, weighted branch lines, blue-dyed bait and strategic discharge of offal. Side setting is a measure which is still in development, but which has also proven effective in trials in Hawaii.
- 3. The variability of seabird bycatch rates in part reflects the stochastic nature of seabird bycatch, but also the seasonal and spatial clustering of seabird abundance, environmental variability, the significant effect of small differences in fishing gear configuration, and differences in methods of data collection by observers. The development of standardized methods for recording seabird bycatch within WCPFC's regional observer program for longline fisheries will be highly important in helping to reduce this variability and/or understand the factors that cause it. A high initial % coverage by observer programs is necessary if statistically rare events such as bycatch of seabirds and turtles are to be adequately recorded. The experience from CCAMLR has demonstrated that a good approach may be a coverage of c.20% over a limited period (e.g. 2 years), in order to assess bycatch levels.
- 4. The majority of the data presented here are from the Australian and New Zealand EEZs or from Hawaiian fleets. There are currently few seabird bycatch data available from high seas areas.

Issues for consideration by the Ecosystem and Bycatch SWG

Bycatch mitigation measures exist which can dramatically reduce seabird bycatch rates in demersal longline fisheries (as demonstrated by CCAMLR), and which are also effective in pelagic longline fisheries. However, the nature of pelagic longline gear (e.g. long branch lines, less line weighting) means that it has an inherently slower sink rate than demersal gear. Vessels targeting swordfish will also often use squid bait and light sticks which increase buoyancy further. These characteristics must be taken into account in order to design effective seabird bycatch mitigation strategies.

Research into seabird bycatch mitigation measures for pelagic longline fisheries is still underway. Measures currently under development include side setting (Gilman 2004; Yokota & Kiyota 2006), bait capsules (Graham Robertson pers comm.), bait pods (Ben Sullivan pers comm), and refinement of tori line designs for pelagic systems (Ed Melvin pers comm). Fisheries (e.g. swordfish, tuna) also differ in the measures that are best-suited for bycatch reduction (for example, night setting being a feasible measure within swordfish fisheries which fish at night). WCPFC will be best placed for establishing requirements for seabird bycatch mitigation measures once results are available from the research that is currently underway. However, seabird bycatch data clearly demonstrate that bycatch mitigation measures can be significantly reduced using measures which are already available. The US, Australia and Japan have already adopted requirements for their fisheries that require vessels to use a combination of seabird bycatch mitigation measures. Until results are obtained from current research, the best approach for WCPFC is likely be a requirement for longline vessels fishing in areas north of 15°N and south of 25°S to use a tori line of explicit design, or side setting, combined with one other mitigation measure such as night setting, weighted branch lines or dyed bait, coupled with recommendations on, for example, offal discharge and thawing of bait. Further results from mitigation experiments should be available in 2007-2008.

In the WCPFC, the role of observer programmes using standardised data collection protocols will be critical to understanding the nature and scale of seabird bycatch and the effectiveness of mitigation measures.

References

- Baker, G.B., Wise, B.S. 2005. The impact of pelagic longline fishing on the flesh-footed shearwater *puffinus carneipes* in Eastern Australia. Biological Conservation 126: 306-316.
- Brothers, N. 1991. Albatross mortality and associated bait loss in the Japanese longline fishery in the Southern Ocean. Biological Conservation 55: 255-268.
- Brothers, N., Gales, R. and Reid, T. 1997. Seabird interactions with longline fishing in the AFZ: 1997 seabird mortality estimates and 1988-1997 trends. Wildlife Report 98/3, Parks and Wildlife Service, Hobart, Tasmania.
- Cousins, K. L., Dalzell, P., and Gilman, E. 2000. International efforts to manage pelagic longlinealbatross interactions in the North and central Pacific Ocean. Marine Ornithology 28: 9-17.
- Gales, R., Brothers, N., Reid, T. 1998. Seabird mortality in the Japanese tuna longline fishery around Australia, 1988-1995. Biological Conservation 86: 37-56.
- Gilman, E. 2004. Assessment of strategies to reduce seabird bycatch employed by Hawaii pelagic longline tuna vessels and of observer program data collection protocols. Report prepared for the Western Pacific Regional Fishery Management Council. Blue Ocean Institute.
- Kiyota, M. and Takeuchi, Y. 2004. Estimation of incidental take of seabirds in the Japanese Southern Bluefin Tuna longline fishery in 2001-2002. Paper submitted to CCSBT's Ecologically Related Species Working Group, CCSBT, 2004.
- Klaer, N. and Polachek, T. 1997. By-catch of albatrosses and other seabirds by Japanese longline fishing vessels in the Australian Fishing Zone from April 1992 March 1995. Emu 97: 150-167.
- Manly, B. F. J., Cameron, C., Fletcher, D. J. 2002. Longline bycatch of birds and mammals in New Zealand fisheries, 1990/91-1995/96, and observer coverage. DOC Science Internal Series 43. Department of Conservation, New Zealand.
- Murray, T.E., Bartle, J.A., Kalish, S.R., & Taylor, P.R. 1993. Incidental capture of seabirds by Japanese southern luefin tuna longline vessels in New Zealand waters, 1988-1992. Bird Conservation International 3: 181-210.
- Yokota K & M. Kiyota. Preliminary report of side- setting experiments in a large sized longline vessel.
- National Research Institute Far Seas Fisheries, Shimizu, Japan. Paper submitted to the Second meeting of the WCPFC Ecosystem and Bycatch SWG. Manila, 10th August 2006.

Table 1. Seabird bycatch data collected by observer programs on pelagic longline fisheries in the Western and Central Pacific

Region	Fishery	Target	Gear type	Bait	Mitigation measures	Time of set	Depth	Date	Seabird bycatch per 1000 hooks	Hooks observed	Notes	Reference
Australia EEZ	Japanese pelagic longline	SBT	40m branch lines, unweighted.	Squid or fish	None	Usually early AM	60- 150m	1988	0.43	76,178	During winter, near Tasmania	Brothers 1991
New Zealand EEZ	Japanese pelagic longline	SBT	Branch lines usually 35m				60- 180m	1988- 1990	0.32	Approx 822,795	Observations during winter. 2.7% of hooks observed	Murray et al 1993
US	US pelagic longline fleet based in Hawaii	SWO	Monofilament American Longline system. 4-6 hooks between floats. Light sticks.	Squid	None	'Night'	30-90m	1994- 2002	0.26	406,266	Data from NMFS observers	NMFS Southwest Fisheries Science Center. Cousins <i>et</i> <i>al</i> 2000
Australia EEZ	Domestic Eastern Tuna & Billfish	Tuna & billfish	Day setting					2001- 2003	0.945	92,533	Experimental trials. 28-37°SMost of bycatch was flesh footed shearwater	Baker & Wise 2005

Table 1a. Seabird bycatch rates on vessels with no seabird bycatch mitigation measures

									Birds/			
					Mitigation	Time of			'000	Hooks		
Region	Fishery	Target	Gear type	Bait	measures	set	Depth	Date	hooks	observed	Notes	Reference
US	US pelagic fleet based in California	SWO	Monofilament American model. 4-5 hooks between floats, 60-80g weights on branch lines. Light sticks.	Squid	Weighted branch lines (No line casting machine). Dyed baits on most vessels. Offal discharged on opposite side from setting.	Late PM or twilight	5-60m	2001-2003	0.29	210,360	Data from NMFS observers. Data collected mid- September to June	NMFS Southwest Fisheries Science Center
US	Pelagic	Tuna	Day sets, 15+ hooks between floats, 45-60g weights on branch lines and line shooter		Side set and bird curtain, weights on branch lines			2002- 2003	0	38,266	Most south of 23°N	Gilman 2004
US	Pelagic	Tuna	As above,		Dyed bait and weights on branch lines, offal management			2002- 2003	0.0043	234,255	All north of 23°N	Gilman 2004
US	Pelagic	Tuna	As above.		Line shooter, weights on branch lines			2002- 2003	0.013	384,098	Mostly south of 23°N	Gilman 2004
New Zealand EEZ	Japanese pelagic longline	SBT	Branch lines usually 35m		Increased use of night setting and tori lines		60- 180 m	1991- 1992	0.04	Approx 1,464,607	Observations during winter. 2.7% of hooks observed	Murray et al 1993
New Zealand EEZ	Japanese pelagic longline	Tuna	Kuralon main line, monofilament branch line		Increased use of night setting and tori lines?			1991- 1996	0.027- 0.315	4,313,000		Manly et al 2002
Australia EEZ	Japanese pelagic longline	SBT	40m branch lines, unweighted.	Squid or fish	Tori line	Usually early AM	60- 150m	1988	0.37	32,484	During winter, near Tasmania	Brothers 1991
Australia EEZ	Japanese pelagic longline	SBT			Most used night setting and tori lines			1992- 1995	0.16	Approx 6,722,000	Higher bycatch rates in southern areas. In 1993,2 vessels used monofilament, and had higher seabird batch.	Klaer & Polachek 1997

Table 1b. Seabird bycatch rates on vessels using seabird bycatch mitigation measures

									Birds/			
					Mitigation	Time of			'000	Hooks		
Region	Fishery	Target	Gear type	Bait	measures	set	Depth	Date	hooks	observed	Notes	Reference
Australia	Japanese	SBT	40m branch		Yes, including		60-	1988-	0.15		Rates highest	Gales et al
EEZ	longline		lines		tori lines. Others		150m	1995	(0.1 in		during summer. Up	1998
					undefined.				winter,		to 95% higher	
									0.43 in		seabird bycatch	
									summer		rates recorded	
)		when observer had	
											dedicated time	
											period to observe	
											seabird bycatch.	
											Fewer birds caught	
		a de la	40.1.1				<i>c</i> 0	1005	0.00	520.241	at night.	
Australia	Japanese	SBT	40m branch		90% observed		60-	1997	0.02	720,261	AFMA &	Brothers
EEZ	pelagic		lines. Some		sets used tori		150m		night		IASPAWS	et al 1997
	longline		vessels used		lines. Vessels				sets		observers. Bycatch	
			weighted		using weighted				0.05		rate was lowest	
			branch lines,		branch lines and				0.05		1088 Cauld alaa	
			ball casters,		ball casters had				day		1988. Could also	
			night setting.		hugeteb 20%				sets		fishing in summer	
					boots used night						50% birds killed in	
					sotting						59% observations	
Australia	Domostic	Tung &	Night sotting		Night sotting			2001	0.378	222 342	Experimental trials	Bakar &
FEZ	Eastern	hillfich	Night setting		Tright setting			2001-	0.570	225,542	28 37°S Also	Wise 2005
LLL	Tuna &	UIIIISII						2003			used underwater	Wise 2005
	Billfish										chute & weighted	
	Dimisii										branch lines but	
											these did not	
											significantly reduce	
											seabird bycatch	
											Most of bycatch	
											was flesh footed	
											shearwater	
Tasmania	Japanese	SBT			Tori line. Manv		1	2001-	0.04	120,680	Real Time	Kiyota &
	pelagic				vessels have line			2002		,	Monitoring	Takeuchi
	longine				casting						Program	2004
	Ũ				machines.							

Table 2. Albatross interaction rates for seabird avoidance methods tested in North Pacific Ocean pelagic longline swordfish and tuna fisheries. Table reproduced from Gilman *et al* 2005.

Interaction rates are expressed normalized for seabird abundance (expressed as contacts or captures per 1000 hooks per bird) and without normalizing for bird abundance (expressed in parentheses as contacts or captures per 1000 hooks). Percent reductions are based on the normalized rates unless noted otherwise.

Study ¹	Treatment	Contact rate	Contact reduction (%)	Capture rate	Capture reduction (%)
McNamara et al. (1999)	Control ²	32.8 (265.7) ³		2.23 (18.0)	
Hawaii longline swordfish gear	Blue-dyed bait	7.6 (61.6)	77	0.12 (17.5)	95
	Towed buoy	16.1 (130.4)	51	0.26 (6.8)	88
	Offal discards	15.7 (124.7)	53	0.32 (2.3)	86
	Streamer line	15.7 (127.2)	52	0.47 (6.6)	79
	Night setting	. ,		(0.60)4	974
Boggs (2001)	Control ²	7.60 (313.5) ^{3,5}			
Hawaii longline swordfish gear	Blue-dyed bait	0.43 (20.5)5	94		
0	Streamer line	1.82 (93.4) ⁵	76		
	Additional 60 g weight at bait	0.61 (25.0)5	92		
Gilman et al. (2003a)	Control ²	0.61 (75.93)		0.06 (4.24)	
Hawaii longline tuna gear	Underwater setting chute 9 m	0.03 (1.85)	95	0.00 (0.00)	100
Boggs (2003)	Control ²	0.78 (27.1)		0.058 (2.0)	
Hawaii longline swordfish gear	Night setting	0.053 (4.8)	93	0.0013 (0.11)	98
	Night setting and blue-dyed bait	0.01 (0.98)	99	0.00 (0.00)	100
Gilman et al. (2003b),	Underwater setting chute 9 m	0.30 (5.0)		0.03 (0.6)	
Hawaii longline swordfish gear	Blue-dyed bait	2.37 (64.9)		0.08 (1.8)	
	Side-setting	0.08 (1.9)		0.01 (0.2)	
Gilman et al. (2003b),	Underwater setting chute 9 m	0.28 (10.3)	82 ⁶	0.05 (1.7)	38 ⁶
Hawaii longline tuna gear	Underwater setting chute 6.5 m	0.20 (5.6)	87 ⁶	0.01 (0.5)	88 ⁶
	Blue-dyed bait	0.61 (23.8)	60 ⁶	0.03 (1.2)	63 ⁶
	Side-setting	0.01 (0.1)	99 ⁶	0.00 (0.0)	100 ⁶

1 Research has also been conducted by the Japan Fisheries Research Agency on the effectiveness of blue-dyed bait on reducing seabird interactions in Japan's longline tuna fishery in the western North Pacific Ocean (Minami and Kiyota 2002). Results were not published in a format that provides seabird interaction rates expressed as contact or capture per number of hooks or normalized rates for seabird abundance.

2 Control treatments in McNamara et al. (1999); Boggs (2001), Gilman et al. (2003a) and Boggs (2003) entailed conventional fishing operations with no seabird avoidance methods. Experiment conducted by Boggs (2003) set hooks during daylight hours.

3 The different contact rates observed by Boggs (2001) and McNamara et al. (1999) may be explained by the use of different definitions of what constituted a seabird contact. McNamara et al. (1999) counted the total number of times a seabird came into contact with gear near the hook, even if the same bird contacted the gear multiple times, while Boggs (2001) defined a contact where only one contact per bait was recorded as a contact regardless of whether a single bird contacted a bait multiple times.

4 This rate is not normalized for albatross abundance. McNamara et al. (1999) could not estimate seabird abundance during night setting. McNamara et al.'s (1999) control capture rate when not normalized for albatross abundance was 18.0 captures per 1000 hooks. Night setting reduced this control capture rate by 97%.

5 Contact rates are averages of rates reported by Boggs (2001) for Laysan and black-footed albatrosses.

6 Percent reductions use the control treatment contact and capture rates of Gilman et al. (2003a).