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1 Executive summary

This report describes the development of the 2025 stock assessment of southwest Pacific Ocean
swordfish. It represents the seventh assessment of swordfish in the southwest Pacific since 2006, with
all previous assessment except one being conducted in MULTIFAN-CL, the other was conducted
in CASAL. At the request of SC20, the 2025 assessments was transitioned from MULTIFAN-CL to
Stock Synthesis in line with the objectives of WCPFC Project 123: Scoping the Next Generation
of Tuna Stock Assessment Software. While the 2025 Stock Synthesis assessment used aspects of
the previous MULTIFAN-CL assessment to guide the initial assessment model set-up, the objective
was to develop a new benchmark assessment in Stock Synthesis, utilising features of the Stock
Synthesis software, rather than try to replicate the previous MULTIFAN-CL assessment. The 2025
assessment makes a fundamental structural change to develop a two-sex assessment and various
other changes and alternative approaches are applied in the quest to improve the assessment. The

key changes include:
e Change of stock assessment platform from MULTIFAN-CL to Stock Synthesis.
e Conversion from a 1-sex model to a 2-sex model.

o Major revision of the size data inputs (both length and weight), stronger filtering methods

and additional downweighting of unreliable size data.
e Separation of all fisheries into distinct fisheries in each model subregion.
o Changing from age-based selectivity to length-based selectivity.

« Constraining selectivity options to logistic or double normal, rather than complex spline-based

selectivities.

e Inclusion of sex-specific conditional age-at-length data within the assessment and using these

data to contribute to internal growth estimation.

o Estimating the scale of the Lorenzen mortality form, using more recent published approaches
of Hamel and Cope (2022); Hoyle (2022).

o Switching to an updated length-weight relationship based on a new dataset and with more
careful filtering of the old data (Macdonald et al., 2025).

e The use of a quarterly model time step, rather than an annual time step, to allow greater

resolution in modelling the growth curve.

e The adoption of variable bin widths for the weight composition data, using a feature in Stock

Synthesis that is not presently available in MFCL.

Due to the time spent focusing on these substantial structural changes, a standard grid approach

was used to characterise uncertainty in management quantities. This is in contrast to the more



sophisticated approach pioneered in 2021 of creating a model ensemble based on joint prior distri-
butions to characterise uncertainty. The ensemble approach appears to be a more suitable approach,

and could be reinstated for the next swordfish assessment.

An additional four years of data were incorporated into this assessment, from 2020-2023, including
new catch, CPUE and size composition data. We are confident that the changes implemented
in 2025 have advanced this assessment. However, there are some key concerns. Firstly, growth
continues to be a major uncertainty for this assessment, and no suitable resolution was found to
problems discovered when applying fixed external growth, as was used successfully in the 2021
diagnostic model. As a result, growth uncertainty is not incorporated in the uncertainty grid. Von
Bertalanffy growth parameters were estimated internally for females, with sex specific conditional
age-at-length data as the major source of information for these growth estimates, and with fixed
offsets used for male growth parameters. Secondly, model outputs and diagnostics indicated that the
uncertainty in population scale is large. This key output, population scale, required an appropriate
contribution from the weight composition data to counter the tendency of the CPUE data to
support unrealistically high estimates of population scale. The conflict in these data sources is
problematic and independent validation of the population size is important to increase confidence
in the management advice for this integrated assessment. Any bias in estimated population scale will
bias key management metrics. Thirdly, we note the influence of weight composition data, which has
cyclic variation and recent decreases, most notably for Australian longline weight composition data
in subregion 1C. A better understanding of the processes (biological, sampling or fishing practices)
influencing the variation in the weight composition time series is important to ensure that these
data are treated appropriately in the model. Finally, spatial structure remains a key uncertainty,
the current spatial structure may be mis-specified and the treatment of the large catch area in the
northeast of the model region, and adjacent waters outside the model region, needs review with
regards to appropriate spatial extent and structure of the assessment region. Acknowledging these

concerns, the result the assessment can be summarised as:

The 2025 SWPO swordfish stock assessment estimates that, at the stock-wide scale, for all models
in the uncertainty grid, the median SByecent/SBusy is well above 1.0, with a value of 2.37, showing
that SB is well above SBygy, (Figure 77, Table 4), and the median Flecent/Fusy is well below 1.0,
with median value of 0.27, showing that Fiecent is also well below Fygy (Figure 74, Table 4). These

two key reference points are calculated incorporating both structural and estimation uncertainty.

The estimated stock status, relative to SBygy across the whole model region shows a slow, gradual
decline until the 1990s, with an initial increase, followed by a period of faster decline, through to
about 2009, followed by a brief recovery to 2015 and over the last decade the stock has continued
to decline (Figure 77).

Overall, the outcomes of this assessment suggest that the swordfish stock in the SWPO is not

overfished and is not undergoing overfishing.



We invite the SC21 to:

e Note the considerable amount of work and changes to develop the new two-sex assessment in
Stock Synthesis.

e Note the results of the assessment in terms of the default MSY based reference points.

e Note the concerns raised on the uncertainty in population scale, limited conditional age-at-

length data and ongoing uncertainty in the model spatial extent and structure.

o Consider the application of Close Kin Mark Recapture (CKMR) as a means to obtain a more

reliable independent estimate of the population size for validation of the model estimates.



2 Introduction

2.1 Overview

This paper presents the 2025 stock assessment of swordfish (Xiphias gladius) in the southwest Pacific
Ocean (SWPO) (south of the Equator between 140°E and 130°W), including the area of overlap
between the Western and Central Pacific Fisheries Commission (WCPFC) convention area and the
Inter-American Tropical Tuna Commission (IATTC) convention areas. Unlike previous assessments
that were conducted in MULTIFAN-CL (Fournier et al., 1998), this assessment was conducted in
Stock Synthesis (Methot and Wetzel, 2013). The switch from MULTIFAN-CL to Stock Synthesis
was driven by the request from SC20 to transition billfish assessments from MULTIFAN-CL to
Stock Synthesis in line with the objectives of WCPFC Project 123:Scoping the Next Generation of
Tuna Stock Assessment Software (Anon, 2024):

e 4.1.2 Review of Project 123 outcomes

o para 20. The report from the Informal Small Group 09 (Project 123: Scoping the next
generation of tuna stock assessment software) is in Attachment 1. The development of new
software was discussed but not prioritized by ISG-09. The ISG-09 provided the following

prioritization of proposed project 123 activities:
— Move the SW Pacific swordfish assessment to Stock Synthesis;

— Move the next SW Pacific striped marlin assessment to Stock Synthesis, if the successor

software is not available;

2.2 Historical SWPO swordfish assessments

The first assessment of swordfish in the south western Pacific region (Kolody et al., 2006) was
conducted in 2006 using MULTTIFAN-CL and focused on the area 140°FE — 175°W. This first assess-
ment noted the considerable uncertainty in stock status and that the assessment uncertainty will
not be substantially reduced until there is considerable additional data collected, ideally including
improved interpretation of catch rates, direct observations of movement from tagging (conventional,
electronic or genetic), direct aging from hard parts, and improved size data and sex sampling. The
general conclusion was that the biomass (total and spawning) are probably above levels that would
sustain MSY and fishing mortality is probably below Fygy. This initial assessment was updated in
2008 by Kolody et al. (2008), again using MULTIFAN-CL, and drew similar conclusions, with some
reduction in the uncertainty compared to the 2006 assessment. In the same year, an alternative
assessment (Davies et al., 2008) was also conducted using CASAL (Bull et al., 2012), focusing on
the south-central Pacific area alone (140°E — 130°W). The 2008 CASAL assessment produced quite
different outcomes to the 2008 MULTIFAN-CL assessment, and concluded there was insufficient
information available to estimate population abundance. Consequently, the status of the swordfish

stocks in the south-central Pacific Ocean could not be determined from this assessment.



In 2013, a new assessment was conducted using MULTIFAN-CL (Davies et al., 2013), which assumed
two model regions, separated at 165°E in the WCPFC area south of the equator (140°E — 130°W).
This spatial structure was based upon the results of electronic tagging programs (Evans et al.,
2012). The conclusions from this assessment depended on the assumed growth curve; Australian or
Hawai’ian. It was concluded that under the Hawai’ian growth overfishing was not occurring, while
under the Australian growth over overfishing was occurring, but under either growth scenario the
stock was not considered to be overfished. In 2017, an assessment was conducted in MULTIFAN-CL
(Takeuchi et al., 2017), using the same two region spatial structure used in the 2013 assessment.
This assessment concluded that it was highly likely that the stock was not in an overfished condition
and that the stock was not experiencing overfishing. Follow up work was undertaken in 2018 to
develop a two-sex model (Takeuchi et al., 2018). However, this model was not used to provide

management advice.

The most recent assessment was conducted using MULTIFAN-CL in 2021 (Ducharme-Barth et al.,
2021a). This assessment employed a novel approach to characterising uncertainty in management
quantities by using an ensemble combination of models capturing model (structural) and estimation
(statistical) uncertainty (Ducharme-Barth and Vincent, 2022). This assessment concluded that the

stock was unlikely to be experiencing overfishing and unlikely to be in an overfished state.

2.3 2025 assessment in Stock Synthesis

As with previous assessments, the objectives of the 2025 SWPO swordfish assessment are to estimate
population parameters, such as time series of recruitment, spawning potential, spawning potential
depletion and fishing mortality. These model estimated quantities are used to assess the stock status
and impacts of fishing. There are no formal reference points adopted by the WCPFC for SWPO
swordfish and the stock status and fishing impacts are summarised in terms of WCPFC default MSY
based reference points, F'/Fygy and SB/SBysy (Table 3). Additional stock status indicators are
provided including spawning biomass (SB), summary biomass, and depletion relative to dynamic
unfished levels, SB/SBr—¢, (Table 3). The methodology used for the assessment is based on the
integrated assessment framework (Fournier and Archibald, 1982; Maunder and Punt, 2013), and is
conducted using Stock Synthesis (Methot and Wetzel, 2013). Model parameters are estimated by
maximising an objective function, consisting of both a likelihood component (based on fits to data)

and penalties constraining the estimates of certain parameters.

The transition of the 2025 assessment from MULTIFAN-CL to Stock Synthesis is not presented as a
typical stepwise development to produce a new benchmark assessment by building from the previous
assessment, typically using the same software. While the development of an initial model in Stock
Synthesis drew on the structure and assumptions of the previous MULTIFAN-CL assessment, there
was no attempt to replicate the 2021 assessment results from the MULTIFAN-CL model using Stock
Synthesis. This was due to some initial changes to the fishery structure, significant downweighting of

the length-based composition data, a change from age-based selectivity to length-based selectivity,
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and a change from using a spline shape for selectivity. The 2025 assessment should be considered
as the development of a new benchmark assessment in Stock Synthesis, with the freedom to take
advantage of features available in Stock Synthesis to optimize the model structure and settings,
and the fit to the data. This assessment also makes a fundamental structural change compared to
the previous assessment by moving to a two-sex model, as recommend by previous assessments and
supported through the 2025 SPC Pre-assessment workshop (PAW) (Hamer, 2025).

The 2025 SWPO swordfish assessment incorporates data up until and including 2023 from longline
fisheries across the SWPO model region (Figure 1). Preparatory work on data for the assessment
is extensive and is described in limited detail in this report. We advise that this assessment report

is read in conjunction with several supporting papers:
o Analysis on longline size frequency data (Peatman et al., 2025)
o Analysis of New Zealand longline CPUE (Finucci and Moore, 2025)
o Analysis of Australian longline CPUE (Tremblay-Boyer and Williams, 2024)
o Analysis of Spanish longline fishery CPUE (Kim et al., 2025)

o Analysis of longline CPUE from Pacific Islands and Territories (PICTs) observer program
data (Neubauer, 2025)

o SPC Pre-assessment workshop summary report (Hamer, 2025)
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3 Background

3.1 Stock structure and movement

Swordfish are a highly mobile fish occurring in tropical and temperate waters in all global oceans
and large seas. In the Pacific Ocean they are one of the most widely distributed pelagic species
found from 50°N to 50°S and at all longitudes (Moore, 2020). Longline catch rate distributions
suggest three large, relatively high density areas, the North-West, South-West and Eastern Pacific,
which is in contrast to spawning distributions inferred from larval surveys, (Nishikawa et al., 1985;
Ijima and Jusup, 2023) and studies of spawning and reproduction (Young and Drake, 2002; Mejuto
et al., 2008). These studies suggest spawning occurs in more localized regions predominantly in
tropical and sub-tropical areas. In the southwest Pacific, larval distributions suggest spawning oc-
curs in latitudes between around 5°S to 30°S, with likely key spawning areas in the Coral Sea, and
around Tonga and French Polynesia (Ijima and Jusup, 2023). Tagging studies provide some confir-
mation that swordfish undergo directed seasonal migrations between temperate foraging grounds
and tropical spawning grounds, with perhaps less longitudinal movement (summarised in Moore
(2020)). It remains unclear how much site fidelity or philopatric behaviour occurs, although it has
been demonstrated for some satellite tagged fish (Tracey and Pepperell, 2018). The degree to which
individuals migrate and sub-populations mix has implications for fisheries management and stock
assessment (i.e. localized depletion risk), but stock and meta-population structure in the South

Pacific still remains poorly understood.

Both Evans et al. (2014) and Patterson et al. (2021) analysed movement data from swordfish tagged
with pop-up satellite tags (PSATS) in the waters off eastern Australia, Cook Islands, and northeast
of New Zealand between Fiji and French Polynesia, as well as northern New Zealand (Holdsworth
et al., 2007), and northern Chile (Abascal et al., 2010). The analysis suggested a lack of movement
between the southern and northern regions of the WCPO, and between the WCPO and the far
eastern EPO. Evans et al. (2014) also identified cyclical latitudinal movements of fish tagged at
multiple locations, but found limited movement between the eastern and western areas of the
Tasman and Coral Seas, delineated at approximately 165°E. This study led to the recommendation
of the two model regions east and west of 165°E that have been adopted since the 2013 assessment
(Davies et al., 2013). More recent pop-off satellite tagging (PSAT) of larger swordfish off the east
coast of Tasmania however showed that some fish do move large distances from west to east across
the 165°E regional boundary (Tracey and Pepperell, 2018). It was suggested that the difference
between the observed movements in the two studies may relate to the size of tagged fish, with the

smaller fish in the Evans et al. (2014) study showing more restricted movements.

PSAT tagging studies however, typically involve very few fish and do not capture long-periods
of fish life-cycle, due to the deployment duration of the tags. They also provide no information
on movement or dispersal of juveniles and earlier life stages, and are generally inconclusive in

providing information on biological stock structure or metapopulation structure. Other approaches
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to studying stock structure; such as genetics, otolith chemistry, parasites and tissue stable isotopes
have all been applied to swordfish in the Pacific region and more broadly (reviewed in Moore (2020)).
Most studies applying these approaches have had limitations in either the method and or the sample
coverage, although there is now strong evidence from genetics that populations in the Indian and
Pacific Oceans are separated (Grewe et al., 2020). For the Pacific Ocean, Reeb et al. (2000) suggest
a broad D shaped connectivity pattern, such that the south west and north west Pacific populations
are the most genetically distinct from each other, with central and eastern populations intermediate
between the two. Alvarado Bremer et al. (2006) suggested that the south east Pacific population was
also genetically distinct from the north east and south west populations, and there was additional
evidence to suggest that the south-central Pacific may represent a population intermediate between
the southwest and southeast, but this was inconclusive due to the low sample sizes. More recent
genetic studies have, however, found less evidence for population structure across the Pacific (Lu
et al., 2016). Overall, the stock structure remains poorly understood for swordfish, movement
behaviour appears to be complex extensive and to cross management boundaries (Sepulveda and
Aalbers, 2025), and likely differs by sex and size, and there is evidence of fidelity to particular
areas (Burnett et al., 1987; Tracey and Pepperell, 2018; Sepulveda and Aalbers, 2025). As such
there is likely to be sub-structure and migratory contingents within a more broadly resolved stock
structure. More research is required in this area to understand the implications of spatio-temporal

movement dynamics and regional fidelity for stock assessment spatial structure.

3.2 Vertical movement behaviour

An important aspect of swordfish behaviour for understanding their ecology and how they interact
with fishing gear is vertical movement. Swordfish show diurnal vertical migration, moving up to the
surface waters at night and returning to mesopelagic depths, typically deeper than 300 m, during
the day (Abascal et al., 2010; Dewar et al., 2011). This typical behaviour may be modified by
spending more time closer to the surface during the day where dissolved oxygen levels are lower,
or at night during the new moon phase when lunar illumination is low (Abascal et al., 2010). This
vertical migration is related to feeding behaviour as swordfish follow the diurnal migrations of prey
from the deep scattering layer, primarily squid that are in-turn feeding on the deep scattering
layer fish community, to the surface at night. Targeting of swordfish with longlines can therefore
be more effective at night by setting lines closer to the surface, often with the use of light sticks.
Gear setting practices, especially factors affecting depth of fishing (hooks between floats, branch
line length, float line length, and/or line setting speed), bait type (e.g. squid v fish), and use of light
sticks can be influential on swordfish catch rates (Dell et al., 2020). Environmental factors such as
degree of lunar illumination or proximity to oceanographic fronts and convergence zones have also

been shown to influence swordfish catch rates (Bigelow et al., 1999; Poisson et al., 2010).
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3.3 Biological characteristics

Swordfish are sexually dimorphic, with females growing larger and faster than males (Young and
Drake, 2002; Mejuto and Garcia-Cortés, 2014; Moore, 2020). Potential sexual differences in other life
history characteristics are less well known (e.g. migration patterns, natural mortality, etc.). There
have been a number of studies on swordfish growth rates and maturity in the Pacific (DeMartini
et al., 2000; Young et al., 2003; Mejuto et al., 2008; Valeiras et al., 2008) providing a range of
estimates for these key biological parameters that have contributed to stock assessment uncertainty.
WCPFC SC recommended that additional work on age, growth, age validation, and reproductive
biology be undertaken for the southwest Pacific swordfish stock (WCPFC Project 71). That research
and its results are described in Farley et al. (2016), which indicated that swordfish lived longer and
grew slower than previously estimated. The conditional age-at-length dataset from the Farley et al.
(2016) study is used in this assessment, and there has been no addition of conditional age-at-length
data since then. The key findings of Farley et al. (2016) include: southwest Pacific swordfish can live
for at least 21 years, male and female growth is similar until about age 3 years after which females
reach larger sizes than males for the same age, the size at 50% maturity for females is estimated to
be around 160 cm eye orbital fork length, which is around 175 c¢m lower jaw-fork length and age
at 50% maturity occurs at around 4-5 years. The spawning period in the southwest Pacific is from
August to May with a peak in December—January. Natural mortality is discussed further later in
this paper, but the review by Moore (2020) shows that annual M used in previous assessments in

the Pacific Ocean range from 0.22-0.48 depending on age and sex.

3.4 Fisheries

Due to the diurnal vertical migration behaviour of swordfish, they are predominantly caught using
longline gear, with targeted fishing closer to the surface at night, or as bycatch in deeper longline
sets during the day, that are likely to be targeting bigeye tuna. Squid bait is preferred over fish baits
and attaching light sticks periodically along the longline is a common tactic employed to increase
targeted catch rates (Bigelow et al., 1999; Dell et al., 2020).

Fisheries for swordfish have operated in the SWPO since the early 1950s. Historically, the majority
of swordfish catches represented a valuable bycatch from the tuna-target longline fisheries. While
some of the recent catches are still considered valuable bycatch, particularly in deeper set longlines,
targeted catches slowly increased in the SWPO from the early 1970s up until the late 2000s-early
2010s, when catches peaked at around 9,000-10,000 t (Figure 4, Figure 5). Early catches were
primarily taken by Japanese fisheries, but from the mid-1990s to the early 2000s catch levels of
other nations increased rapidly, as more targeted fishing of swordfish in Australian and New Zealand
waters developed, influenced by the introduction of quotas for the species in these jurisdictions.
From the mid-2000s, catches by the European Union (Spanish) fishery increased as this fishery
started targeting swordfish in the south-central Pacific Ocean (Figure 4, Figure 5, Figure 6). Since
2014, the catch of swordfish has declined across all fisheries in the SWPO, with recent estimates

14



indicating an annual catch of between 5,000 and 6,000 t (Figure 4).

Since 2000, around 50% of the swordfish catch in the SWPO has been taken in the tropical and
sub-tropical waters (Figure 6), in sub-regions 2N, 1C and 2C. In recent years the major catches
have occurred: off the central east coast of Australia by the Australian fishery, as targeted catch;
around northern New Zealand, and to the northeast of New Zealand by the Spanish fishery, as
targeted catch in the high seas; and in the northeastern tropical area, subregion 2N, primarily by

vessels from Chinese Taipei, as bycatch, while targeting bigeye tuna (Figure 10).
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4 Data and methods

4.1 The data and model inputs

The 2025 stock assessment of SWPO swordfish uses an age- and size-structured model implemented
in the generalized stock assessment software package, Stock Synthesis (Version 3.30.23.1, Methot
and Wetzel (2013); Methot et al. (2025)).

The methods utilised in Stock Synthesis are based on the integrated analysis paradigm. Stock Syn-
thesis can incorporate multiple seasons, multiple areas and multiple fisheries, although most applica-
tions are based on a single season and area. Recruitment is governed by a stochastic Beverton-Holt
stock-recruitment relationship, parameterised in terms of the steepness of the stock-recruitment
function (h), the expected average recruitment in an unfished population (Rp), and the degree of
variability about the stock-recruitment relationship (o). Stock Synthesis allows the user to choose
among a large number of age- and length-specific selectivity patterns. The values for the parameters
of Stock Synthesis are estimated by fitting to data on catches, catch-rates, catch length-frequencies,
catch weight-frequencies, and conditional age-at-length data. The population dynamics model and
the statistical approach used in fitting the model to the various data types are given in the Stock
Synthesis technical documentation (Methot et al., 2025).

The diagnostic model includes two regions, with fixed quarterly movement between these regions,
assuming a single reproductive stock, with 19 fisheries (Table 1), each operating in one of 6 sub-
regions. Selectivity is modelled separately for fisheries with length composition data and weight
composition data, to avoid any potential conflict induced by potentially inaccurate conversion
factors between lengths and weights. Selectivity is estimated for a restricted set of the 19 fisheries,
with these estimated selectivities shared amongst groups of fisheries. For some fisheries, with less
consistent and reliable sampling, selectivity is initially estimated, following some initial filtering of
this composition data. For these fisheries, selectivity is subsequently fixed at the estimated values,
and the composition data is then further downweighted, as it is not considered to be reliable enough
to influence estimated population processes, such as population scale and recruitment. Selectivity
patterns are assumed to be length-specific for all fisheries. Selectivity is assumed to be logistic
for the fisheries operating in the two southernmost sub-regions and double normal for all other
fisheries. The model accounts for males and females separately by fitting separate growth curves
for each sex. The size composition data is not reported separately by sex, so these are all treated
as aggregated data. The models uses a quarterly time step, and most data sources are entered in
quarterly intervals (catch, size composition data, age data), although notably the CPUE data is
entered with an annual time step. Recruitment is assumed to occur only in the first quarter of every
year, as this is most likely to be seasonal, but movement between the two regions is assumed to

have the same movement rate in each quarter. The initial and final years are 1952 and 2023.
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4.1.1 Biological parameters

Growth In contrast to the 2021 swordfish assessment (Ducharme-Barth et al., 2021a), a two-sex
model is used for the diagnostic model in this assessment, using conditional age-at-length data as
the sole data source available which is separated into male and female components. This allows
growth to be modelled separately for male and female fish, which is important given that it is

known that female swordfish grow much larger than males, and live to an older maximum age.

Natural mortality Natural mortality (M) was modelled using a two-step approach following
(Hoyle, 2022). First, a target level of instantaneous natural mortality was estimated using the oldest
fish observed in the population (Apax), based on methods developed by (Hamel and Cope, 2022)
that improve upon earlier approaches (Then et al., 2015). Using a maximum observed age of 21.15

years from 300 aged otoliths, the target mortality was calculated as 5.4/Amnax.

Second, this target mortality was distributed across age classes using the Lorenzen functional form
(Lorenzen et al., 2022), which describes the inverse relationship between natural mortality and
body size. The Lorenzen curve was converted to a function of age using the growth equation, then
rescaled so that the average mortality across all age classes, weighted by the proportion mature at

each age, equals the target mortality:

n)\t

M, = Mtarget ey —
S s
1=tg L7171

where t is age, \; is the Lorenzen mortality at age t, p is the proportion mature at age t, tiax is
the oldest age class, and n is the number of age classes. This weighting ensures that the average

instantaneous mortality rate for mature fish equals the target mortality.

To produce sex-specific mortality curves, given minimal sexual dimorphism in growth at young
ages, instantaneous mortality at age one was assumed equal between sexes, consistent with the
expectation that size-dependent mortality processes (e.g., predation) would affect both sexes sim-
ilarly at this life stage. For older ages, sex-specific mortalities were calculated using the Lorenzen
functional form, while maintaining the target average mortality for mature fish across both sexes

combined.

To incorporate this form of mortality within Stock Synthesis, natural mortality was implemented
using the Lorenzen mortality option (option 2), with female mortality fixed at age seven (when
98% of females are mature) to anchor the Lorenzen curve. Male mortality was calculated using
growth parameter offsets while maintaining the target average mortality for mature fish across
both sexes. For sensitivity analyses, alternative mortality levels were explored using the 25" and
75t percentiles from a lognormal distribution centered on the target value, with a coefficient of
variation of 0.31 (Hamel and Cope, 2022).

In the diagnostic model, sufficient information was available to estimate the key mortality parameter
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directly, eliminating the need for the rescaling procedure described above. When mortality was
estimated, a lognormal prior was used, centred on the target mortality with a coefficient of variation
of 0.31 (Hamel and Cope, 2022).

Length-weight relationship The parameters of the length-weight relationship are obtained
from Macdonald et al. (2025). These parameters have been revised from the length weight relation-
ship used in the 2021 assessment, and are appropriately bias corrected and also derived from an
updated dataset with additional data sources and data quality control, using only data that were
measured using lower-jaw fork lengths and whole weights to obtain standard length and weight
measurements and avoid possibly confounding effects from potentially unreliable conversion factors
Macdonald et al. (2025). The length-weight parameters for females are a = 6.565533 x 1076 and
b = 3.139509 and for males are a = 8.942387 x 1076 and b = 3.063015.

Sexual maturity Swordfish are assumed to be sexually mature at around 175 cm (lower-jaw fork
length) or 4-5 years of age (Farley et al., 2016), using the same age-maturity matrix as used in the
2021 assessment (Ducharme-Barth et al., 2021a). Fecundity-at-length is assumed to be proportional
to weight-at-length.

4.1.2 Spatial stratification

The spatial structure used in the 2025 SWPO swordfish assessment is identical to the structure
used in the 2017 (Takeuchi et al., 2017) and 2021 (Ducharme-Barth et al., 2021a) assessments, and
covers the southwest Pacific Ocean from 140°E to 130°W, and from the equator to 50°S, including
the area of overlap between the WCPFC and IATTC convention areas (Figure 1). The delineation
of these two regions at 165°E followed Davies et al. (2013), based on the tagging analysis by
Evans et al. (2012, 2014). Movement between region 1 and region 2 is explicitly modelled in this
assessment (Patterson et al., 2021), with any spatial structure within regions treated in an areas-
as-fleets manner, with catches and composition data from each fishery fully separated by subregion
for each fishery, in a structural change from the assumptions made in the 2021 assessment. This
is particularly important for the southern fisheries where it is known that large fish are caught.
In particular, the New Zealand fishery clearly catches larger fish south of 40°S, generally caught
off the west coast of the South Island, compared to the New Zealand fishery operating further
north, which generally catch fish offshore from the North Island. The 2021 assessment treated
the New Zealand fishery as one fishery, and did not separate these length composition data by
latitude. The separation of all fisheries into distinct subregional fisheries with respect to catches
and size composition data allocated to a single subregion, allows for any latitudinal changes in size

distribution and selectivity to be more accurately modelled.

Recent increases in effort and catch close to the north eastern boundaries of subregion 2N, especially
in the last 25 years, and the size of catches reported near to, but on the other side of, this boundary

suggest that the stock structure and spatial boundaries are unlikely to be biological boundaries. The
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variation in fishery behaviour and the vast spatial scale of region 2, and the operation of fisheries
from different flags across the current subregional boundaries suggest that this spatial structure is in
need of a comprehensive review. However, to do this thoroughly and comprehensively, seeking input
from all interested parties was beyond the scope of this assessment cycle. The current structure has
been used for several previous assessment, and appears to have been based on recommendations
taking account of known tagging movement, and apparent wide mixing within region 2, but failing
to account for other important considerations in a stock assessment context, including political
boundaries, and the fleet structure, fishing behaviour and operations of fisheries from different flags.
The current spatial structure combines at least three disparate and significant fisheries with different
operating characteristics in region 2, all with an increase in catches starting in the mid 1990s. The
New Zealand fishery is essentially a domestic fishery operating near New Zealand in the south west,
the European (largely Spanish) fishery operates broadly in central areas of region 2, with large
spatial and temporal changes in areas of focus from year to year, and with operations apparently
targeting swordfish (Kim et al., 2020). Finally, there is a third mixed flag fishery, considered to
be largely a bycatch fishery, operated by distant water fishing nations in the far north eastern
corner of region 2. To fully restructure region 2 into smaller regions, rather than subregions, would
require some information on movement between any new regions, which is not currently available,
and possibly some additional biological information, or else some speculation or assumptions on
movement and any biological differences. While there is some information on movement between
regions 1 and 2 (Patterson et al., 2021), this is based on a relatively small number of satellite tag
releases of fish with restricted age ranges, the current movement assumptions obtained from this
satellite tag data, could be strengthened with more data collected, over a wider age range of satellite
tagged fish, and with additional tagging studies. The length composition data over the full area of
the assessment is not consistent enough in time or space to give reliable information on population
structure from a regression tree analysis, an approach which is often used to provide information

on spatial structure to be used in an assessment.

4.1.3 Fisheries

Extraction fisheries The number of extraction fisheries has increased from 13 fisheries in the
2021 assessment, to 19 fisheries in the 2025 assessment. This increase was required to ensure that
all fisheries are now separated into northern, central and southern components, where appropriate,
with each fishery now covering only a single subregion Table 1. Only some fisheries were separated
by subregion in the 2021 assessment, namely the distant water fishing nations in both regions 1
and 2, and for the PICT fisheries in region 2.

These 19 fisheries can be classified as fisheries operated by one of the following groups: distant
water fishing nations (DWFN); Pacific Island Countries and Territories (PICTs); Australia (AU);
New Zealand NZ); and the European Union (EU, but predominantly Spanish vessels). For this
assessment, vessels fishing under the Vanuatu flag were grouped with the DWFNs as they are likely

to be vessels from Chinese Taipei fishing under special access arrangements in the Vanuatu EEZ.
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Index fisheries and CPUE series In addition to the extraction fisheries, there are two index
fisheries in the diagnostic model, with associated CPUE series, with only one index per region in the
diagnostic model. The index fishery for region 1 is based on the Australian CPUE series (Tremblay-
Boyer and Williams, 2024) and for region 2 is based on the New Zealand CPUE series (Finucci
and Moore, 2025). Neither of these CPUE indices are based on a spatio-temporal CPUE analysis
based on VAST or sdmTMB, as used in recent WCPFC tuna assessments, so it was not possible
to create separate index size composition data, weighted by the index instead of the catch data,
as is the usual practice for index fisheries (Peatman et al., 2025). Instead, the selectivity for these
fisheries are shared with the selectivities estimated for the equivalent extraction fisheries, which are
catch weighted rather than index weighted, from the appropriate region corresponding to where
the CPUE data were collected: fishery 05.AU.1C for the Australian index fishery (20.IDX.AU.1)
and fishery 13.NZ.2C for the New Zealand index fishery (21.IDX.NZ.2).

The Australian CPUE index was standardised using General Additive Models and data from 1998—
2023, and using operational datasets including use of light sticks and bait type (Tremblay-Boyer
and Williams, 2024). The annual index was chosen for all size classes, for use in the 2025 swordfish
stock assessment, so that the assessment model did not have to attempt to fit to seasonal variation
in the CPUE, which may reflect seasonal changes in selectivity, availability or fishing practices,

rather than seasonal changes in abundance.

The NZ CPUE index was standardised using General Additive Models and data from 2004—2023,
and also using operational datasets including use of light sticks and bait type (Finucci and Moore,
2025). The annual index was chosen for the core set of experienced vessels, for use in the 2025

swordfish stock assessment.

The two CPUE abundance indices used in the diagnostic model, from Australia and New Zealand,
are plotted on the same normalised scale for easy comparison in Figure 2. While there is a roughly
similar pattern, possibly showing some similar periodicity in both indices, the New Zealand index

shows larger absolute changes than the Australian index.

Two alternative index fisheries were considered for region 2, for use in sensitivities and in the
uncertainty grid, with the New Zealand index being replaced by either an EU based CPUE index
(Kim et al., 2025) or by a PICT observer index (Neubauer, 2025). As the PICT observer index
was not a spatio-temporal analysis, this index fishery did not have separate index composition
data and the selectivity was shared with the shared selectivities from the extraction fisheries from
subregion 2C with shared selectivity (11.DW.2C, 16.EU.2C and 19.PICT.2C). While there was
a spatio-temporal index for the EU index, there were some concerns about the validity of that
index, so again this index fishery simply shared selectivity with the same extraction fisheries from
subregion 2C with shared selectivity (11.DW.2C, 16.EU.2C and 19.PICT.2C).

The annual PICT observer index was standardised using GLMM and data from 20012022 (Neubauer,

2025), with spatio-temporal splines, oceanographic predictors (NINA4) and operational covariates
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including gear characteristics. The PICT series including data from New Caledonia, Fiji, Tonga and
French Polynesia to get an index that was most likely to be representative of the whole of region 2.
While a small part of this data from New Caledonia was from fishing operations in region 1, this
was overlooked for simplicity, and the index, including that small quantity of data from region 1,

was assigned to region 2 instead.

The annual EU index was standardised using VAST (Kim et al., 2025), with a similar approach
as used in the 2021 assessment (Ducharme-Barth et al., 2021b). This analysis showed a very sharp
decline in CPUE in the last two years. This decline looked unrealistic and closer inspection showed
it was associated with a shift in fishing operations to a more southerly region and a substantial
increase in blue shark catches. As such, the last two years of the time series were exclude, over the
period when the blue shark catches increased, as these were unlikely to be indicative of swordfish

abundance.

The coefficient of variance (CV) was arbitrarily set to 0.2, for the whole time series, for the Aus-
tralian index and to 0.1 for both the NZ and PICT indices, but set to the values obtained from
the CPUE analysis for each year for the EU index, with values ranging from 0.9-0.23 in this case.
Often the estimated CV is unrealistically small, for stock assessment purposes, due to the apparent
statistical power from using a large number of data points used in CPUE analysis. Using these
CVs fails to account for other sources of uncertainty and can place too much weight on a CPUE
series. A range of alternatives approaches are possible, including fitting some smoother (e.g. loess,
or by using a fit to an earlier model) and estimating the CV from the root mean square error taken
from the smoother or fit chosen. This typically gives a more realistic starting CV, and is often set
to a fixed value for all points in the CPUE series, making the assumption that there is no time
variation in the uncertainty for the index. However, it is good practice to estimate an additional
CV parameter for each index, which is a standard option available in Stock Synthesis, to effec-
tively balance, or re-weight, the input and output variances internally. This approach of estimating

additional variance on the CPUE was adopted for all CPUE indices in this assessment.

While the practice adopted here, in starting from an arbitrary CV for each index, could (and should)
be questioned, there were many other more important dragons to try to fight in this assessment,
and this detail ended up being rather lost in a storm, while those dragons were being fought. That
said, additional CV was estimated internally for each CPUE index in this assessment, from these

arbitrary starting points, so hopefully this is one of several “lesser evils” present in this assessment.

Other indices used in the 2021 stock assessment, using data from Japanese and Chinese Taipei
fisheries, were not incorporated into this assessment, partly due to constraints on time and resources
required to reanalyse these series, but also because these series were noisy and largely flat, came
from fisheries that were largely bycatch fisheries and appeared to contain little signal in previous

assessments. Index fisheries were not created for these indices in 2025.

The three alternative standardised CPUE indices for region 2 (NZ, PICT and EU), are shown in
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the same plot in Figure 3, with each CPUE series shown using a different coloured circle, NZ (blue),
PICT (red) and EU (green). The fits to these indices are also shown, from sensitivities which were
conducted later, all using the AU index for region 1, but with only a single index from region 2 for
each alternative CPUE option. The EU index was truncated at the end of 2021, due to the concerns
noted above, which could potentially represent a change in fishing practices for that fishery, rather

than a change in abundance for the stock (Kim et al., 2025).

4.1.4 Catch data

The model uses year and quarter for all catch data. All EU fishery catch data is reported in
tonnes and all other fisheries report catch in number of fish caught (Table 1). These catch data
are aggregated at 5° x 5° cells and year-quarter resolution, with the aggregation process either
conducted by SPC, where operational data is available to inform this, or by the particular countries,
following statistical procedures that are reported to the WCPFC. Landed catches, aggregated up
to annual totals by flag and converted to tonnes where necessary, are shown in Figure 4, with the
same catches separated by region in Figure 5 and by subregion in Figure 6. These same aggregated
annual catches, from both regions combined and converted to numbers of fish rather than tonnes,

are shown by fishery in Figure 7 and in stacked form in Figure 8.

The spatial distribution of catches across the model region are shown in Figure 9, aggregated by
5° x 5° cells. This spatial catch data by major flag, summed over all time periods, shows some

strong patterns amongst the flags.

Some flags feature quite limited spatial distribution of catches, including the New Zealand fishery,
and also the Australian and Japanese fisheries, operating off the east coast of Australia, albeit during
different time periods. The New Zealand catch, largely taken in NZ territorial waters, demonstrates
that a smaller proportion of the total New Zealand catch is taken south of 40°S (Figure 6). The
catch from the PICT fisheries is relatively small, but is spread over a wide region, mostly either side
of the boundary between subregions 2N and 2C. The European fishery (mostly Spanish vessels) is
widely spread throughout region 2C, with quite large catches. There is a band of 5° x 5° cells with
relatively small catches, separating the areas fished heavily by the European fishery in subregion 2C
and the north eastern part of subregion 2N, which has been fished particularly heavily in recent
years, mostly by distant water fishing nations such as China, Korea and Chinese Taipei. The spatial
distribution of catches, show large variation within regions and subregions, with distinctive patterns

showing areas of high and low catches (Figure 9).

The temporal patterns in the spatial distribution of catches across the model region are shown in
Figure 10, again aggregated by 5° x 5° cells. This spatio-temporal catch data, by major flag, shows
additional information as to the development of various fisheries over time, with catches up until
2000 dominated by the Japanese fisheries operating over a broad area, and the Korean fisheries also
operating over a broad scale in subregion 2N. The Australian and New Zealand fisheries rapidly

developed in the late 1990s and became locally dominant in their EEZs since then. The European
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fisheries operations increased from around 2000, especially over a wide range of subregion 2C that
was previously very lightly fished. The catches in the north eastern part of subregion 2N have
increased substantially since 2000, initially with the Chinese fishery becoming active, but also
with fisheries from Korea increasing their fishing and more recently from Chinese Taipei. This
catch increase in subregion 2N is particularly concentrated in the north east of this subregion, but
it continues beyond the north eastern boundary of subregion 2, with high catches from Chinese
Taipei, Korea, China and other distant water fishing nations, outside the regional boundaries used

for this assessment.

4.1.5 Size composition data

Size composition data from each fishery is comprised of quarterly samples, with frequency distribu-
tions of either length samples or weight samples, and for some fisheries, sometimes both length and
weight samples. Sampling is sometimes conducted by observers on board vessels and sometimes
in port or at fish markets, and different measurement standards for lengths and fish processing

standards are applied in different jurisdictions and by different authorities (Hamer et al., 2025).

For most fisheries, temporal coverage of the size frequency data is limited or patchy (Peatman
et al., 2025). Within some fisheries, the contribution from each flag can also be patchy and vary
temporally, and also spatially, within a subregion. Variation in targeting practices between separate
sampling events may also lead to inconsistencies. Examination of the raw size composition data for
several fisheries indicated greater variation than would be expected for a representative sampling
program, so this prompted considerable investigation of the size composition data, and of conversion

factors.

Measurement standards differ between sampling programs and flags, so all length composition data
were converted to lower jaw-fork length (LJFL) using the best available conversion factors (Hamer
et al., 2025). Similarly, weights were converted to whole weights, from a range of varying weight

measurement standards or fish processing states.

Length data were provided based on three main length measurement methods: eye orbital-fork
length, lower jaw—fork length, or pelvic fin—fork length as is standard practice for billfish measure-
ments (Hamer et al., 2025). Weight data is provided in various forms depending on the source,
for example, Japanese processed weights (gilled, gutted, head and tail left on, fins trimmed, bill
removed at a few cm in from the tip of the lower jaw), and gutted and headed (Australia), or
processed weights (New Zealand) (Hamer et al., 2025). All length measurements were converted
to LJFL, and weight measurements were converted to the equivalent whole (unprocessed) weight
using the conversion factors listed in Hamer et al. (2025). While efforts were made to ensure the
conversion factors used were the best available, there still appears to be some uncertainty associated
with some conversion factors. This may help to explain inconsistencies seen when length and weight
data are used from the same fishery or from the same subregion. These two data types can show

conflict in the model, where the model can overfit one of these data sources and simultaneously
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underfit the other. While it was not possible to resolve all of these problems, this highlighted a need
to review the standard length and weight measurements used over the range of the fishery, and the
conversion factors that are required, which may also need to vary regionally. This should perhaps
constitute a separate project, requiring further work and resources, if it is desirable to improve
the quality of the size composition data used in subsequent swordfish and striped marlin stock
assessments. Standardising the length composition data, especially for the mixed flag fisheries, to
appropriately counter any spatial or temporal variation in either fishing or sampling practices, may

provide more useful length composition data for use in future assessments.

Port based and observer length composition data were separated this year for the PICT fisheries
(Peatman et al., 2025), and this revealed clear differences in the distributions from these two distinct
data sources. These two components of the length composition data have simply been aggregated
in previous billfish assessments, so this difference, and the conflict apparent between these two
sampling protocols, has not been known or demonstrated to exist previously. A decision was made
to use the observer length composition data for these fisheries, and to exclude, or filter out, the
port or market based observations, as the observer data was considered to be the more reliable data

source, in terms of representing the catches.

Another feature of size composition data for a number of swordfish fisheries was the appearance of
small fish, sampled in certain time periods (quarters), in a manner that appeared to be episodic,
unpredictable, transient and irregular, with little to no consistent evidence that these represented
large cohorts appearing in the population. The flow through, that you would expect from a large
cohort as it ages and grows, and as the population continues to be fished, was not consistently
observed, and often was notable in its complete absence. This suggest that this sampling of occa-
sional spikes of small fish may not be representative of the population as a whole, and may be an
artefact of fishing practices, such as changes in location, or targeting or simply the composition
of flags conducting sampling within a fishery. In any case, this size composition data appears to
have limited information to provide to the stock assessment about population processes. To address
some of these issues, and other problems with the size composition data, additional filtering steps

were considered and implemented for all fisheries for swordfish this year (Peatman et al., 2025).

Detailed information on the size data by fisheries is available in Peatman et al. (2025). Size data
were aggregated by fishery and year-quarter. For each year-quarter, length data were combined
into 29 equal width 10 cm size classes, or bins, ranging from 30-310 cm, with all fish larger than
310 cm placed in the last bin. Traditionally, weight data has also used equal sized bin widths in
swordfish assessments. However, given that the relationship between length and weight is roughly
cubic, this gives a mismatch between the proportions of samples in the lower weight bins, compared
to those in the lower length bins. Lower weight bins typically are filled with samples for small fish
which would be equivalent to several length bins, had these same fish been recorded with length
measurements rather than weights, giving little resolution to any potential recruitment signal that

may be observed in small fish. One weight bin in the smallest size range is equivalent to multiple
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length bins for the same fish. For large fish, which typically feature many weight bins with very
few fish in them, producing a very long right hand tail, the opposite is true, with multiple weight
bins “fitting” into a single length bin, for the largest of fish, giving a very high resolution for the

largest weight-measured fish, compared to those large fish with lengths measured.

To address this mismatch, a variable bin width was applied to the weight composition data. This
started with a bin width of 1 kg, for the lightest fish measured (3 kg), then transitioning to a 2 kg
bin width, starting at 12 kg fish, transitioning again to a 5 kg bin width at 20 kg fish, to a 10 kg
bin width at 40 kg fish, to a 20 kg bin width at 100 kg fish, to a 40 kg bin width at 160 kg, to a
50 kg bin width at 200 kg and then finally with a plus group for any fish heavier than 350 kg. This
resulted in a total of 30 weight bins, compared to 29 length bins, covering the same sized fish. The
2012 swordfish assessment used 63 weight bins, all with a constant 5 kg bin width. MULTIFAN-CL
does not currently have the option to incorporate variable size bin widths, so it was not possible
to better balance the number of weight bins with the length bins in a MULTTIFAN-CL assessment.
The use of variable weight bin widths allows for resolution of the data to give information on the
smaller fish that can help inform the recruitment estimates in the model. The number of length
bins, and the length bin width, used in the 2025 assessment was unchanged from the length bin

definitions used in the 2021 assessment.

Through the course of the development of the 2025 assessment, a range of approaches to the use of
the size composition data were investigated, and some subjective decisions were eventually made
to completely exclude length composition data from some fisheries, and to heavily downweight oth-
ers. Despite multiple explorations and approaches tested, it was not possible to get stable model
behaviour when these data sources were allowed to have too much influence on the model. The
weight data were generally considered to be more reliable than the length data, and the Australian
length composition data was excluded for that reason, given there was also weight composition data
available for that fishery. For the New Zealand composition data, which has both length and weight
data for fisheries in both subregions, the weight data was chosen instead of the length composi-
tion data for fishery 13.NS.2C, partly because the data collection was also ongoing for the weight
data, and the ongoing collection of length composition data, collected by onboard observers, has
been discontinued in New Zealand. In contrast, for the southern New Zealand fishery 14.NZ.2S, the
length data was used instead of the weight data, as there were more length samples per quarter
typically, and these were collected over a longer time series than the weight data. This was consid-
ered an important fishery, given the propensity to catch larger fish and the asymptotic selectivity
assumed for this fishery, and the historical length data was considered to be more informative to
the assessment. This was considered more important than the fact that observer based length data
is no longer being collected in this part of the fishery. The lack of ongoing collection of length
composition data for this southern component of this New Zealand fishery will need to be carefully

considered for future assessments.

Ideally the size composition data would be modelled to essentially standardise this data to allow for
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factors such as the composition of flags from which it was collected, the finer scale spatial location of
fishing operations within these large subregions, any changes to targeting practices and potentially
other factors that could be useful to smooth out this data source, following approaches suggested
by Maunder et al. (2020).

4.1.6 Conditional age-at-length data

In another change from the 2021 assessment, conditional age-at-length data by sex was incorpo-
rated in the 2025 assessment. These samples were collected from the Australian fishery, 05.AU.1C,
between October 1999 and November 2002 (unpublished data provided by Jess Farley, CSIRO,
Hobart) and the otoliths were read to give fractional ages (Farley et al., 2016). These data were
provided with lengths measured as eye-orbital-fork length rather than LJFL, the standard length
measurement used in the swordfish assessment. These length data were converted to LJFL using
the standard SPC held conversion factors. Again we suggest review and improvements of length
to length conversion factors, so the conversion factor used to convert these to LJFL is appropriate
for this critically important data source. Ideally, a consistent standard for measuring the length of
swordfish would be agreed and adopted in the region. It is not ideal to have age-length data pro-
vided as eye orbital-fork length, given the assessment uses LJFL, as the need to apply conversion
factors can introduce unnecessary bias. While it is good to have some age data included in this
assessment, it is notable that this age data only comes from one subregion of the assessment, so the
implicit assumption is that this data from subregion 1C is representative of all subregions in the
assessment. Without any other ageing data available, this seemed to be a good first step, although
clearly it would be preferable to have more ageing data, preferably with length measured using the
standard LJFL, used in this assessment, and to have that age data collected over the full spatial
range of the fishery, and with improved temporal sampling. These otoliths were only read once, so

unfortunately it is not possible to estimate age-reading error.

In lieu of any estimate of ageing error, an assumed ageing error vector, similar to an ageing error
vector from a species of similar maximum age, with otoliths read at the same laboratory, was used
with the standard deviation of the age reading error at 0.25 for the youngest fish, and gradually
increasing up to 0.75 for the oldest age class (19 years). The conditional age-at-length data has the
youngest fish with a decimal age of around 0.4 years and the oldest fish with a decimal age of about
21.1 years. While it would clearly be preferable to have a data informed measure of the age reading
error, this approach of making an assumption about this error seems preferable to assuming there
is no age reading error. Ideally, sensitivities to the assumed values of the standard deviation of the
age reading error would be tested. Hopefully this is another of those “lesser evils” featuring in this

assessment. Remember those dragons!
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4.1.7 New data

New data featuring in this assessment, compared to the 2021 assessment, include an additional four
years of: catch data; CPUE data (including a new PICT CPUE index); length composition data;
weight composition data, in addition to all of the conditional age-at-length data, collected from
the period 1999-2002. Apart from the new PICT CPUE index and the conditional age-at-length
data, all the other new data came from the last four years, 2020-2023. A summary of the available
data sources, indicating the years that each data source is available is provided in Figure 11 and

Figure 12.

4.2 Stock assessment methods
4.2.1 Population dynamics model and parameter estimation

A two-sex stock assessment for SWPO swordfish was conducted using the software package Stock
Synthesis (version SS-V3.30.23.1, Methot and Wetzel (2013); Methot et al. (2025)). Stock Synthesis
is a statistical age- and size-structured model which can allow for multiple fishing fleets, or fish-
eries, and can be fitted simultaneously to the data sources available for swordfish. The population
dynamics model, and the statistical approach used in fitting the model to the various data types,

are described in the Stock Synthesis technical documentation and are not reproduced here.
Some key features and assumptions of the diagnostic model are:
1. Swordfish constitute a single stock within the area of the fishery (SWPO)

2. The population was at its unfished biomass with the corresponding equilibrium (unfished)

age-structure at the start of 1952.
3. Nineteen extraction fisheries are modelled.

4. Selectivity was assumed to be length-based, time invariant and to vary among fisheries, or at
least between groups of fisheries. A logistic form of selectivity was assumed for the southern
fishery groups, those fisheries operating in subregions 1S and 2S, and double normal selectivity
assumed for all other fisheries. The two parameters of the logistic selectivity functions for each
southern fishery group were estimated within the assessment. Five parameters of the double
normal selectivities, assumed for all other fishery groups from central and northern subregions,
were estimated within the assessment, for each fishery subgroup. However, for some fisheries
subgroups, this double normal selectivity was only estimated in an initial preliminary stage,
with these selectivities subsequently fixed at these preliminary estimated parameter values,
with the corresponding length composition data further downweighted. The one fishery with
time varying selectivity, both implemented and estimated, in the 2021 assessment, showed
very small differences in selectivity for those two time periods in the 2021 assessment, so this

time-block approach was not adopted for the selectivity estimated for that fishery in 2025.

5. The rate of natural mortality, M, was estimated within the assessment for the diagnostic
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10.

11.

model, using a Lorenzen form for natural mortality with a prior. Natural mortality was

assumed to be time invariant.

. Recruitment to the stock is assumed to follow a Beverton-Holt type stock-recruitment re-

lationship, parameterised by the average recruitment at unexploited spawning biomass, Ry,
and the steepness parameter, h. A very weak prior was placed on Ry, a beta prior with a
standard deviation of 0.1, to prevent the biomass from reaching unrealistically high levels and
to prevent Ry from being estimated too close to a boundary. Early development versions of
this model had a tendency to estimate unrealistically high population scale, which was a ma-
jor issue to be addressed and solved in the development stages of this assessment. Steepness
is fixed to 0.8 for the diagnostic model. Deviations from the average recruitment at a given
spawning biomass (recruitment residuals) are estimated from 1990 to 2021. Early recruit-
ment deviations are estimated from 1969 to 1989. Recruitment deviations are not estimated
prior to 1969 or after 2021 because there are insufficient data to permit reliable estimation of

recruitment residuals outside of this time period.

The value of the parameter determining the magnitude of the process error in annual recruit-
ment, o, is set equal to 0.5 in the diagnostic model. The magnitude of bias-correction depends
on the precision of the estimate of recruitment. Time-dependent bias-correction factors were

estimated following the approach of Methot and Taylor (2011).

. A plus-group is modelled at age 19 years.

. Growth of swordfish is assumed to be time-invariant, meaning there is no change over time in

mean size-at-age, with the distribution of size-at-age being estimated within the assessment,
along with the remaining von Bertalanffy growth parameters. Separate growth curves are
estimated for female swordfish, with the male growth parameters set from fixed offsets from
the growth, based on offsets obtained from an externally estimated growth curve. Variances
on the growth curve are fixed, based on values obtained from the externally estimated growth

curve, with this variance set at two defined ages, young (aged 1 year) and old (aged 15 years).

Movement was assumed to occur at a fixed quarterly rate between region 1 and region 2.
This movement rate was based on analysis of satellite tagged fish Patterson et al. (2021),
and was noticably different to the movement specified in the diagnostic model, as described
in the 2021 assessment paper (user beware), although this movement is consistent with the
movement values actually used in the uncertainty ensemble used in the the 2021 swordfish

assessment.

Recruitment proportions in the diagnostic model were fixed at a ratio of 1:3 between regions 1
and 2. When this recruitment proportion parameter was estimated within the model, the much
larger recruitment proportion estimated in region 1 was considered unlikely. The diagnostic
model assumption of a fixed recruitment proportion per region, roughly proportional to the

area of each region, implies that spawning is equally likely through the assessment area, rather
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12.

than assuming (or estimating) that recruitment was much more concentrated in region 1 than
in region 2. Catches in region 2 in the last 20 years or so have been around four times higher
than in region 1. While it is possible that large numbers of recruits move from region 1 to
region 2, to account for these larger catches in region 2, or recruitment spills over from adjacent
areas, and recruitment in region 1 is much larger than recruitment in region 2, this was
considered to be unlikely, as larval data show that larvae are found widely across both region 1
and region 2. A sensitivity to this assumption could be tested, but there was limited time and
resources to explore all possible options in the 2025 assessment. Perhaps this possibility could
be given further consideration in the next assessment. The assumed population and spatial
structure, implicitly assumes no interaction with any “separate swordfish stock” outside the
assessment region, and no movement across the assessment boundaries, in either direction.

This is also an assumption that warrants much greater scrutiny in future assessments.

The input sample sizes for size composition data were adjusted for each fleet in a complex
multi-step process which was largely subjective. This subjective process was developed and
undertaken due to concerns arising out of the representativeness and influence of length
composition data in previous billfish assessments, and in an attempt to achieve plausible
model behaviour. The quarterly length frequencies were assessed for reliability, based on the
number of quarters sampled, the number of years sampled, sample sizes of measured fish, and
consistency of quarterly distributions, in particular looking for unusual and irregular spikes.
At this stage, selectivity was shared between groups of fisheries, in an attempt to get plausible
selectivity estimates, and all length fisheries were subjectively downweighted, with some data
excluded completely (or downweighted to zero), allowing the subjectively adjudicated “more
reliable” length composition data to have more influence on the selectivity for each fishery
group. By this stage, most of the fits to the assessment input data and assessment outputs
were looking reasonable, with the notable exception of the estimate of population scale, and
the CPUE indices did not appear to be influential in estimating the population scale. The next
step in the process was to upweight the size composition data for individual fisheries, with
one fishery selected from each of five fishery groups. These five key fisheries included the three
fisheries with weight composition data, those considered most reliable, 04.AU.1N, 05.AU.1C
and 13.NZ.2C, and the two southern fisheries with the most reliable length composition data,
and asymptotic selectivity, fisheries 03.DW.1S and 14.NS.2S. Some additional filtering on the
length composition data for two of these length-composition fisheries, leaving only length
samples from the most regularly sampled season from these southern fisheries, season 2.
Selectivities estimated for all other fishery groups where then fixed, after the model was run
with these initial data weightings, and the sample sizes, already subjectively downweighted
or eliminated, were further downweighted by an additional factor of 0.001, so these “less
reliable” fisheries with fixed selectivity effectively had no effect on estimates of population
scale or recruitment. However, for these fisheries, the selectivity was fixed in a manner that

ensured that fish were removed from the population, at approximately the correct size. After
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this step, the remaining five fishery groups were the only fishery groups with selectivity
estimated. Francis weighting (two iterations) was applied to adjust the input sample sizes on

these five key fisheries.

13. The sample sizes for the conditional age-at length data were also iteratively re-weighted, using
the method described in Punt (2017).

4.2.2 Relative data weighting and re-weighting

Iterative re-weighting of input and output coeflicients of variation, or input and effective sample
sizes is an imperfect but objective method for ensuring that the expected variation is comparable to
the input (Pacific Fishery Management Council, 2024). This makes the model internally consistent,
although some argue against this approach, particularly if it is believed that the input variance is
well measured and potentially accurate. It is not necessarily good to down weight a data series just
because the model does not fit it, if in fact, that series is reliably measured. On the other hand,
most of the indices we deal with in fisheries underestimate the true variance by only reporting

measurement error and not process error.

Data series with a large number of individual measurements, such as length or weight frequencies,
tend to overwhelm the combined likelihood value, with poor fits to noisy data when fitting is highly
partitioned by area, time or fishing method. These misfits to small samples mean that apparently
simple series, such as CPUE, might be almost completely ignored in the fitting process. This model
behaviour is not optimal, because we know, for example, that the CPUE values are in fact derived

from a very large number of observations.

Length compositions were initially weighted using input sample sizes, based on the number of fish
measured, obtained from the processing and analysis by Peatman et al. (2025), with these input
sample sizes further capped at 1000, with any samples where the original sample size (OSS from
Peatman et al. (2025)) was less than 100 fish also excluded, and some additional filtering applied
for some specific fisheries. Some subjective decisions were made to downweight many fisheries with
length composition data, due to concerns about representativeness and data quality. However,
more objective data weighting (Francis, 2011) was used for the length composition data in the two
southern fisheries, 03.DW.1S and 14.NZ.2S, and for the three fisheries that used weight composition
data, 04.AU.1IN, 05.AU.1C and 13.NZ.2C, with the approach of Punt (2017) for conditional age-
at-length data. Two iterations of this iterative re-weighting were applied to each of the length,
weight and conditional age-at-length data for the diagnostic model. These two steps resulted in the
re-weighted input sample size coming close to the effective sample size, for the diagnostic model. It
was not feasible to iteratively re-weight all models in the uncertainty grid, and the tuned weightings

obtained from the diagnostic model were applied to all models in the uncertainty ensemble.

In Stock Synthesis, it is possible to internally estimate a separate additional variance parameter for

the CVs associated with each CPUE time series, so that the input and output variances are balanced.
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This additional variance parameter was estimated for all CPUE series, both in the diagnostic model

and for all models in the uncertainty grid.

The initial value of the parameter determining the magnitude of the process error in annual re-
cruitment, o, was set to 0.5, reflecting the variation in recruitment for swordfish. The magnitude
of bias-correction depends on the precision of the estimate of recruitment and the time-dependent
bias-correction factors were estimated iteratively, following the approach of Methot and Taylor
(2011), for the diagnostic model only, with these estimated bias correction factors from the diag-

nostic model applied to all models in the uncertainty grid.

4.2.3 Model development

The decision to transition to Stock Synthesis for the 2025 swordfish assessment was made for a
number of reasons, including to take advantage of a number of features that were either unavailable,
or not yet fully tested in MULTIFAN-CL in 2024, including using a two-sex model and using
length-based selectivity, as well as taking advantage of some well established tools and diagnostics
to develop and analyse results within the Stock Synthesis framework. Some of the features that
were not available in MULTIFAN-CL in 2024 have subsequently been incorporated into more recent
versions of MULTIFAN-CL and tested.

While the estimated selectivities from the 2021 assessment appeared to fit the time aggregated
length composition data well, after recent experience with other billfish assessments (Castillo-
Jordan et al., 2024), it was considered that much of the swordfish length composition data may not
be reliable enough to allow them to have so much influence in the 2025 swordfish assessment. It
is clear that the multi-modal time-aggregated length composition data, as seen in some swordfish
fisheries, have some unusual temporal patterns, and simply fitting these with time invariant complex

spline-based selectivity may not be the best approach.

Given the structural changes made to the 2025 assessment, with additional fisheries based on
subregional structure, using a two sex-model, estimating growth internally and using length based
selectivity, a traditional stepwise transition from the previous model was not conducted. This
was partly because of the considerable difficulties encountered in developing this model, including
the decision to give less emphasis to the length composition data. Some of the time aggregated
length compositions for some fisheries are bimodal, and the age-based selectivity using splines used
in 2021 produce some bimodal selectivities, which appear to fit the aggregated data reasonably
well. However, careful scrutiny of the quarterly size composition data suggests that the individual
quarters of data are rarely bimodal. Some have a peak of small fish and others a peak of large
fish. The spline based approach to selectivity used in the 2021 assessment allowed a compromise,
time invariant selectivity to be estimated, which would suggest that fish of an intermediate age
are less likely to be caught than small or large fish associated with these two modes and, in any
particular quarter, peaks of both large and small fish should be expected. However, this is not a

pattern generally observed in the quarterly length composition data for these fisheries.
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There appears to be no obvious reason why longline fishing gear would be less likely to catch these
intermediate sized fish, so either there is a strange pattern in availability, or an alternative approach
could be investigated. This led to further questioning of the quality of the length composition data
and a decision to impose length-based selectivity, featuring either a logistic or a double normal
shape, and to explicitly prevent the model from estimating a bimodal selectivity shape. This also
led to much greater scrutiny of the length composition data and experiments in increasing the
filtering and quality of these data, which led to downweighting this data source. At this stage,
following a traditional stepwise model development approach, using a bimodal selectivity, first as
age-based and then converted to length-based selectivity to try to reproduce the MULTIFAN-CL
assessment from 2021 was not productive. No attempt was made to try to replicate the age-based
selectivity used in the MULTIFAN-CL model, as the use of length-based selectivity was considered
to be more reasonable, given that fishing mortality from longline gear is expected to act largely on

the size of a fish, rather than its age.

During the development of the model, the general approach taken was to try to ensure that the
selectivities being estimated were reasonable biologically, to allow for the known size variation with
latitude, to fit the composition data reasonably well, to fit to the CPUE data, which were changed
from quarterly indices to annual indices, and, when growth was estimated, gave plausible growth
curves. While it was possible to achieve most of these goals at various stages of model development,
and with some judicious downweighting of length composition data for some fisheries and sharing of
selectivities within regions, it became apparent that the early versions of this model were struggling

to estimate a plausible scale to the populations size.

4.3 Diagnostics

4.3.1 Model behaviour and convergence

The following criteria were considered and examined to assess model behaviour and convergence.
1. Minimum gradient sufficiently small, preferably less than 0.0001.
2. Hessian matrix was positive definite.

3. Models were not sensitive to initial conditions, so no models were found with improved like-
lihood through conducting jitter analyses, where starting values for all estimated estimate

parameters are randomly and independently adjusted by up to 10%.
4. The number of parameters estimated on or close to bounds was small, preferably zero.
5. The number and composition of pairs of highly correlated estimated parameters.

The first three of these criteria were considered essential for the diagnostic model and, in fact,
all five criteria were satisfactorily achieved for the diagnostic model. There were no parameters
estimated close to bounds for the diagnostic model. Highly correlated parameters are difficult

to avoid, especially with selectivity parameters. For the diagnostic model there were no pairs of
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estimated parameters with correlation higher than 0.95, in absolute value. Further there were only
three pairs of estimated parameters with correlation between 0.9 and 0.95, in absolute value. These
three exceptions include two separate pairs of selectivity parameters from fishery 13.NZ.2C, both
featuring the parameter describing the width of the right-hand limb of the double normal selectivity,
as a member of these highly correlated pairs, along with another selectivity parameter from this
same fishery. The remaining pair of highly correlated parameters was Ry and the female mortality

at age seven, used to scale the Lorenzen mortality curve.

For the uncertainty grid, it was not feasible to jitter all grid members, and the results of jittering the
diagnostic model suggest that may not be necessary, given the apparent stability of this diagnostic
model. The first criterion was used as a filter for models in the uncertainty grid, with any uncertainty
grid models without a positive definite Hessian, excluded from the uncertainty grid. The second
criterion was relaxed for the uncertainty grid, allowing models with final gradient less than 0.005

to remain in the uncertainty grid.

4.3.2 Jitter analysis

Jitter analysis is a technique used to test the optimality, robustness and stability of the maximum
likelihood estimate obtained for a particular model. This involves randomly changing the starting
values used for all estimated parameters and re-running the model, to test what alternative solutions
may be found by the optimisation algorithm from different initial parameter values, or a formal
process for testing the sensitivity to initial conditions. Two diagnostics are of interest with a jitter
analysis, initially a check on whether a better “optimal solution” may be found, with a lower
negative log-likelihood value, and also to see how frequently the optimal solution is found. As
all estimated parameters are randomly modified, or “jittered”, simultaneously, this can sometimes
result in a model either failing to converge or finding a local minimum in a different (suboptimal)
part of the multi-dimensional parameter space. A jitter analysis was conducted with 50 randomised
replicates, modifying initial values by up to a factor of 0.1, or 10% change from the alternative

initial conditions, used in the diagnostic model.

4.3.3 Likelihood profiles

Likelihood profiles are a standard component of the toolbox of applied statisticians and are most
often used to obtain a 95% confidence interval for a parameter of interest. Many stock assessments
“fix” key parameters such as natural mortality and steepness based on a priori considerations. Like-
lihood profiles can be used to evaluate whether there is evidence in the data to support fixing a
parameter at a chosen value. If the parameter is within the range of the 95% confidence interval of
the total likelihood profile, this provides no support from the data to change that fixed value. If the
fixed value is outside the 95% confidence interval, and there is evidence that the data holds infor-
mation about this parameter, it would be reasonable for a review panel to ask why the parameter

was fixed and not estimated, and if the value is to be fixed, on what basis should inconsistency with
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the data be ignored. Integrated stock assessments include multiple data sources (e.g., commonly
for billfish, catch-rates, length-composition data, weight-composition data, and possibly conditional
age-at length data) that may be in conflict, due to inconsistencies in sampling, but more commonly
owing to incorrect assumptions or model misspecification (e.g., assuming that catch-rates are lin-
early related to abundance). Likelihood profiles can be used as a diagnostic to identify these data
conflicts, and can be applied to parameters that are either fixed or estimated in the assessment.
Likelihood profiles were constructed for the diagnostic model for log(Ry) and for natural mortality,
M, or, more precisely, the female natural mortality at age 7, used to scale the Lorenzen form of

mortality used in this assessment.

4.3.4 Retrospective analysis

A retrospective analysis (Mohn, 1999) is conducted to investigate the information that is being
provided to the assessment by the last few years of data, by removing these data one year at a

time, and examining the impact on the resulting assessment.
The retrospective analysis was undertaken using the following procedure.
1. The last year of data was removed, sequentially, from the 2025 diagnostic model

2. Time dependent model parameters (e.g. the last year of estimated recruitment) were changed

to one year earlier
3. The model was re-run with one year less data available
4. Steps 1-3 were repeated for five years, removing one year of data at each step.

Trends in spawning biomass, estimated recruitment and key quantities of management interest,
such as F'/Fygy, can then be examined to help understand how reliable the most recent few years
of estimated recruitment deviations and spawning biomass are in the current assessment and, in
association with likelihood profiles, can identify particular components of recent data that may be

influential for the assessment.

The severity of retrospective patterns can be quantified using Mohn’s rho, a statistic which is
defined as the average of the relative differences between an estimate obtained from an assessment
with a truncated time series, and an estimate of the same quantity from an assessment using the
full time series (Hurtado-Ferro et al., 2015).

Mohn’s rho can be calculated to measure the degree of the retrospective bias, for the following time
series: recruitment, spawning biomass, relative biomass (as a ratio of unfished biomass) and fishing
mortality. Mohn’s p values have been interpreted using suggested thresholds, such as |p| < 0.15
indicating no significant bias, 0.15 < |p| < 0.20 indicating minor bias, 0.20 < |p| < 0.30 indicat-
ing moderate bias, and |p| > 0.30 indicating strong bias, indicative of problematic retrospective
patterns. As suggested, these thresholds may be best treated as a guide, rather than treated as a

pass-fail diagnostic, and may be better used as indicative of the need to look more closely at the
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retrospective patterns, and to identify, interpret and explain any anomalies and unusual patterns

found.

Step 2 in the retrospective analysis is not always carried out correctly by automated retrospective
code, especially when the last year that recruitment are estimated is not the same year as the last
year of data. When using the retros function in the R package r4ss, some care needs to be taken,

and some changes to the interim outputs made to ensure that this retrospective analysis is correct.

4.3.5 Age structured production model

An age-structured production model (ASPM) diagnostic for the diagnostic model was estimated
by:

1. Fixing growth and selectivity parameters at their estimated values

2. Removing the size composition and age data from the model, leaving the CPUE indices as
the only data to be fitted

3. Setting all recruitment deviations to a fixed value of 0
4. Re-fitting the model estimating only the population scaling parameter, R

A comparison of biomass and depletion scaling and trends estimated by the ASPM and the full
model gives an indication of the extent to which these estimates are informed by the CPUE indices
only. If the ASPM can produce a reasonable fit to the indices of abundance, assuming they have
some contrasting trends in the time series, it suggests there is a production function, and the indices
can provide information about absolute abundance in the integrated assessment. If there is a poor
fit to the indices, then the catch data alone cannot explain the trends/dynamics in the indices of
relative abundance (Carvalho et al., 2021). Poor fit on an ASPM to the abundance indices may
indicate that: (a) the stock is recruitment-driven; (b) the stock has not yet declined to the point at
which catch is a major factor influencing abundance; (c) the model has mispecification issues; or

(d) the indices of relative abundance are poorly representative of abundance trends.

A second ASPM variant can also be used as a diagnostic. For this variant, referred to as ASPM-R,
recruitment deviations are freely estimated, rather than being fixed at zero, in addition to estimating

the population scaling parameter, Ry.
4.4 Sensitivity analyses and structural uncertainty

4.4.1 Sensitivities

One-off sensitivity models were explored to understand the sensitivity of the diagnostic model
estimations to structural and data uncertainties. Each one-off sensitivity model was created by

making a single change to the diagnostic model and these were used to inform the construction of
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an uncertainty grid (Table 2), with the diagnostic model values listed in bold below. These following

sensitivities were explored, with values for the diagnostic model indicated in bold:
1. region 2 CPUE index used (NZ, PICT and EU);
2. steepness (h = 0.7, 0.8 and 0.9);

3. proportion of recruitment to region 1 compared to region 2, to roughly match the ratio of
relative area of the two regions, or to match the ratio of the relative catch by region in the
last 20 years (1:3, 1:4);

4. movement, (diagnostic movement rates, based on Patterson et al. (2021), diagnostic move-
ment rates halved between regions 1 and 2, diagnostic movement rates halved between re-

gions 2 and 1);

5. data weighting on the weight composition data, for the three fisheries with estimated selec-
tivity and weight composition data, (Francis weighting, doubling and halving the Francis

weights);

6. data weighting on the length composition data, for the two southern fisheries with estimated
selectivity and length composition data, (Francis weighting, doubling and halving the Fran-

cis weights);
7. growth (estimated (internal), fixed (external));

8. natural mortality (estimated (internal), fixed (external) using the approach of Hamel and
Cope (2022)); and

9. all data from subregion 2N was removed from the assessment.

4.4.2 Structural uncertainty

Stock assessments of pelagic species in the WCPO use an approach to assess the structural uncer-
tainty in the assessment model by running a “grid” of models that explore the interactions among
selected “axes” of uncertainty. The grid contains all combinations of levels of several model quanti-
ties, or assumptions, and allows the sensitivity of stock status and management quantities to this
uncertainty to be determined and factored into management advice. The axes are generally selected
from factors explored in the one-off sensitivities with the aim of providing an approximate under-
standing of variability in model estimates due to assumptions in model structure not accounted for

by statistical uncertainty estimated in a single model run, or over a set of one-off sensitivities.

The 2021 swordfish assessment used a new approach to uncertainty characterisation, involving
drawing parameter sets from a multi-dimensional joint prior distribution, combined with a facto-
rial component with four axes; CPUE indices, recruitment variability, growth (¢g), and alternative

approaches to defining the reference natural mortality. The joint prior included uncertainty on
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reproductive potential, length-weight relationship, growth, natural mortality, steepness and move-
ment between regions 1 and 2. It also incorporated model filtering for poorly converged models and
those with implausibly high biomass and included estimation uncertainty on the retained models.
The approach was the first ensemble type approach to characterising uncertainty for an SPC billfish
or tuna assessment and has several benefits over the standard grid approach (see Ducharme-Barth
and Vincent (2022)).

Due to the other structural developments undertaken in this new assessment, including incorporat-
ing; sex structure, detailed reviews of size data/preparation methods, changing selectivity forms and
changing software platform, it was not possible to replicate this improved approach to uncertainty
characterisation in the time available. However, the uncertainty grid in this assessment still covers
key uncertainties, including; CPUE, steepness, recruitment distribution, movement between region
1 and 2, data weighting of both length and weight data, and natural mortality, but under-represents
some important uncertainties, such as growth. An attempt was made to include an alternative fixed
external growth option in the uncertainty grid, but these models produced implausible results and
there was insufficient time to fully diagnose the problems. Estimation uncertainty is included in the
grid approach used in 2025, and this does provide a substantial range of uncertainty in management
quantities. However, applying an ensemble approach as in the 2021 assessment (Ducharme-Barth
et al., 2021a) would likely expand the uncertainty range, and this approach is recommended for

future assessments.

The structural uncertainty grid was constructed from a subset of the sensitivities investigated, using
seven axes of uncertainty with 2-5 levels for each (listed below), resulting in a total of 360 models

(Table 3). The values for the diagnostic model are shown in bold:
1. region 2 CPUE index used (NZ and PICT);
2. steepness (h = 0.7, 0.8 and 0.9);

3. proportion of recruitment to region 1 compared to region 2, to roughly match the ratio of
relative area of the two regions, or to match the ratio of the relative catch by region in the
last 20 years (1:3, 1:4);

4. movement, (diagnostic movement rates, based on Patterson et al. (2021), diagnostic move-
ment rates halved between regions 1 and 2, diagnostic movement rates halved between re-

gions 2 and 1);

5. data weighting on the weight composition data, for the three fisheries with estimated selec-
tivity and weight composition data, (Francis weighting, doubling and halving the Francis

weights);

6. data weighting on the length composition data, for the two southern fisheries with estimated
selectivity and length composition data, (Francis weighting, doubling and halving the Fran-

cis weights); and
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7.

natural mortality (estimated (internal), fixed (external) using the approach of Hamel and
Cope (2022)).

4.4.3 Integrated model and estimation uncertainty for key management quantities

For a full picture of uncertainty for the key management quantities adopted for billfish in the
WCPFC, SByecent/SBusy and Frecent/Fusy (Table 2); structural uncertainty was integrated with

estimation uncertainty for individual grid models. The procedure adopted was:

1.

2.

Obtain the estimates of the key management quantities for each of the 360 grid models;
Obtain Hessian-based estimates of the standard deviations for these quantities;

Generate 1,000 random draws from normal distributions with mean and standard deviation

specified in steps 1 and 2, for each of the 360 grid models;

Compute the mean, median, and 10", 25" 75" and 90" percentiles of each management

quantity, from the 360,000 values.

Note that this procedure implicitly gives equal weight to each of the 360 grid models, unlike the

more sophisticated approach pioneered in Ducharme-Barth et al. (2021a), which may be a better

approach to use. However, adopting an uncertainty grid rather than an uncertainty ensemble was

a pragmatic decision taken for this assessment. Different relative weights could be given by varying

the number of random draws of the management quantities from each grid model.
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5 Results for the diagnostic model

5.1 Overview of convergence

The diagnostic model had a final gradient of < 0.00003, a positive definite Hessian and with no
parameters estimated to be close to bounds. None of the 50 jitters obtained a solution with an
improved likelihood value, which gives a strong indication that the model has found the optimal

solution.

5.2 Biological parameters
5.2.1 Growth

In the 2021 assessment, for the one-sex model, and during the initial model development in 2025 for
a two-sex model, growth was estimated externally, with three von Bertalanffy growth parameters
and two CVs for young and old fish (set at ages 1 and 15 years respectively) estimated for each sex
in the two-sex model. These fixed external growth curves, were updated slightly from the curves
used in the 2021 assessment, with the growth curve parameters re-estimated after first converting
the raw conditional age-at-length data to LJFL. This was one of two growth options proposed
for use in the uncertainty grid. For the diagnostic model, some of these parameters were estimated
internally, allowing the model to incorporate the effects of selectivity on these growth estimates, and
estimate growth in an integrated manner. However, due to limitations in the number of conditional
age-at-length data points available, it was only possible to estimate three of these ten growth
parameters, which were the three von Bertalanffy parameters for females. Pragmatically, the four
CV parameters were fixed at the CV estimates obtained from the external growth estimates, and
the male parameters were given fixed offsets from the estimated female von Bertalanffy parameters.
The estimated growth curves for females and the male growth curve, using fixed offsets from the

female curve, are shown in Figure 13.

While it would be preferable to estimate more then three of these 10 growth parameters internally,
attempting to do so resulted in poor model behaviour and implausible growth curves. The approach
of fixing the male offsets allowed the male growth to vary relative to the estimated female growth,

and seemed to offer the best compromise of flexibility and model stability.

Using conditional age-at-length data and estimating sex-specific growth parameters internally was a
new approach, compared to the 2021 assessment, and this required considerable care and attention
to detail, to ensure the resulting growth estimates were plausible and reasonable. Some decisions on
the plausibility of growth and variance estimates were somewhat subjective, but this was considered
to be worthwhile given the importance of using a biologically realistic growth form in the model,
and to be able to account for the impact of gear selectivity on the age-at-length data collected
from the fishery and the impact of ageing error. Unfortunately there were only single reads of the
otoliths, so it was not possible to make an estimate of ageing error, and the values for ageing error

were fixed at “roughly plausible” values for a fish of this age. Ideally, a sensitivity to these assumed
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values for ageing error would be conducted, but there was insufficient time to explore this aspect

of the assessment this year. Remember the dragons?

5.2.2 Natural mortality

The Lorenzen form of natural mortality used in the diagnostic case, with female mortality estimated

at age seven years, using the methods outlined in Section 4.1.1 in Figure 14.

5.2.3 Length-weight relationship

The length-weight relationships for male and female swordfish used in the diagnostic model are

shown in Figure 15.

5.2.4 Sexual maturity

The age based sexual maturity and fecundity by length relationships for the diagnostic model is

shown in Figure 16

5.3 Fits to the data
5.3.1 Estimated selectivity curves

While some size data composition showed periodic and episodic catches of small fish, attempting
to fit this mode of small fish in the aggregated distributions, in addition to fitting a second larger
mode, caused problems and instability for the model. Rather than allowing the model to overfit
this noisy data, and potentially switching between fitting either the larger or the smaller mode,
using a flexible but somewhat complex spline selectivity, which is difficult to explain in terms of
the gear being less likely to select fish of intermediate size, it was decided to fit only two simpler
functional forms for selectivity. These fisheries catching the largest fish, in subregions 1S and 28S,
were assumed to have logistic selectivity, while all other fisheries from the other subregions, in the
central and northern zones, were assumed to have double normal selectivity, which did not preclude
a logistic shape, but allowed for less chance of catching larger fish, through a combination of lower

selectivity of the gear and/or lower availability of larger fish in these subregions.

In the diagnostic model, sharing selectivity between fisheries resulted in only seven different se-
lectivities, for each of seven different groups of fisheries, with each selectivity shared amongst the
different fisheries in each group. These are shown as length-based selectivity in Figure 17, which
is the form in which they were estimated, and with the equivalent age-based selectivities shown in

Figure 18.

Two of these selectivities were initially estimated, in a preliminary run of the model, and then
fixed, at these estimated values, in all subsequent model runs, with further downweighting of the
associated length composition data, through an additional multiplier of 0.001 on these already

downweighted initial input sample sizes, applied to any fisheries that contributed to this initial
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estimation of selectivity for each group. One of these groups of fisheries with fixed selectivity
(Figure 19), was the group of fisheries with length data in subregion 2C, fisheries 11.DW.2C,
16.EU.2C and 19.PICT.2C, with fishery 16.EU.2C (multiplier 0.00001) having five times as much
weight as the other two fisheries, 11.DW.2C and 19.PICT.2C (multipliers 0.000002). The other
group of fisheries with fixed selectivity (Figure 20), comprised all of the fisheries with length data
from both subregions 1IN and 2N, fisheries 01.DW.1IN, 08.PICT.1IN, 10.DW.2N, 15.EU.2N and
18.PICT.2N, with fishery 08.PICT.IN (multiplier 0.00001) having 100 times the weight of fishery
10.DW.2N (multiplier 0.0000001), while the other three fisheries were assigned zero weight, both

when estimating the selectivity and when used in the model.

Selectivity is estimated for the remaining five groups of fisheries, using Francis (2011) weighting for
one main fishery in each group, and a subjective low weighting for any other fisheries in each group,
with input sample size weighting as described below. These five groups comprised the following

fishery groups with three weight-based selectivities and two length-based selectivities:

1. The fishery with weight composition data in subregion 1N, 04.AU.1N, Francis weighted with
multiplier 0.2891 (Figure 21).

2. The fishery with weight composition data in subregion 1C, 05.AU.1C, Francis weighted with
multiplier 0.2555, but also sharing selectivity with the downweighted length-based fisheries
in subregion 1C, and 02.DW.1C, 07.EU.1C (multiplier of 0.000005 for both) and with all
length composition samples from fishery 09.PICT.1C removed by the initial filtering steps
(Figure 22).

3. The fishery with weight composition data in subregion 2C, 13.NZ.2C, Francis weighted with
multiplier 0.05214 (Figure 23).

4. The fishery group in subregion 1S, dominated by the length composition data from fish-
ery 03.DW.1S, Francis weighted with multiplier 0.2054, but also sharing selectivity with the
downweighted length-based fisheries in subregion 1S, 06.AU.1S (with fewer samples and much
smaller multiplier of 0.00001). Fishery 03.DW.1S also had anomalous smaller fish removed
from the composition sample (fish less than 90 cm), as they were considered unrepresenta-
tive and unusual samples from this fishery, and they confounded the estimation of the time

invariant selectivity for this fishery when left in the length composition samples (Figure 24).

5. The fishery group in subregion 2S, dominated by the length composition data from fishery
14.NZ.2S, Francis weighted with multiplier 0.05952, but also sharing selectivity with the
downweighted length-based fisheries in subregion 2S, 12.DW.2S and 17.EU.2S, both of which
had multipliers of zero, as they had so few samples (Figure 25).

In subregions 1N and 2C, there were separate selectivities estimated for length and weight data. In
subregion 2N, the selectivity was shared with the selectivity estimated in sunregion 1N, but dom-

inated by the most consistent of the length composition data from the northern subregions, from
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fishery 08.PICT.1N, as many of the length composition samples from these subregions were incon-
sistent and irregular and did not appear to be reliable, or useful to inform estimates of selectivity

in those northern subregions.

In subregion 1N, the separately estimated selectivities for length (Figure 20) and weight (Figure 21),
have a similar general shape, with a similar peak, but a broader top, and steeper left and right hand
ascending and descending limbs for the weight based selectivity. In subregion 2C, the separately
estimated selectivities for length (Figure 19) and weight (Figure 23), also have similar shape, but
suggest that the weight based fisheries in 13.NZ.2C reaches maximum selectivity at slightly smaller
size than the equivalent length-based selectivities from the same subregion. In subregion 1C, where
there was both length and weight composition data, a single shared selectivity was estimated using

both composition data types (Figure 22).

5.3.2 Fits to CPUE

The fits to the Australian and New Zealand CPUE indices used in the diagnostic model are shown
in Figure 26, plotted on a log scale, to reflect the space in which these indices are fitted. These
indices are balanced by estimating an additional variance parameter within Stock Synthesis, which
is negative (-0.0617) for the Australian index, suggesting the models fit well with less variance (total
of 0.138) than the initial values of 0.2, and positive (0.124) for the New Zealand index, suggesting
that the model requires additional variance (total of 0.224) for this index, compared to the initial
value used of 0.1. This total variance required for each index suggests that the model is more easily

able to fit the Australian index, than the larger absolute variation seen in the New Zealand index.

While a formal runs test analysis was not conducted for these fits, the pattern seen in the residuals
in Figure 27 suggest an acceptable residual pattern for the Australian CPUE index, but with
some residual pattern concerns for the New Zealand CPUE series, with the model unable to fit
the magnitude of the variation seen in this index. This pattern shows a six year run of consistent
overestimates until 2010, followed by nine years of consistent underestimates until 2019 for the fits
to the New Zealand CPUE series. However, on balance these CPUE fits can be considered to be

adequate, as the model shows a reasonable fit to the trends seen in both indices.

5.3.3 Fits to length data

The diagnostic model fits to the aggregated length-frequency distributions are shown in Figure 28.
The fits are good for the two southern fisheries, featuring logistic selectivity, fisheries that are very
influential in this model, fisheries 03.DW.1S and 14.NZ.2S. These are the fisheries with length

composition data that are most heavily weighted, and for which good fits are required.

Many of the remaining aggregated fits are for information only, indicating fits to data which is
either heavily downweighted, or given zero weight to the model, so indicative of virtual fits to the

length data for each fishery from the fixed selectivity curves used. Of these remaining fisheries with
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length composition data, those of importance have quite good fits, even with highly downweighted
data, including the following more heavily weighted out of the “downweighted length composition
fisheries”: 08.PICT.1N; fisheries 02.DW.1C and 07.EU.1C in subregion 1C; 16.EU.2C.

The “virtual fits” to the fisheries from region 2S, 12.DW.2S and 17.EU.2S are poor, but these are
from very small samples and they are given zero weighting in the model. In contrast, the fit to
the heavily downweighted fishery 06.AU.18S looks reasonable. The fits to the downweighted fisheries
in the subregion 1N and 2N shared group are poor, but the only fisheries with non zero weight,
in this shared group, are fisheries 08.PICT.1IN (which is given the most weight) and 10.DW.2N
(which has much lower weight, and features a poor fit to a bimodal distribution). The other three
fisheries in this group, with zero weight in the model, include 01.DW.IN (distribution and fits
are not too bad), 15.EU.2N (bimodal distribution, poor fit but notably only from two quarters of
data) and 18.PICT.2N (bimodal distribution with a poor fit). In subregion 2C, which is dominated
by fishery 16.EU.2C, with many samples over a six year period, the other “further downweighted”
fisheries are 11.DW.2C, (reasonable fit to the data), and fishery 19.PICT.2C, (poor fit to an unusual
looking aggregated distribution). The length based fisheries in subregion 1C, which share selectivity
with the much more heavily weighted and dominant weight composition fishery 05.AU.1C, include
two fisheries with non-zero (but very small) weighting, fisheries 02.DW.1C, (featuring a suspicious
looking spike of small fish), and 07.EU.1C, (passable length fits), and fishery 09.PICT.1C which
had all length samples filtered out (Peatman et al., 2025).

A time series of quarterly fits to the length data by fishery is also shown in Figure 30, which gives
an overview of the number of quarters of length composition data included in the diagnostic model,
post-filtering. These plots show that the temporal fits to the means of these quarterly length distri-
butions are good for the most important length composition fisheries, 03.DW.1S (row 1, column 3)
and 14.NZ.2S (row 3, column 2), despite some time variability in the data. Others, from the more
influential and important length based fisheries include: 08.PICT.IN (row 2, column 2, generally
good fits); 02.DW.1C (row 1, column 2, adequate fits); 07.EU.1C (row 2, column 1, adequate fits,
but with only two quarters of data); and 16.EU.2C (row 3, column 4, poor fits, generally underfit-
ting the data). In this last case, with underfits to the data, the other two contributors from this
group have better fits, namely fisheries 11.DW.2C (row 2, column 4, adequate fits) and 19.PICT.2C

(row 4, column 3, adequate fits).

5.3.4 Fits to weight data

The diagnostic model fits the aggregated weight-frequency distributions very well, Figure 29. These
weight fits look a little unusual, due to the variable bin width, which results in artificial spikes,
looking a bit like a punk haircut, whenever the bin width changes. A more conventional plot would
scale the y-axis by the width of the weight bin, to give a smoother looking distribution. Regardless,
when properly interpreted, these plots show excellent fits to the data, for the very small fish with

1 kg bin widths, whenever there is a step in bin size, and also for the largest weights, with wide
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bin widths. The sample sizes for fishery 05.AU.1C are much larger than for fisheries 04.AU.1IN
and 13.NZ.2C, but for all three of these fisheries, the fits to the weight data are excellent. This is
important to the model, given that all three of these fisheries have high data weighting.

A time series of quarterly fits to the weight data by fishery are shown in Figure 31, which gives an
overview of the number of quarters of weight composition data included in the diagnostic model.
These fits range from good to excellent, with some suggestion that incorporating a seasonal compo-
nent to selectivity could be beneficial. There was insufficient time to incorporate seasonal selectivity
in the diagnostic model in 2025, but it may be an interesting extension to explore in future models.
Remember the dragons? The ability of the model to capture the time variation in median weight

in fishery 05.AU.1C is encouraging.

5.3.5 Fits to conditional age-at-length data

Fits to the conditional age-at-length data are shown, on occasions infamously referred to as “Andre
plots” in Figure 32, Figure 33 and Figure 34, with observations (black points) and predicted ages
at length (blue line) in the left hand panels. The right hand panel shows observed and expected
variances, although these are not very meaningful given the low numbers of samples from each
quarter and the high resolution of length measurements used, meaning that most lengths do not
have replicate samples to estimate a reliable variance on the age for each length. These plots indicate
that the conditional age-at-length data, which is entered on a monthly time scale, is being well fitted

by this model, and the blue line fits through the black points fairly well in each panel.

The fits to the mean age, aggregated by year, are show in Figure 35, demonstrating that the
model is fitting these data well and providing an indication that the conditional age-at length is

appropriately weighted, using the data weighting method of Punt (2017).

5.4 Diagnostic model outcomes
5.4.1 Female spawning biomass

The estimated time series of female spawning biomass is shown in Figure 36, aggregated over
regions, with approximate 95% asymptotic intervals, and with separate female spawning biomass
estimates for regions 1 and 2. This indicates a steady decline in spawning biomass as the fishery
develops, with an accelerated decline in the late 1990s, especially in region 2, as catches increase,
with a slight recovery in the late 2000s followed by a further decline in the mid 2010s, ending at

around half the estimated female spawning biomass that was estimated in 1952.

Figure 37

5.4.2 Fished versus unfished spawning biomass

To interpret the trends in depletion, the individual trends in spawning biomass, SB, needs to

be compared with the predicted spawning biomass in the absence of fishing (unfished) SBp—g
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(Figure 37, top). SBp—o is stable until the early 1990s and then starts to oscillate with a roughly
20 year period of increasing and then decreasing. SB/SBp—g is also shown in (Figure 37, bottom)
over the same time period. Because the periodic oscillation occur simultaneously in the fished an

unfished time series, these patterns do not appear in the SB/SBpr—( time series.

5.4.3 Estimated recruitment

The estimated recruitment series features a period of early recruitment deviations, from 1969 to
1989, with full recruitment deviations estimated from 1990 to 2021 are shown in Figure 38. Early
recruitment deviations, estimated with high standard error, are used to estimate recruitment de-
viations prior to the start of the size composition data, as the first years of size composition data
contain some information about earlier recruitment events in the older cohorts, which were recruited
years before that data was collected. These full recruitment deviations appear to show some longer
term cyclic behaviour, with some correlation apparent in successive estimates. The recruitment
variance checks and recruitment bias adjustments are shown in Figure 39, showing that the asymp-
totic standard errors are comparatively high in the early recruitment period and then decline as
the full recruitment period starts, and remaining low until the end of the estimated recruitment
period, indicating that the last of the estimated recruitment deviations is (relatively) well informed
by the data. The bias adjustment plot Figure 38 shows that the bias ramp is adjusted appropriately
according to methods outlined by Methot and Taylor (2011).

5.4.4 Summary fishing mortality

Fishing mortality will vary with the relative effort between different fisheries, each with their own
selectivity, so will vary with the fishery dynamics, as well as by size and age of the fish, depending
on the size distribution of the population in any one year. Summary fishing mortality was calculated
as an annual fishing mortality by year, using a numbers weighted mean F', calculated across the
age class ranges 3-12, 1-3 and 8-15 (Figure 40). This summary fishing mortality is low (< 0.025)
until the late 1990s, when there is a steady increase to around 0.08 by about 2005, and then it
stabilises around 0.06, with some annual variation, until the end of the time series. This matches
the general pattern seen in the 2021 assessment for fishing mortality, noting the MULTIFAN-CL

calculates fishing mortality using different methods to those used Stock Synthesis.

5.4.5 Spawning potential ratio

Spawning potential ratio (SPR) is defined as the spawning output at a given fishing rate, relative to
that of an unfished stock. Figure 41 shows a phase plot of SB/SBysy plotted against SPR, relative
to the spawning potential at MSY, (1 — SPR)/(1 — SPRugy), which provides a measure of relative
fishing intensity, relative to Fygy. Figure 42 shows the time series of SPR. This shows an increase
in fishing intensity for about a 10 year period from 1995, and is then relatively stable, with some

annual variation, from about 2005 onwards, at a moderate level of fishing intensity, showing the
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same general fishing intensity pattern as seen in the summary fishing mortality (Figure 40).

5.4.6 Stock recruitment relationship

Figure 43 shows the stock recruitment curve, with estimated recruitments, and Figure 44 shows

the log recruitment deviations from the stock recruitment curve.

5.5 Diagnostics
5.5.1 Jitter analysis

The 50 jitter runs all successfully converged, with 48 of these runs obtaining the same solution
and same minimum negative log-likelihood as the diagnostic model. The remaining two jitter runs
converged to alternative solutions, local minima, with negative log-likelihood values worse than the
likelihood value achieved in the diagnostic model by several log likelihood units. This suggests that
there is no local instability in the solution obtained for the diagnostic model, and there appears
to be no sensitivity to the initial starting conditions. While not sufficient to claim the model is

converged, these results from a jitter analysis are a necessary condition for a converged model.

5.5.2 Likelihood profile: population scale, log(Ry)

The likelihood profile conducted over log(Ryp), the scaling parameter for recruitment at the start of
time series, is shown in Figure 45. The index data, or CPUE, (plotted in dark blue with triangles)
support a higher value for this population scaling parameter, with the largest influence from the
New Zealand CPUE index, 21.IDX.NZ.2, as shown in the Piner plots (Figure 46). In contrast, the
weight data, (plotted in light blue with + symbols in Figure 45) support a lower value for this
population scaling parameter, almost entirely through the weight data from the Australian fishery
05.AU.1C, as shown in the Piner plots (Figure 46). The length data are not highly influential in
estimating population scale, which is appropriate given the level of downweighting and the paucity

of informative length data available to use in the assessment.

The estimate of population scale is relatively uncertain, as can be seen by the range of values
of log(Ryp), for which the change in total likelihood is less than 1.92 likelihood units, and hence
not considered statistically different, with this cutoff value plotted with a dashed horizontal line
in Figure 45. This relatively high degree of uncertainty in the estimate of population scale is also
demonstrated through in the 95% asymptotic intervals shown on the time series of spawning biomass
(Figure 36), which suggests that estimates of initial female spawning biomass could range between
60,000 t to slightly more than 100,000 t.

This likelihood profile suggests that the two most important data components that influence this
population scale estimate are the New Zealand CPUE index and the Australian weight composition

data from fishery 05.AU.1C, with conflict between these two data sources.
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5.5.3 Likelihood profile: scale for Lorenzen M

The likelihood profile conducted over the scaling parameter for Lorenzen mortality, M for females
at age seven years, is shown in Figure 47. As with the likelihood profile on log(Ry), the index data,
or CPUE, (plotted in this M profile in light blue with 4+ symbols) support a higher value for this M
scaling parameter, with the dominant index influence coming from the New Zealand CPUE index,
21.IDX.NZ.2, as shown in the Piner plots (Figure 48). In contrast, the weight data, (plotted in
dark blue with triangles in Figure 47) support a lower value for this M scaling parameter, almost
entirely through the weight data from the Australian fishery 05.AU.1C, as shown in the Piner
plots (Figure 48). Once again, the length data (and other data sources) are not highly influential
in estimating scale for M, which is appropriate given the level of downweighting and the paucity
of informative length data available to use in the assessment. The relatively minor influence of
the length composition data is driven by length composition data from fishery 14.NZ.2S, which

supports both a lower value for M and a lower population scale.

As can be seen in both likelihood profiles, (Figure 45 and Figure 47), the dashed black curve,
showing the total likelihood without priors, is almost identical to the total likelihood with priors,
the solid black curve. Indeed the likelihood component from the priors, with priors incorporated
on both M and Ry in the diagnostic model, is explicitly shown in both profiles, the red curve with
squares, and is almost flat, in both plots, indicating that the influence of the priors on the diagnostic

model is almost inconsequential.

This likelihood profile suggest that the scaling parameter for Lorenzen mortality, M for females at
age seven, can be estimated, and is likely to be in the range between 0.22 and 0.255. The prior on

M is not very influential on the diagnostic model

Again, this likelihood profile suggests that the two most important data components that influence
the Lorenzen M scale estimate are the New Zealand CPUE index and the Australian weight compo-
sition data from fishery 05.AU.1C, with conflict between these two data sources. Given the quality
of these two data sources, an increase in effort in collecting better data from these two sources is
unlikely to resolve this conflict. This suggests that there may be a better model structure to use
for this stock assessment, to avoid this conflict, such as alternative spatial structure assumptions

or possibly different stock structure assumptions.

The smooth shape seen in the overall likelihood in both of these likelihood profiles, and the in-
dividual components of the likelihood suggest that the model is converging well, (apparently no
dragons here?) with no indication of erratic behaviour or convergence issues even some distance
from the optimal parameter value. While this may not be sufficient to be absolutely certain that
there are no convergence issues with this model, it is suggestive of a well-behaved, stable converged
model. However, these likelihood profiles also show some conflict in the data and confirm the broad
uncertainty bounds for some of the estimated parameters (so perhaps some baby dragons, after
all?).
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5.5.4 Retrospective analysis

The results of the retrospective analysis for absolute female spawning biomass are shown in Fig-
ure 49, showing the full data (the diagnostic model, in dark blue), then the successive models with
all data removed after: 2022 (light blue), 2021 (green), 2020 (yellow), 2019 (orange), and 2018 (red).
The same plots are shown for: fishing intensity, measured by the SPR, (Figure 50); fishing inten-
sity, measured by the F/F\sy, (Figure 51); recruitment, measured by numbers of age-0 recruits,
(Figure 52); recruitment, measured by estimated recruitment deviations, (Figure 53); recruitment
deviations, demonstrated by a squid plot (Figure 54); fits to the Australian CPUE data from fishery
20.IDX.AU.1, (Figure 55); and fits to the the New Zealand CPUE data from fishery 21.IDX.NZ.2,
(Figure 56).

Mohn’s rho is probably best used as an indicative statistic, but a value of 0.628 for spawning
biomass suggests there is a problem for the retrospective pattern on female spawning stock biomass.
Figure 49 shows the relatively large change to estimates of initial female spawning biomass in
removing single years of data, reinforcing the conclusion already reached, that the scale of the
population size is not well determined by the data in this assessment. The first peel, removing
data from 2023 only, also suggests that the data from 2023 is influential in scaling down the recent

female spawning biomass estimates, in the last few years of the time series.

The value of Mohn’s rho for F' of -0.398 is also large in magnitude, indicating potential issues with
fishing intensity. Figure 50 and Figure 51 show a clear pattern with the first peel, removing data
from 2023 only, resulting in the estimate of fishing intensity being revised up early in the time
series, 2000-2010, and revised down in more recent years. This indicates that the last year of data
used in the assessment is influential in estimating fishing intensity. In other words, a single year of
data can change these estimates considerably, indicating that fishing intensity is being estimated
with considerable uncertainty, given it can change this much with the addition of a single extra

year of data.

The value of Mohn’s rho for recruitment is 0.816, also suggesting a poor retrospective pattern.
Careful analysis of Figure 52 and Figure 53 show a “one-way trip” in recruitment estimates, with
lower, or more negative, recruitment deviations estimated from the more recent data, the recruit-
ment deviations tend to get more negative moving from warm to cooler colours, or from more peels
to less peels. The pattern in absolute recruitment estimates is confounded by changes in estimates
of the spawning biomass and the influence of the stock recruitment relationship in changing the
absolute numbers of recruits, so the retrospective analysis showing recruitment deviations is simpler
to interpret. This change in the pattern in recruitment deviations, is demonstrated clearly by the
one-sided squid plots (Figure 54). This plot describes the size and direction of the change in the re-
cruitment deviations, stepping back in time from when the last recruitment deviation was estimated
(2021, in this case). In this plot, each “cohort age/peel” starts with a different colour, and moving
from right to left along each string, shows the impact of successive peels on each cohort, sowing

more years of deleted data by moving to the left on each coloured string. The variation along each

48



string indicates how the recruitment deviation estimate changes as each year of successive data is

added (moving to the right) or removed (moving to the left).

The squid plot follows changes in the recruitment deviations for particular cohorts, as each of the
last five years of data are successively removed. Each coloured string, corresponding to a particular
cohort, includes a maximum of six points, one for the diagnostic model using data up to 2023,
and then one point for each of the five different retrospective peels. Each string, when followed
from right to left, represents removal of successive years of data. The changes in the estimates of
recruitment deviations, as each year of data is removed, are measured by changes in the y-axis, along
each string, relative to the final recruitment deviation for that cohort from the diagnostic model.
A negative value indicates a revision downwards and a positive value indicates a revision upwards.
This plot is clearly unbalanced, as it features revisions upwards, compared to the diagnostic model

in every case, with a single exception for cohort 2017, after 3 peels.

Large changes on the y-axis indicate large revisions, and if all the changes have the same sign
(positive or negative) this indicates consistent changes in the same direction, compared to the
diagnostic model, indicating some bias, rather than revisions in each direction which would be
expected to occur with roughly equal probability. In this case, most of the change (vertically, in
the y-axis) is in the first point (moving from right to left on each string), at least for the most
recent six cohorts, indicating that most recent year of data is having the largest influence on these

revisions, but with some evidence of a dip after peel three when the revisions change direction.

In this case the revisions are consistently in the same direction over five peels, indicating that the
more recent years of data result in these recruitment deviations being consistently revised down,
certainly compared to peel 5, resulting in a “poor” recruitment pattern. The last few years of data
are not expected to always revise these cohorts in the same direction, and a “good” squid plot looks
more like a squid, with threads either side of the y = 0 line, typically with larger amplitude on the
left, for the cohorts with fewer years informing the recruitment deviation, and smaller amplitude
on the right, representing older cohorts. These older cohorts have more years of data to inform, or
stabilise, the estimated recruitment deviation for that cohort, so are less affected by losing up to

five years of data, compared to the younger, more recent cohorts.

The retrospective patterns in the CPUE are shown in Figure 55 for the Australian CPUE and
Figure 56 for the New Zealand CPUE. In both cases, it is not the last year of the CPUE that is
dragging the fit to the index down (the blue line in Figure 56), for the diagnostic model at the end
of the times series, as in both CPUE series, the final CPUE data point is higher than the fitted
value, so the last CPUE data point would be expected to discourage this downwards revision on

the retrospective plot.

The earlier likelihood profiles suggest that the CPUE and the weight data has the most influence on
the model, and the analysis above suggests that the CPUE is not responsible for this retrospective

pattern in the CPUE series. The most likely alternative scenario is for the weight data to be

49



contributing to this recent change, and (Figure 46) suggests that the weight data from fishery
05.AU.1C, is the most likely candidate.

The y-axis scale used, and the plotting of points from every quarter in Figure 30 make this a
little hard to visualise, so each year of weight data was re-plotted and aggregated annually, for
fishery 04.AU.1N (Figure 58), fishery 05.AU.1C (Figure 58) and for fishery 13.NZ.2C (Figure 59)

to examine this more closely.

The weight data from fishery 04.AU.1N finishes in 2019, so this component of the weight data has
limited influence on this retrospective pattern, as it can only have any impact in peel 5 (Figure 57).
The weight data from fishery 05.AU.1C (Figure 58) demonstrate that the last five years of data
indicate a drop in mean weight, which is well reflected in the fit to these data, so these data are
influential in the retrospective pattern seen in the CPUE. The weight data from fishery 13.NZ.2C
(Figure 59) also show a recent decline (compared to earlier years) in mean weight in 2020, 2022
and 2023, the only years with data collected in that fishery since 2017, again with that change in
mean weight being fitted reasonably well by the diagnostic model.

It seems that the recent weight data in fisheries 05.AU.1C and 13.NZ.2C are contributing to this
poor retrospective pattern. It may be prudent to seek further information on this recent decline in
mean weight recorded in these fisheries in the last five years, from those involved in those fisheries,
particularly the drop in mean weight in 2023 for fishery 05.AU.1C, to see if there are any operational
reasons or changes in data collection procedures that may explain this change, or whether this is a
real signal from the fishery that is providing important information to the assessment. The weight
data from fishery 05.AU.1C is quite influential, and there seem to be some recent changes in these
data, which could be related to an increase in small fish, through good recruitment, or a decrease

in larger fish in the population, that perhaps warrant further enquiries and investigation.

These retrospective analyses reinforce the suggestion that the diagnostic model estimates of popu-
lation scale is quite uncertain, and the diagnostic model is quite sensitive to particular data sources.
While the model is well behaved in some respects, with apparently stable converged solutions this
uncertainty on scale estimation and the sensitivity to some of the more recent data suggest the
model lacks some robustness, given the structural model assumptions made and the data available

to inform the model.

The size data are important for estimating scale in this model, as the CPUE data seem to be
relatively uninformative for population scale. Given this, having a reliable growth curve is very im-
portant for this assessment, with regional variation in growth potentially important, and currently
unknown given most of the data informing the estimated growth comes from a small subregion of
the assessment region, fishery 05.AU.1C. The size data needs to be prepared adequately, ideally
with some model based standardisation to correct for patchy sampling. More age data is urgently
needed as this is likely to be a more reliable source of information on growth and on population

scaling. Finding an alternative growth form that gives plausible model results would also help to
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categorise the model uncertainty, and the single estimated growth curve used in the uncertainty
grid, does not allow for any uncertainty on growth in this assessment, or in the limited data used

to inform growth in this model.

5.5.5 Age structured production model

The results from the ASPM for absolute and relative female spawning biomass are shown in Fig-
ure 60. The ASPM indicated a wide range of scale and depletion outcomes for these three alternate
models. Recruitment is also shown for these three alternate models in Figure 61, both in terms of
absolute numbers and recruitment deviations. The recruitment deviations for the ASPM are set
to zero, so the variation in absolute recruitment for this model is solely due to the reduction in
spawning biomass, over the time series. The diagnostic model shows more variation in the early
recruitment deviations, as this model attempts to fit the population age structure that is observed
as soon as the size composition data enters the model. The ASPM-R is only using recruitment to

fit to the CPUE series, and is not constrained by also needing to fit to the size composition data.

Fits to the Australian and New Zealand CPUE series for these same three alternate models are
shown in Figure 62. The ASPM is unable to fit these indices well, estimating large additional
standard error on the CPUE and fitting a straight line through each of these indices. This model
estimates such a large population scale that the catches have little impact on the spawning biomass,
and with little overall trend in either series, this suggests that the ASPM cannot get sufficient
information from the CPUE alone to give much information about population scale. In contrast,
the ASPM-R shows an excellent fit to the Australian CPUE, with very small total standard error
estimated for this index, but produces a less impressive fit to the New Zealand CPUE, with large
additional standard error estimated to achieve any kind of fit to this index, giving the worst fit
to this index of the three alternate models. The diagnostic model falls midway between these two
extremes, with better fits than the ASPM to both series, and, compared to the ASPM-R, produces

an improved fit to the New Zealand index, ansd simultaneously, a worse fit to the Australian index.

Estimates of the recruitment scale parameter and of initial spawning biomass, are uncertain and
quite different for all three alternate models (Figure 63), with the uncertainty particularly high for
the initial spawning biomass for the ASPM.

The ASPM analysis again confirms that the CPUE indices used in the diagnostic model are not
informative in estimating the population scale. The ASPM fit does not reproduce the trend in the
index, suggesting that the combination of catch data and production dynamics alone is insufficient
to explain the observed changes in relative abundance. The ASMP-R fits the Australian index very
well, but is only able to do that with a very low estimation of population scale, probably too low

to be plausible for a fishery of this size.

This suggests that more weight should be placed on size composition data, or other data sources,

for trend estimation, as is done to an extent already in the diagnostic model, or that perhaps the
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quality and spatial representation of the indices used should be reconsidered.

5.6 Sensitivities and structural uncertainty
5.6.1 Sensitivities

Results of the one-off sensitivities that were incorporated into the uncertainty grid, are shown in fig-
ures listed below, separated by each axis of the uncertainty grid. These figures comparing estimates
of initial female spawning biomass, the time series of F'/F\sy, the female spawning biomass time
series, and the relative female spawning biomass time series, relative to SBy. The full uncertainty

grid (Table 2), with sensitivity figures, included:
1. region 2 CPUE index used (NZ and PICT) (Figure 64);
2. steepness (h = 0.7, 0.8 and 0.9) (Figure 65);

3. proportion of recruitment to region 1 compared to region 2, to roughly match the ratio of
relative area of the two regions, or to match the ratio of the relative catch by region in the
last 20 years (1:3, 1:4) (Figure 66);

4. movement, (diagnostic movement rates, based on Patterson et al. (2021), diagnostic move-
ment rates halved between regions 1 and 2, diagnostic movement rates halved between re-
gions 2 and 1) (Figure 67);

5. data weighting on the weight composition data, for the three fisheries with estimated selec-
tivity and weight composition data, (Francis weighting, doubling and halving the Francis
weights) (Figure 68);

6. data weighting on the length composition data, for the two southern fisheries with estimated
selectivity and length composition data, (Francis weighting, doubling and halving the Fran-

cis weights) (Figure 68); and

7. natural mortality (estimated (internal), fixed (external) using the approach of Hamel and
Cope (2022)) (Figure 69).

A third CPUE sensitivity was conducted using the EU CPUE replacing, the NZ index as the only
index used for region 2. Given some issues discovered during the construction of this index (Kim
et al., 2025), and concerns about the reliability of the last two years of this index, the data points
from the years 2022 and 2023 were dropped from the EU index in this sensitivity. The resulting
model had very poor fits to the EU index used, with the model achieving the best likelihood by
fitting the Australian index well, at the expense of fits to the EU index. The resulting spawning
biomass trajectories from the diagnostic model and from the EU sensitivity were very also similar,
(Figure 65), despite the different trends in the NZ and EU indices, shown in the blue and green dots
in Figure 3. In light of this outcome, showing very little difference between two potential categories

for the CPUE index grid axis, and given the concerns about the reliability of the EU index, the
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sensitivity of using the EU index was not included in the uncertainty grid.

For some of these sensitivities, the impact on the estimated spawning biomass trajectory and the
fishing mortality was fairly minor, with the largest effects coming from the relative data weighting,
especially the change to the weighting on the weight composition data, the fixed mortality and the
change to steepness, with the model apparently least sensitive to changes in the movement rates
between regions 1 and 2. While alternative ranges for some of these parameters could have been
explored, computational limitations on the size of the grid and time constraints to explore these
sensitivities in more detail required some pragmatic decisions to be made. Hopefully, the resulting

grid covers the structural or model uncertainty adequately. Yes, there were more dragons here too.

An additional sensitivity with fixed, externally estimated growth (Figure 70) was included as an axis
in an initial uncertainty grid, but this sensitivity consistently produced very high female spawning
biomass estimates and low estimates of F'/Fysy and with poor fits and worse likelihood components
for the weight composition data. This sensitivity was not considered to give plausible results, so
this initial axis was removed from the final uncertainty grid. Ideally, growth uncertainty would be
incorporated in the grid, but the available alternative external growth option did not seem plausible

and there was insufficient time to explore a plausible alternative growth axis.

One final sensitivity was conducted, in which all data from subregion 2N was completely removed
from the assessment (Figure 71). While this sensitivity estimated a much smaller overall scale to
the population, this is not surprising given the catches taken in subregion 2N, especially in the last
25 years. Perhaps surprisingly, the time series of F/Fygy and the relative population time series
was very similar for the diagnostic model and this sensitivity of excluding this subregion from the

model.

5.7 Structural uncertainty results

After taking considerable care and attention in developing a stable, well behaved diagnostic model,
all 360 models in the structural uncertainty grid were found to have positive definite Hessians.
Of these 360 grid models, 336 models produced a final gradient < 0.001. Of the 24 models with
gradients > 0.001 the largest gradient was 0.0041. These models were checked to see if they were
concentrated in one section of the grid, all with similar grid options selected, or on one axis of the
grid. In fact, they were widely spread among several axes simultaneously, and showed no sign of
any obvious pathological behaviour. Given that the largest gradient was still < 0.005, this gradient
selection criterion was relaxed to leave all 360 model in the grid. Hence it was unnecessary to
remove any models from the uncertainty grid, on convergence grounds. Results of the structural

uncertainty grid are summarised in a number of figures and tables.

All models in the grid were run with the maximum function evaluations argument set to 500,
(> ss3 -maxfn 500), to increase the default number of function evaluations at each phase and to

increase the opportunity for the model to converge. In practice, setting this value to 200 would
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probably have been sufficient, on inspection of the outputs from the uncertainty grid runs.

5.7.1 Grid axes with model uncertainty only

The grid outputs were initially scrutinised, to investigate the effects of model uncertainty, without
considering estimation uncertainty. These results are summarised with box and whiskers plots, for
F/Fysy (Figure 72) and SBiecent/SBusy (Figure 73), for all 360 models in the uncertainty grid,
with each subplot showing the range of all of models in the uncertainty grid, separated by grid
axis components, and with the diagnostic model highlighted in dark grey. In this standard box
and whiskers plot, the black line indicates the median, the boxes give the interquartile, percentile
ranges from 25% to 75%, and the whiskers reach up to 1.5 times the interquartile range, or to the
largest (or smallest) data point, whichever produces shorter whiskers. Any further outlying data

points are plotted individually.

The most influential axes of the grid are steepness, mortality and data weighting, particularly
for the weight composition data, (Figure 72) and SBrecent/SBwusy (Figure 73). Lower values for
steepness suggest higher values for SBiecent/SBusy and lower values of F'/Fysy. The external fixed
mortality option also suggests for SByecent/SBusy and lower values of F'/Fysy, as does halving the

data weighting given to the weight composition data.

The mean from the CPUE axes of the uncertainty grid is almost unchanged between the two
CPUE options for F/Fygy, (Figure 72), although the NZ CPUE, as used in the diagnostic model,
has slightly more uncertainty for F'/ F\;sy than the PICT CPUE. The mean of the CPUE axes of the
uncertainty grid is marginally higher for the diagnostic CPUE (NZ) than for the PICT CPUE for
SBrecent/SBusy (Figure 73). The effect of the change to recruitment proportion is relatively small.
Halving the movement rate from region 2 to 1 doesn’t change the mean of F/Fysy, but increases
the variance slightly for F'/Fysy and reduces the variance slightly for SByecent/SBusy. Halving the

movement rate movement from region 1 to 2 increases the mean of F/Fysy marginally.

5.7.2 Time series with model and estimation uncertainty

Combining model uncertainty and estimation uncertainty for each grid model, a range of key output
quantities and metrics were plotted with ribbon plots. These show the median, along with 50%, 80%
and 90% quantile ranges (showing the spread of values between 25%-75%, 10%-90% and 5%-95%
respectively), with the quantiles calculated from the full range of 360,000 values for each time point

in the time series.

Ribbon plots were constructed for the following quantities of management interest:
o F/Fysy (Figure 74)
o recruitment (Figure 75)

« SB (Figure 76)
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L4 SB/SBI\/ISY (Flgure 77)

Kobe plots were produced showing the estimates of Fyecent/Fusy and SB/SBysy, across all models in
the structural uncertainty grid, summarising the results for each of the 360 models in the structural
uncertainty grid, with no estimation error, for the recent period (2020-2023) (Figure 78). Another
Kobe plot was also produced, with contour plots summarising the full uncertainty grid from 360,000
model runs, including structural and estimation uncertainty, with 50%, 80% and 90% quantile
ranges, and with the median of all results shown as the red cross (Figure 79). Finally a dynamic
Kobe plot with a time series was produced, summarising the results for the 2025 diagnostic model
over the model period, from 1952-2023 (Figure 80). The larger red point is the estimated 2023
status, with the trajectory through this phase space indicated by labelled years, arrows and the
changing colour of the trajectory line. All three of these Kobe plots indicate that the stock is
estimated to be in the “not overfished” and “not overfishing” green zone of the Kobe plot, and to

have been in this quadrant for the whole history of the fishery.

Majuro plots were produced showing the estimates of Fiecent/Fusy and SBrecent/SBr—o, across all
models in the structural uncertainty grid, summarising the results for each of the 360 models in the
structural uncertainty grid, with no estimation error, for the recent period (2020-2023) (Figure 81).
A dynamic Majuro plot was also with a time series was produced, summarising the results for the
2025 diagnostic model over the model period, from 1952-2023 (Figure 82). The larger red point is
the estimated 2023 status, with the trajectory through this phase space indicated by labelled years,

arrows and the changing colour of the trajectory line.

The means and quantiles across the 360 models in the grid for all of the reference points and other
quantities of interest are shown in Table 4. For key management quantities (SByecent/SBusy and
Frecent/ Fusy ), the combination of structural and estimation uncertainty, using 360,000 model runs,
was used to include the additional estimates of estimation uncertainty for management advice, and
also included in Table 4.

The general features of the structural uncertainty analyses are as follows:

o The grid contains 360 models with a moderate range of estimates of stock status and reference
points, which suggest that the stock is slightly less depleted (higher SByecent/SBr—o) and with
a higher female spawning biomass than the estimates from the 2021 assessment (Table 4).
Both Frecent/Fusy and SBrecent/ SBusy are estimated to be lower in the 2025 stock assessment,
SBrecent/SBusy has a median value of 2.37 in the 2025 assessment, compared with a median

value of 3.61 in the 2021 assessment.

e The most influential axes of the grid are steepness, mortality and data weighting, particularly

for the weight composition data (Figure 72).

o Estimates of fishing mortality were relatively insensitive to the CPUE option used, recruitment

proportion or movement option assumed (Figure 72).
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o Both SB and SByecent/SBusy and show a notable decline since the late 1990s through to 2010,
followed by a slight recovery until 2015 and a decline since then (Figure 76 and Figure 77).

o None of the models in the structural uncertainty grid have SBrecent/SBusy < 1, with a
minimum value of 1.54, and the quantile range from the 10*" to the 90" percentile is 1.88-
3.34 (Table 4). When estimation uncertainty is included, the resulting distribution has a
negligible probability 0.01% of SB/SBysy < 1, and the quantile range from the 10" to the
90*™" percentile is 1.80-3.37 (Table 4).

e All models in the structural uncertainty grid show exploitation to be below Fysy. This also
holds when estimation uncertainty is included, and the median Fiecent/Fusy is 0.27, and the
quantile range from the 10'® to the 90'® percentile is 0.16-0.41 (Table 4).
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6 Discussion

6.1 General remarks

The 2025 SWPO swordfish stock assessment features a change of stock assessment software, from
MULTIFAN-CL to Stock Synthesis, and multiple changes to the structure and assumptions used in
the 2021 stock assessment. This results in a simpler and more robust model, which appropriately
takes account of variation in the size of fish caught by longitude, incorporates some age data directly
into the assessment and is less reliant on length composition data. While there are still features that
could be improved in future assessments, these recent changes all appear to lead to improvements
in this SWPO swordfish stock assessment. However, there are still difficult questions to address in
future, relating to stock structure, regional boundaries and the stock assessment boundaries. The
key weakness in this model is an inability to estimate the population scale without large uncertainty

bounds.

In general terms relating to management advice, the outcomes of this assessment are broadly
consistent with the 2021 stock assessment, and are also consistent with the series of SWPO swordfish
stock assessments that were developed in preceding years. The CPUE indices do not appear to
contain a strong signal, either on population scale, or a signal which suggests a large change in
spawning biomass. The catch history in the last 30 years, the relative stability in these CPUE
indices and the continued relatively high catches, compared to historical levels, all suggest that
there is little sign of the stock being heavily depleted, which also matches the results produced by

the full stock assessment.

6.2 Changes to the previous assessment
The major changes from the 2021 assessment assessment include the following.
1. Conversion from a 1-sex model to a 2-sex model.

2. Major revision of the length data inputs, including more scrutiny and filtering and separation
of port collected and onboard observer collected data for PICT fisheries, and subsequent

filtering of port data, for these fisheries where both data types existed.

3. Separation of all fisheries into distinct fisheries in each subregion, so no fisheries were allowed
to span multiple subregions. This allows separate selectivity to be estimated latitudinally,
which is especially important for the southern subregions, which typically catch larger fish,
but where these samples often were “lost” in fisheries merged with central subregions (with

much higher catch of smaller fish, typically) in the 2021 assessment.
4. Changing from age-based selectivity to length-based selectivity.

5. Constraining selectivity options to logistic or double normal, in particular preventing bimodal

selectivity patterns, as were allowed to be estimated, and were actually estimated for some
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fisheries in the 2021 assessment using age-based selectivity with splines.

6. Very large and somewhat subjective initial downweighting of length composition data for
most fisheries. Followed up by fixing selectivity, and setting the length composition weighting
to zero, for some fisheries and further downweighting of length composition data for other

fisheries.

7. Inclusion of sex specific conditional age-at-length data within the assessment and using these

data to help estimate growth.

8. Estimating the scale of the Lorenzen mortality form, using recent approaches of Hamel and
Cope (2022); Hoyle (2022).

9. Switching to an updated length-weight relationship based partly on a new dataset and also
more careful filtering of old data (Macdonald et al., 2025).

10. The use of a quarterly model time step, rather than an annual time step to allow greater

resolution in modelling the growth curve, especially for the younger faster growing fish.

11. The adoption of variable bin widths for the weight composition data, using a feature in Stock
Synthesis which is not presently available in MULTIFAN-CL.

12. The use of parameters to estimate additional variance to the indices, to balance the input

and output variances for the CPUE indices.

13. The successful application of iterative reweighting to both the size composition data and the

conditional age-at-length data.
14. Conversion of stock assessment platform from MULTIFAN-CL to Stock Synthesis.

Due to the focus on these substantial structural changes, a standard grid approach was used to
characterise uncertainty in management quantities. This is in contrast to the more sophisticated
approach pioneered in 2021 (Ducharme-Barth et al., 2021a; Ducharme-Barth and Vincent, 2022), of
creating a model ensemble based on prior distributions to characterise uncertainty. The ensemble
approach appears to be a more suitable approach, albeit a little complex and more difficult to

implement technically.

An additional four years of data were incorporated into this assessment, from 2020-2023, including
new catch, CPUE and size composition data. The simplification of the assessment structure resulted
in a model that only estimated 21 main parameters, plus an additional 53 recruitment deviations.
Attempts to estimate more parameters led to model instability or implausible model outcomes.
Even with such a small number of parameters to estimate, model run times were considerable
longer than the MULTIFAN-CL model developed in 2021, with run times of up to four hours not

unusual for many models tested and run during the development of this assessment.

While the treatment of uncertainty was perhaps a step backward from 2021, in reverting from an
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uncertainty ensemble to an uncertainty grid, the other model developments should be considered
a minor revolution for this assessment. These were considered necessary due to the apparent lack
of information about population scale in the index data, the quality of the length data available to
this assessment, the limited age data, the problems associated with conversion factors required to
convert the input data into a common form, the mix of catch records in numbers and weight, and
the long term collection of weight data, when good length data is likely to be more useful to the

assessment, especially when using length based selectivity.

As with any change, there was a certain amount of associated chaos, making it impossible to
conduct an orderly transition from the 2021 assessment through a standard stepwise approach,
starting with the 2021 diagnostic model and, in a series of well defined steps, arriving at the 2025
diagnostic model. It took much longer than expected to achieve a viable diagnostic model and
this contributed to the late delivery of this assessment. Hopefully the thorough diagnostic model

development was worthwhile.

The new model is remarkably stable, including an uncertainty grid with 360 models which contained
positive definite Hessians, in contrast to the uncertainty ensemble used in 2021, where many models
had to be filtered out due to convergence issues. While the 2025 model is perhaps simpler, it appears
to be more robust. Jitter analysis failed to find any improvement to the solution obtained for the

diagnostic model.

6.3 Challenges

There are clearly still plenty of issues to explore with this model, particularly in relation to model
structure, stock structure, information on spatial variation in biology (such as growth, recruitment,
reproduction, movement), spatial structure, including a very large and disparate region 2, and
heavy fishing on either side of the NE corner of the assessment area. Hopefully this assessment
provides a useful direction for the model development, and even some advances and improvements.
Interestingly the main conclusions are not that different to conclusions drawn in the first SWPO

swordfish assessment developed 20 years ago (Kolody et al., 2006).

While the assessment has some interesting features, including CPUE which is uninformative on
population scale, there are some intriguing features. This is highlighted by some of the diagnostics
and the likelihood profile, indicating that the signal in the weight data, especially from fishery
05.AU.1C was critical in getting a model that was presentable. The recent signal in these data,
indicating that the average weight of fish caught has reduced consistently in the last five years
perhaps raise more questions than it answers. Is that a fish down of the population, with many
of the older fish apparently now either less available, or possibly dead, or a large recruitment and
an influx of young fish dominating the older larger fish. Were there changes to fishing or sampling

practices that may explain a feature that the model assumes is a change in the population?

The length data in the southern fisheries appears to be particularly important in this assessment,
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with larger fish sampled in these subregions than further north. However sample sizes from these
fisheries are very small, and one of the more important fisheries, 14.NZ.2S is apparently no longer
collecting any length samples, having switched from observer sampling of lengths to sampling of
weights in fish markets. Determining if this length sampling program can be reinstated, or not,

may be important to future assessments of this stock.

The appearance of spikes of small fish is observed in size data for many fisheries in the model, so
often that it suggested these small fish are real samples. However, the lack of follow through of any
potential large cohorts presents substantial problems for this assessment, and possibly any locally
sampled recruitment spikes that represent new recruitment could disperse quickly into other areas
that may not be fished as heavily, or possibly outside the assessment boundaries, which may even
be fished more heavily, making it very difficult to track these “potential large cohorts” in the data

or in the model.

Likelihood profiles suggest there is some conflict in the data sources used in this model. The ASPM
analysis supports the conclusion that there is little information on population scale contained in
the index data. The retrospective analysis indicates that the model is still sensitive to changes
in recent data, which indicates either the model is sensitive to data inputs, or some recent data
is unusual and may warrant greater scrutiny, or there have been some recent systemic changes
(fishing practices, population processes, environmental process), or some combination of all of the
above. These diagnostics indicate that there is fertile ground to explore for whoever is so lucky as

to conduct the next SWPO swordfish stock assessment.

6.4 Main assessment conclusions

The 2025 SWPO swordfish stock assessment estimates that, at the stock-wide scale, for all models
in the uncertainty grid, the median SByecent/SBusy is well above 1.0, with a value of 2.37, showing
that SB is well above SBygy, (Figure 77, Table 4), and the median Flecent/Fusy is well below 1.0,
with median value of 0.27, showing that Fiecent is also well below Fygy (Figure 74, Table 4). These

two key reference points are calculated incorporating both structural and estimation uncertainty.

The estimated stock status, relative to SBygy across the whole model region shows a slow, gradual
decline until the 1990s, with an initial increase, followed by a period of faster decline, through to
about 2009, followed by a brief recovery to 2015 and over the last decade the stock has continued
to decline (Figure 77).

Overall, the outcomes of this assessment suggest that the swordfish stock in the SWPO is not
overfished and is not undergoing overfishing.
6.5 Recommendations for further research

1. Increase the biological sampling of otoliths to build greater coverage of conditional age-at-

length data and application or otolith-based methods to explore population structure (i.e.
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10.

11.

12.

13.

otolith chemistry). Increase the quantity of tissue samples collected for expanded genetic
studies. Age data are some of the most informative data for this model and the current age
dataset is limited spatially and temporally. More age data would likely be very informative

for this model.

. Collection of appropriately sampled close kin mark recapture data. This potential data source

and modelling tool could potentially offer far more information to inform this assessment than
all of the other data sources, that seemingly are unable to give a great deal of confidence in

the assessment of the population scale.

. Robust age validation procedures to enhance accuracy and confidence in the conditional age-

at-length data.

. Duplicate readings of otoliths should be obtained to enable age reading error to be estimated.

. Further research and data collections to inform growth parameters, and any regional variation

across different Pacific regions is essential to refine the assessment.

. Continued and increased collection of key representative size composition data could help

improve the model outcomes.

Explore the influence of environmental factors on recruitment. By exploring these connections,
we can gain valuable insights into population dynamics and identify potential vulnerabilities

to environmental changes.

. Review the length and weight composition data and explore further models to standardise

these composition inputs to assessments.

. Collaborative work with colleagues from the EU to diagnose potential problems with the

current EU CPUE index.
Additional exploration of alternative abundance indices, CPUE or otherwise.

Regional agreements on standard length and weight measurements to be applied to best
inform the stock assessment. Minimising the use of conversion factors will minimise the prop-

agation in any errors associated with conversion factors.

Full review of conversion factors used in the assessment, and consideration of the devlopment
of regional or flag-based conversion factors. Conversions from processed length or weight to
the standarised units used in the assessment (whole weight and lower jaw-fork length) are

important.

A review of data collection preferences for stock assessment purposes would be helpful, es-
pecially composition data. Long term data collection programs are useful, but typically age

data is more useful than length data, which is more useful than weight data.
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14.

6.6

Investigation into stock structure and connectivity with adjacent regions in the north east

corner of the assessment region.

GitHub repository for diagnostic model and r4ss plots

A publicly accessible GitHub repository has been created, for the 2025 swordfish diagnostic model,

containing a single zip file, ss3.zip, which contains the following standard Stock Synthesis files.

input files (four files: starter.ss, control.ss, swo2025.ctl, swo2025.dat)

output files (multiple files)

r4ss plots sub-directory, containing an easy to navigate .html summary file: _SS_output.html
likelihood profile subdirectory with plots for log(Rjp)

likelihood profile subdirectory with plots for M

Edits and other additions will be made to this repository, but the ss3.zip file will remain unchanged

in that location.

The link to this GitHub repository is:
https://github.com/PacificCommunity /ofp-sam-swo-2025-diagnostic

To increase transparency, to explore model input setting, outputs and to examine more plots than

could be included in this report, please read this paper in conjunction with files available through
this link.
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than I expected two months ago! I hope others find it at least half as good as we like to think it is!
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Table 1: Definition of fisheries, with labels indicating: fishery number; flag; and subregion, as well
as selectivity and data availability information for the 2025 swordfish stock assessment. The Catch
column indicates whether catch is recorded in numbers of fish (nos) or in tonnes (t). The Years
column indicates the years in which composition data is available for each fishery, after the initial
filtering of data. For years appearing in square brackets, [|, this indicates data from this fishery
was further downweighted to zero in the model, so effectively removing these data from the model
entirely, with this data not even used to estimate an initial selectivity for that fishery, nor as part
of a group of similar fisheries with shared selectivity. In this case, selectivity was obtained from the
fishery listed in the mirrored column (Mirr). For years appearing in parentheses, (), this indicates
data that were downweighted, due to data quality concerns, and largely used to estimate an initial
selectivity, with these data then further downweighted by an additional factor of 0.001, with this
composition data left in the model, albeit with very small weight, to minimise the influence of
these data on other model parameter estimates. In some cases, when the word “fix” appears in the
Selectivity column, this initial estimated selectivity is subsequently entered as a fixed selectivity
in the model. In other cases, this selectivity is still estimated, but is shared with a selectivity
estimated from a different fishery using data with much higher weighting, so the fisheries with
Years in parentheses makes a largely insignificant contribution to the estimated selectivity. Qtrs
indicates the number of quarters of size composition data available, after initial data filtering,
and before any further downweighting to zero. In some cases, with years in square brackets, the
composition data from these fisheries has no influence, and the available data is only used in the
model to show the fit, or lack of fit, to this data from the (imposed) selectivity. The Mirr (or mirror)
column lists the other fishery number that selectivity is shared with for this fishery, linking to the
either the first or the most influential fishery within each group with shared selectivity. As well as
indicating whether selectivity is fixed or estimated, the Selectivity column lists the shape of the
selectivity curve, either asymptotic (logistic) or potentially dome-shaped (double normal).

Fishery Catch Years Qtrs Comp Selectivity Mirr
01.DW.IN 1nos [1998-2023] 12 len  fix dbl nrml 08
02.DW.1C nos (1991-2016) 7 len  fix dbl nrml
03.DW.1S nos 1991-2023 13 len logistic
04.AU.1IN nos 1997-2019 69  wt dbl nrml
05.AU.1C nos 1997-2023 106 wt dbl nrml
06.AU.1S nos (1993,1997) 2 len  logistic 03
07.EU.1C t (2004) 2 len fix dbl nrml 02
08.PICT.1IN 1nos (2000-2014) 24 len  fix dbl nrml
09.PICT.1C nos I 0 len fix dbl nrml 02
10.DW.2N 1nos (2010-2023) 46  len  fix dbl nrml 08
11.DW.2C nos (1988-2023) 10 len  fix dbl nrml
12.DW.28 nos [1990-1994] 5 len logistic 14
13.NZ.2C nos 2006-2023 54 wt dbl nrml
14.NZ.28 nos 1996-2021 26 len  logistic
15.EU.2N t [2004] 2 len fix dbl nrml 08
16.EU.2C t (2004-2009) 21 len  fix dbl nrml 11
17.EU.2S t [2005-2006] 3 len logistic 14
18.PICT.2N nos [2006-2023] 40  len  fix dbl nrml 08
19.PICT.2C nos (2004-2021) 9 lemn  dbl nrml 16
Index fisheries
20.AU.IDX.1  nos 1998-2023 wt dbl nrml 05
21.NZ.IDX.2  nos 2004-2023 wt dbl nrml 13
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Table 2: Structural uncertainty grid for the 2025 SWPO swordfish stock assessment. Bold values indicate settings for the diagnostic
model.

Axis Levels Option 1 Option 2 Option 3 Option 4 Option 5
CPUE 2 AU & NZ AU & PICT

Steepness 3 0.7 0.8 0.9

Proportion recruitment by region 2 1:3 1:4

Movement 3 diagnostic Halve from 1 to 2 Halve from 2 to 1

Data weighting 5 Francis Halve weight Double weight Halve length Double length
Natural mortality 2 Estimated Fixed




Table 3: Description of symbols used in the yield and stock status analyses.

Symbol Description

Clatest Catch in the last year of the assessment (2023)

Flatest Average fishing mortality-at-age in the latest time period (2023)

Frecent Average fishing mortality-at-age for a recent period (2019-2022)

Fusy Fishing mortality-at-age producing the maximum sustainable yield (MSY)

MSY Equilibrium yield at Fygy

Frecent/ Fusy Average fishing mortality-at-age for a recent period (2019-2022) relative to Fygy
Flatest / Fusy Average fishing mortality-at-age in the latest time period (2023) relative to Fysy
SBlatest Spawning biomass in the latest time period (2023)

SBrecent Spawning biomass for a recent period (2020-2023)

TBiatest Total biomass in the latest time period (2023)

TB.ecent Recent biomass for a recent period (2020-2023)

SBr—g Average spawning biomass predicted in the absence of fishing for the period 2011-2020
SBusy Spawning biomass that will produce the maximum sustainable yield (MSY)

SBlatest/SBF=0
SBlatest/SBMSY
SBrecent/SBFZO

SBrecent / SBMSY

spawning biomass predicted to occur in the absence of fishing for the period 2011-2020
Spawning biomass in the latest time period (2023) relative to the average spawning biomass
predicted to occur in the absence of fishing for the period 2011-2020

Spawning biomass in the latest time period (2023) relative to that which will produce

the maximum sustainable yield (MSY)

Spawning biomass for a recent period (2020-2023) relative to the average spawning

biomass predicted to occur in the absence of fishing for the period 2011-2020

Spawning biomass for a recent period (2020-2023) relative to the spawning biomass

that produces maximum sustainable yield (MSY)
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Table 4: Summary of reference points over the 360 individual models in the uncertainty model
ensemble, along with results incorporating estimation uncertainty. Note that these values do not
include estimation uncertainty, except for the key management quantities (bottom two rows of the
table).

Metric Mean Median Min 10%ile 90%ile Max
Clatest 5922 5926 5758 5846 5994 6071
SBlatest 47080 43738 26110 35742 62301 96686
SBrecent 48523 44994 27255 36729 64013 99654
TBlatest 118832 110466 65944 91676 155510 234896
TBrecent 118023 109628 65577 90625 154507 234147
Flatest 0.06 0.06 0.03 0.04 0.07 0.10
Flrocent 0.06 0.06 0.03 0.04 0.07 0.10
SBusy 20039 19502 11521 13580 26557 38811
MSY 12078 11560 8189 9708 15339 22310
Fusy 0.21 0.20 0.15 0.16 0.27 0.27
Flrecent/ Frsy 0.28 0.28 0.11 0.18 0.38 0.53
Flatest/ Fusy 0.28 0.27 0.11 0.18 0.38 0.53

SBrecent/SBusy 2.48 2.33 1.54 1.88 3.34 4.10
SBiatest/ SBusy 2.41 2.27 1.47 1.82 3.24 3.98
SBrecent/SBr=o 0.52 0.50 0.37 0.46 0.58 0.67
SBiatest/ SBr—o 0.50 0.49 0.36 0.45 0.57 0.65
Including estimation uncertainty

Mean Median  Min 10%ile 90%ile Max
Frecent/ Frusy 0.28 0.27  0.00 0.16 0.41 0.93
SBrecent/SBusy 2.48 2.37  0.48 1.80 3.37 5.37
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10 Figures
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Figure 1: Spatial structure for the 2025 SWPO swordfish stock assessment. Region 1 (in the west)
and region 2 (in the east) are the two main regions in the model, with each region further subdivided
into northern, central, and southern subregions, which is used for fishery definitions in an area-as-
fleets context.
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Figure 2: The two CPUE indices from the diagnostic model plotted on a normalised scale (mean of
each series equals 1), enabling comparison of trends between these two time series. The Australian
CPUE, from region 1 (20.IDX.AU.1), is shown in orange and the slightly shorter New Zealand
CPUE, from region 2 (21.IDX.NZ.2), is shown in red.
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Figure 3: Comparisons of three alternate CPUE indices for region 2, and fits to these different
indices, with the diagnostic model including indices from Australia and New Zealand (blue), the
sensitivity to swap the NZ CPUE index with the PICT index (red) and the sensitivity to swap the
NZ CPUE index with the EU index (green), with estimated variances required to fit these different
indices shown with colour-coded vertical lines.
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Figure 4: Annual catch (t) of swordfish by flag from 1952-2023, aggregated over both regions.
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Figure 6: Annual catch (t) of swordfish by flag from 19522023, separated by subregion.
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Figure 7: Annual catch (numbers of fish x 1000) of swordfish by fishery from 19522023, aggregated over both regions.
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Figure 8: Stacked annual catch (numbers of fish x 1000) of swordfish by fishery from 1952-2023, aggregated over both regions.
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Figure 9: Spatial distribution and magnitude of swordfish catches (t) by flag, aggregated over all years, 1952-2023, for each 5° x 5° cell.
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Figure 10: Temporal and spatial distribution and magnitude of swordfish catches (t) by flag, for the first 29 years (1952-1980, top left)
two subsequent 20 year time periods (19812000, top right); and 2001-2020, bottom left; and then for the last three years (2021-2013,
bottom right)), for each 5° x 5° cell.



Catches

09.PICT.1C
10.DW.2N
11.DW.2C

12.DW.2S
13.Nz.2C

14.NZ.2S
15.EU.2N
16.EU.2C

17.EU.2S
18.PICT.2N
19.PICT.2C

Abundance indices
20.IDX.AU.1
21.IDX.NZ.2C

Length compositions

® 18.PICT.2N
T ) [ 19.PICT.2C
Weight compositions
| 04.AU.TN
05.AU1C

—13.NZ.2C
Conditional age-at-length compositions

oD L 05.AU.1C

| | | | | | | | | 1 | | | |
1955 1965 1975 1985 1995 2005 2015 2020

Year

Figure 11: Summary of input data used for the 2025 swordfish assessment, indicating which years
the various data types were available.
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Figure 12: Summary of input data used for the 2025 swordfish assessment, indicating which years the
various data types were available, with circle area relative to precision of each data type (with data
weighting applied), or the actual size, for catch data. The catch data sizes are not representative as
the catches for the EU fleet (t) have not been “corrected” to make them comparable to the catches
for all other fisheries, where catches are reported as numbers of fish caught.
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Figure 13: Estimated growth from the diagnostic model, with three von Bertalanffy parameters
estimated for females (red), fixed CV parameters for young and old ages taken from the values
obtained from external growth, and fixed offsets from the female parameters used for the male
von Bertalanffy parameters (blue), fixed at values of the offsets obtained from the external growth
estimates. Shaded area indicates 95% distribution of length at age around the estimated growth
curve for each sex. Length at age (top-left panel) with CV (thick line) and SD (thin line) of length
at age shown in top-right and lower-left panels.
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Figure 14: Lorenzen form of natural mortality for male and females, for the diagnostic model, with
female mortality at age 7 estimated internally.
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Figure 15: Weight at length relationship by sex for the diagnostic model with females shown in red
and males in blue.
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Figure 16: Maturity at age relationship for the diagnostic model (top) and fecundity by length
relationship (bottom).
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Figure 17: The seven different length-specific selectivity curves, some fixed and some estimated, for
the seven distinct fishery groups with different selectivities.
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Figure 18: The seven different equivalent age-specific selectivity curves (plotted separately for males
and females, due to different sex specific growth curves), derived from the length-based selectivity
curves, some fixed and some estimated, for the seven distinct fishery groups with different selectiv-
ities.
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Figure 19: The fixed length-specific selectivity curve for the group of fisheries, from subregion 2C,
dominated by fishery 16.EU.2C, but with some influence (a factor of five times less weight) from
fisheries 11.DW.2C and 19.PICT.2C. This selectivity was initially estimated in a preliminary run
of the model, and then fixed, at these estimated values, in all subsequent model runs, with further
downweighting of the associated length composition data, for all three fisheries in this group,
through an additional multiplier of 0.001 on the already downweighted initial input sample sizes.
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Figure 20: The fixed length-specific selectivity curve for the group of fisheries, from subregion 1N and
2N, dominated by fishery 08.PICT.1N, but with a small influence (a factor of 100 times less weight)
from fishery 18.PICT.2N, and zero weight from fisheries 01.DW.1IN, 10.DW.2N and 15.EU.2N (all
with small or unreliable samples). This selectivity was initially estimated in a preliminary run of
the model, and then fixed, at these estimated values, in all subsequent model runs, with further
downweighting of the associated length composition data, through an additional multiplier of 0.001,
for fisheries 08.PICT.1N and 18.PICT.2N, on the already downweighted initial input sample sizes.
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Figure 21: The estimated length-specific selectivity curve with weight composition data in subre-
gion 1N, from fishery 04.AU.1N, Francis weighted with multiplier 0.2891.
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Figure 22: The estimated length-specific selectivity curve from the fishery group in subregion 1C,
dominated by the weight composition data from fishery 05.AU.1C, Francis weighted with multiplier
0.2555, but also sharing selectivity with the downweighted length-based fisheries in subregion 1C,
and 02.DW.1C, 07.EU.1C (multiplier of 0.000005 for both) and with all length composition samples
from fishery 09.PICT.1C removed by the initial filtering steps.
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Figure 23: The estimated length-specific selectivity curve from the fishery group in subregion 2C,
dominated by the weight composition data from fishery 13.NZ.2C, Francis weighted with multiplier
0.05214, but also sharing selectivity with the downweighted length-based fisheries in subregion 2C,
16.EU.2C (multiplier of 0.00001), which has weighting 5 times larger than the other two length-
based fisheries in this region, 11.DW.2C and 19.PICT.2C (multiplier of 0.000002 for both).
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Figure 24: The estimated length-specific selectivity curve from the fishery group dominated by
the length composition in subregion 1S, dominated by the length composition data from fishery

03.DW.18S, Francis weighted with multiplier 0.2054, and 06.AU.1S (with fewer samples and much
smaller multiplier of 0.00001).
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Figure 25: The estimated length-specific selectivity curve from the fishery group dominated by
the length composition in subregion 2S, dominated by the length composition data from fishery
14.NZ.28, Francis weighted with multiplier 0.05952, but also sharing selectivity with the down-
weighted length-based fisheries in subregion 2S, 12.DW.2S and 17.EU.2S, both of which had mul-
tipliers of zero, as they had so few samples.
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Figure 26: The fits to the two CPUE indices from the diagnostic model, with both plots shown
on a log scale, to reflect the space in which these indices are fitted. Observed (circles) and model-
estimated (blue line) CPUE indices vs year, with approximate 95% asymptotic intervals for the
Australian index (20.IDX.AU.1, top) and for the New Zealand index (21.IDX.NZ.2, bottom). The
thin lines with capped ends should match the thick lines for a balanced model. These indices are
balanced by estimating an additional variance parameter within Stock Synthesis, which is negative
for the Australian index, suggesting the models fit well with less variance than the initial values of
0.2, and positive for the New Zealand index, suggesting that the model requires additional variance
to fit this index, compared to the initial value used of 0.1.
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Figure 27: The residual patterns for the fits to the two CPUE indices from the diagnostic model.
The residual pattern for the Australian index (20.IDX.AU.1, top) looks acceptable, but there is a
poor residual pattern seen in the fits to and the New Zealand index (21.IDX.NZ.2, bottom).
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Figure 28: Fits to length compositions by fishery, aggregated across all years, for the 2025 diagnostic

model. Observed data are grey and the fitted value is the green line. “N adj.”

is the input sample

size after data-weighting adjustments. “N eff.” is the calculated effective sample size used in the
McAllister-Tanelli tuning method.
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Figure 29: Fits to weight compositions by fishery, aggregated across all years, for the 2025 diagnostic
model. Observed data are grey and the fitted value is the green line. “N adj.” is the input sample
size after data-weighting adjustments. “N eff.” is the calculated effective sample size used in the
McAllister-Tanelli tuning method.
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Figure 30: Observed (black points) and predicted (blue line) median fish lengths (LJFL, cm) for the fisheries with length data for the
2025 diagnostic model. The uncertainty intervals for the observed data are represented by boxes (thick black vertical lines) represent the
values encompassed by the 25% and 75% quantiles for each quarter of data, while the whiskers (thin black vertical lines) represent the
values encompassed by the 5% and 95% quantiles for each quarter of data. Sampling data are by quarter and only filtered length samples
included in the diagnostic model are plotted.
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Figure 31: Observed (black points) and predicted (blue line) median fish weights (kg) for the fisheries with weight data for the 2025
diagnostic model. The uncertainty intervals for the observed data are represented by boxes (thick black vertical lines) represent the
values encompassed by the 25% and 75% quantiles for each quarter of data, while the whiskers (thin black vertical lines) represent the
values encompassed by the 5% and 95% quantiles for each quarter of data. Sampling data are by quarter and only filtered weight samples
samples included in the diagnostic model are plotted.
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Figure 32: Fits to conditional age-at-length data from fishery 05.AU.1C by quarter with observations
(black points, with 90% confidence intervals) and predicted ages at length (blue line) in the left
hand panel. The right hand panel shows observed and expected variances, which are not very
meaningful with the low numbers of samples each quarter and the high resolution of lengths used,
meaning that most lengths do not have replicate samples to estimate a reliable variance on the age

for each length (1 of 3).
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Figure 33: Fits to conditional age-at-length data from fishery 05.AU.1C by quarter with observations
(black points, with 90% confidence intervals) and predicted ages at length (blue line) in the left
hand panel. The right hand panel shows observed and expected variances, which are not very
meaningful with the low numbers of samples each quarter and the high resolution of lengths used,
meaning that most lengths do not have replicate samples to estimate a reliable variance on the age
for each length (2 of 3).
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Figure 34: Fits to conditional age-at-length data from fishery 05.AU.1C by quarter with observations
(black points, with 90% confidence intervals) and predicted ages at length (blue line) in the left
hand panel. The right hand panel shows observed and expected variances, which are not very
meaningful with the low numbers of samples each quarter and the high resolution of lengths used,
meaning that most lengths do not have replicate samples to estimate a reliable variance on the age
for each length (3 of 3).
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Figure 35: Mean age from conditional age-at-length data (aggregated across length bins) for
05.AU.1C with 95% confidence intervals based on current samples sizes. Francis data weighting
method TA1.8: thinner intervals (with capped ends) show result of further adjusting sample sizes
based on suggested multiplier (with 95% interval) for conditional age-at-length data from 05.AU.1C:
1.0442 (0.9744-578.9995). For more info, see Francis (2011) and Punt (2017).
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Figure 36: Time-trajectory of estimated female spawning biomass (t) for the diagnostic model,
with approximate 95% asymptotic intervals, aggregated over all regions (top) and female spawning
biomass (t) by region (bottom), with region 1 shown in blue and region 2 shown in red.
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Figure 37: Time-trajectory of fished (red) versus unfished (blue) female spawning biomass (top)
and SB/SBr—¢ (bottom), for the diagnostic model.
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Figure 38: Recruitment estimation for the diagnostic model, with estimated age zero recruits, in
1,000s, with approximate 95% asymptotic intervals (top) and estimated recruitment deviations,
with approximate 95% asymptotic intervals (bottom).

113



Asymptotic standard error estimate

rl;\/)z/GRz

1-SE(

Figure 39: Recruitment variance estimation for the diagnostic model, showing the standard errors

03 04 05

0.2

0.1

0.0

1.2

1.0

0.8

0.6

02 04

0.0

Recruitment deviation variance

uuuUUUUUOOOOOOOO
Ooo
o
o
/
o \
%o
o
o\
o) o o
\ lo) I\ ,O B
C)O/ Ooooooo.o.oooooo o OOOO
I I I I I
1970 1980 1990 2000 2010 2020
Year
== bias adjust in model
== gstimated alternative
) - ~ Av'*\l\r\ 7~ or\U f\%
r\nnn()oooooooo
| | I I I
1970 1980 1990 2000 2010 2020

Year

of recruitment deviation estimates (top) and the bias adjustment (bottom).

114




—6e— Diagnostic
—&— JuvenileM
N —+—  AdultM
o
o
o
<
2 o
g
o
£ 3
o0 o
£
e
L«
L. o
o
[a]
o
(e}
o
P T T T T T T T
1960 1970 1980 1990 2000 2010 2020
Year

Figure 40: Annual fishing mortality summary by year, summarised by a numbers weighted mean
F, calculated across age classes 3-12 (Diagnostic, blue), for juveniles, age range 1-3 years (Juve-
nileM, red) and for adults, age range 8-15 years (AdultM, green) for the diagnostic model, with
approximate 95% asymptotic intervals.
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Figure 41: Phase plot of biomass ratio (SB/SBysy) vs. SPR, (1—SPR)/(1 —SPRugy). Each point
in the phase plot represents the biomass ratio at the start of the year and the relative fishing
intensity in that same year. The colours on the blue end of the spectrum represent early years and
the yellow colours represent the most recent years. Lines through the final point show 95% intervals
based on the asymptotic uncertainty for each dimension. The shaded ellipse is a 95% region which
accounts for the estimated correlation between the two quantities: -0.991.
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Figure 42: Time series of (1 — SPR)/(1 — SPRugy) with asymptotic uncertainty.
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warmer colours indicating earlier years and cooler colours showing later years.
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Figure 45: The likelihood profile for log(Rp) from the diagnostic model, with log(Rp) ranging
between 7 and 8. The total negative log-likelihood is shown in black, with other components of
the likelihood shown in different colours. The index data, or CPUE (dark blue) has the largest
influence, supporting a higher population scale, followed, in contrast, by the weight composition
data (light blue), which supports a lower population scale.
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Figure 46: Piner plot for the likelihood profile for log(Ry) from the diagnostic model, showing
components of the change in likelihood for length, weight and surveys (CPUE) by fishery. The
total negative log-likelihood is shown either in black (top left and bottom right plots) or in dark
blue (top right and bottom left plots). Other components of the likelihood, or the contribution to the
likelihood from individual fisheries are shown in different labelled colours. The major contribution
from the CPUE data supporting a higher population scaling parameter comes from the New Zealand
CPUE data (top right panel). The major contribution from the weight data supporting a lower
scaling population parameter comes from the Australian fishery 05.AU.1C (bottom right panel).
The length composition data has a smaller contribution, but this does show some difference in
the influence of these datasets between length data from the two southern fisheries, 03.DW.1S and
14.NZ.28S.
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Figure 47: The likelihood profile for the scaling parameter for Lorenzen M from the diagnostic
model, ranging between 0.22 and 0.26. The total negative log-likelihood is shown in black, with
other components of the likelihood shown in different colours. The index data, or CPUE (light
blue) and weight composition data (dark blue) have the largest influence, and are in conflict, with
the CPUE data supporting a higher M scale and the weight composition data supporting a lower
M scale.
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Figure 48: Piner plot for the likelihood profile for the scaling parameter for Lorenzen M from the
diagnostic model, showing components of the change in likelihood for length, weight and surveys
(CPUE) by fishery. The total negative log-likelihood is shown either in black (top left and bottom
right plots) or in dark blue (top right and bottom left plots). Other components of the likelihood,
or the contribution to the likelihood from individual fisheries are shown in different labelled colours.
The major contribution from the CPUE data supporting a higher M scale comes from the New
Zealand CPUE data (top right panel). The major contribution from the weight data supporting
a lower M scale comes from the Australian fishery 05.AU.1C (bottom right panel). The length
composition data has a smaller contribution, but this does show some difference in the (small)
influence of these datasets between length data from the two southern fisheries, 03.DW.1S and
14.NZ.2S.

123



2_127_Diag_RetroBase_2020
2-127_Diag_RetroBase_2019
jag_RetroBase_2018

—6— Q_12_127_Diag_RetroBase_2023
—A— Q_12_127_Diag_RetroBase_2022
Q_12_127_Diag_RetroBase_2021
Q_1
QA

x
[72]
@
e 40 —
i)
o)
(@)]
£
[
2
(0]
Q.
%)

20

0 T T T T
2000 2005 2010 2015 2020 2023

Year

Figure 49: Retrospectives for absolute female spawning biomass, with data included to 2023 (dark
blue), followed by five peels, each with the successive “last year of data” removed, so with data
included respectively, only to 2022, 2021, 2020, 2019 and 2018 (red).

124



12_127_Diag_RetroBase_2023
2_127_Diag_RetroBase_2022
iag,_RetroBase_2021
etroBase_2020
troBase_2019
roBase_2018
<
2
v N
o o
@
T o
o o
@
N
g
S -
o
o | | | |
2000 2005 2010 2015 2020 2023

Year

Figure 50: Retrospectives for fishing intensity, measured by the SPR, with data included to 2023
(dark blue), followed by five peels, each with the successive “last year of data” removed, so with
data included respectively, only to 2022, 2021, 2020, 2019 and 2018 (red).
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Figure 51: Retrospectives for fishing intensity, measured by F/Fysy, with data included to 2023
(dark blue), followed by five peels, each with the successive “last year of data” removed, so with
data included respectively, only to 2022, 2021, 2020, 2019 and 2018 (red).
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Figure 52: Retrospectives for recruitment, measured by numbers of age-0 recruits, with data in-
cluded to 2023 (dark blue), followed by five peels, each with the successive “last year of data”
removed, so with data included respectively, only to 2022, 2021, 2020, 2019 and 2018 (red).
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Figure 53: Retrospectives for recruitment, measured by estimated recruitment deviations, with data
included to 2023 (dark blue), followed by five peels, each with the successive “last year of data”
removed, so with data included respectively, only to 2022, 2021, 2020, 2019 and 2018 (red).
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Figure 54: Recruitment deviations from retrospectives, as a squid plot, with data included to 2023,
and five retrospective peels, respectively, including data only to 2022, 2021, 2020, 2019 and 2018.
This shows changes in the recruitment deviations for particular cohorts, as each of the last five
years of data are successively removed, with the the age of that cohort at each peel on the x-
axis. The red string (labelled 2011) is the cohort from 2011, aged 12 years old in 2023, and 7
years in 2018, the last peel. Each coloured string, corresponding to a particular cohort, includes a
maximum of six points, one for the diagnostic model (on the right of each string, set to y = 0), and
then one additional point for each of the five retrospective peels. Each string, when followed from
right to left, represents removal of successive years of data. The changes in the estimates of the
recruitment deviations for each cohort, as each year of data is removed, are measured by changes
in the y-axis, along each string, relative to the final recruitment deviation for that cohort from the
diagnostic model. A negative value indicates a revision downwards and a positive value indicates
a revision upwards. This plot is clearly unbalanced, as it features revisions upwards, compared to
the diagnostic model in every case, with a single exception, for cohort 2017, after 3 peels.
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Figure 55: Retrospectives plotted for CPUE fits for the Australian CPUE data from fishery
20.IDX.AU.1, with data included to 2023 (dark blue), followed by five peels, each with the succes-
sive “last year of data” removed, so with data included respectively, only to 2022, 2021, 2020, 2019
and 2018 (red).
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Figure 56: Retrospectives plotted for CPUE fits for the New Zealand CPUE data from fishery
21.IDX.NZ.2, with data included to 2023 (dark blue), followed by five peels, each with the successive
“last year of data” removed, so with data included respectively, only to 2022, 2021, 2020, 2019 and
2018 (red).
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Figure 57: Annually aggregated observed (grey dots) and predicted (blue line) median fish weights
(kg) for fishery 04.AU.1N.
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Figure 58: Annually aggregated observed (grey dots) and predicted (blue line) median fish weights
(kg) for fishery 05.AU.1C.

133



13.NZ.2C (whole catch)

100
80—
;5 I _
=
2 - A T
q;.) _ ——
- 60 /’ _
3
= /
— /
/
"\/ \//
40 | T
20 L
T T T
2010 2015 2020
Year

Figure 59: Annually aggregated observed (grey dots) and predicted (blue line) median fish weights
(kg) for fishery 13.NZ.2C.
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Figure 60: Estimated female spawning biomass, in 1000s of t (top), and relative spawning biomass
(bottom), both with confidence bounds, for the diagnostic model (blue), the ASPM (red) and the
ASPM-R (green).
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Figure 61: Estimated absolute recruitment (top), and recruitment deviations, with confidence
bounds (bottom), for the diagnostic model (blue), the ASPM (red) and the ASPM-R (green).
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Figure 62: Fits to the Australian CPUE series (top), and the New Zealand CPUE series (bottom),
for the diagnostic model (blue), the ASPM (red) and the ASPM-R (green).
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Figure 63: Estimates of logRy (top), and initial female spawning biomass, in 1000s of t (bottom),
both with asymptotic uncertainty distributions, and for the diagnostic model (blue), the ASPM

(red) and the ASPM-R (green).
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Figure 64: Comparisons between the diagnostic model with indices from Australia in region 1 and
New Zealand in region 2 (blue) and the sensitivities to swap the region 2 index from NZ to the
PICT index (red) and to swap the region 2 index from NZ to the EU index (green), with asymptotic
uncertainty bounds: the estimated initial female spawning biomass, in 1000s of t (top left); the time
series of F'/ Fyisy (top right); the female spawning biomass time series (bottom left); and the relative
female spawning biomass time series, relative to SBy (bottom right).
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Figure 65: Comparisons between the diagnostic model with h = 0.8 (blue) and the sensitivities
to steepness with A = 0.7 (red) and h = 0.9 (green), with asymptotic uncertainty bounds: the
estimated initial female spawning biomass, in 1000s of t (top left); the time series of F//Fysy (top
right); and the female spawning biomass time series (bottom left); and the relative female spawning
biomass time series, relative to SBy (bottom right), although this last plot is less informative with
varying values for h, as the starting point is not scaled to roughly the same value.
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Figure 66: Comparisons between the diagnostic model with recruitment proportion 1:3 (blue) and
the sensitivity with recruitment proportion 1:4 (red), with asymptotic uncertainty bounds: the
estimated initial female spawning biomass, in 1000s of t (top left); the time series of F//Fysy (top
right); and the female spawning biomass time series (bottom left); and the relative female spawning
biomass time series, relative to SBy (bottom right).
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Figure 67: Comparisons between the diagnostic model with (blue) and the sensitivities halving the
movement rate from region one to region two (red) and halving the movement rate from region one
to region two (green), with asymptotic uncertainty bounds: the estimated initial female spawning
biomass, in 1000s of t (top left); the time series of F'/Fysy (top right); and the female spawning
biomass time series (bottom left); and the relative female spawning biomass time series, relative to
SBy (bottom right).
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Figure 68: Comparisons between the diagnostic model with (blue) and the sensitivities with a range
of data weighting options, halving the weighting on the length composition data (green), doubling
the weighting on the length composition data (light green), halving the weighting on the weight
composition data (orange), doubling the weighting on the weight composition data (red), with
asymptotic uncertainty bounds: the estimated initial female spawning biomass, in 1000s of t (top
left); the time series of F'/Fysy (top right); and the female spawning biomass time series (bottom
left); and the relative female spawning biomass time series, relative to SBy (bottom right).
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Figure 69: Comparisons between the diagnostic model with the scale of the Lorenzen mortality
parameter estimated (blue) and the fixed mortality estimate, using the Hamel and Cope (2022)
approach (red), with asymptotic uncertainty bounds: the estimated initial female spawning biomass,
in 1000s of t (top left); the time series of F'/ Fygy (top right); and the female spawning biomass time
series (bottom left); and the relative female spawning biomass time series, relative to SBy (bottom

right).
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Figure 70: Comparisons between the diagnostic model (blue) and the sensitivity to fixed external
growth (red), with asymptotic uncertainty bounds: the estimated initial female spawning biomass,
in 1000s of t (top left); the time series of F/Fysy (top right); and the female spawning biomass time
series (bottom left); and the relative female spawning biomass time series, relative to SBy (bottom
right).
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Figure 71: Comparisons between the diagnostic model (blue) and the sensitivity to excluding subre-
gion 2N (red), with asymptotic uncertainty bounds: the estimated initial female spawning biomass,
in 1000s of t (top left); the time series of F'/Fysy (top right); the female spawning biomass time
series (bottom left); and the relative female spawning biomass time series, relative to SBy (bottom
right).
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Figure 72: Standard box and whiskers plots of F'/Fysy by grid axis for all 360 models in the uncer-
tainty grid, with each subplot separated into the components of each grid axis, with the diagnostic
model highlighted in dark grey in each subplot. This plot only incorporates model uncertainty,
without considering estimation uncertainty. The most influential axes of the grid are steepness,
mortality and data weighting, particularly for the weight composition data.
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Figure 73: Standard box and whiskers plots of SBiecent/SBusy by grid axis for all 360 models
in the uncertainty grid, with each subplot separated into the components of each grid axis, with
the diagnostic model highlighted in dark grey in each subplot. This plot only incorporates model
uncertainty, without considering estimation uncertainty. The most influential axes of the grid are
steepness, mortality and data weighting, particularly for the weight composition data.
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Figure 74: Ribbon plots from the uncertainty grid with estimation error, showing the median of all
trajectories, along with 50%, 80% and 90% quantile ranges: F'/Fygy.
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Figure 75: Ribbon plots from the uncertainty grid with estimation error, showing the median of all
trajectories, along with 50%, 80% and 90% quantile ranges: Recruitment (in 1000s).
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Figure 76: Ribbon plots from the uncertainty grid with estimation error, showing the median of all
trajectories, along with 50%, 80% and 90% quantile ranges: SB (in 1000s of t).
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Figure 77: Ribbon plots from the uncertainty grid with estimation error, showing the median of all
trajectories, along with 50%, 80% and 90% quantile ranges: SByecent/SBusy -
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Figure 78: Kobe plot summarising the results for each of the 360 models in the structural un-
certainty grid, with no estimation error, for the relevant recent period, which are 2020-2023 for
SBrecent/SBusy and 2019-2022 for Frecent / Fusy respectively. The red dot indicates the median and
the blue dot the diagnostic model.
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Figure 79: Kobe with contour plots, summarising the full uncertainty grid from 360,000 model runs,
including structural and estimation uncertainty, with 50%, 80% and 90% quantile ranges. The red
cross shows the median of all models.
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Figure 80: Time dynamic Kobe plot summarising the results for the 2025 diagnostic model over
the model period. The larger red point is the estimated 2023 status, with the trajectory through
this phase space indicated by labelled years (blue points), arrows and the changing colour of the
trajectory line.
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Figure 81: Majuro plot summarising the results for each of the 360 models in the structural un-
certainty grid, with no estimation error, for the relevant recent period, which are 2020-2023 for
SBrecent/SBr—o and 2019-2022 for Fyecent/Fusy respectively. The red dot indicates the median and
the blue dot the diagnostic model.
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Figure 82: Time dynamic Majuro plot summarising the results for the 2025 diagnostic model over
the model period. The larger red point is the estimated 2023 status, with the trajectory through
this phase space indicated by labelled years (blue points), arrows and the changing colour of the
trajectory line.
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