

2025 Stock Assessment of Striped Marlin in the Southwest Pacific Ocean

Part II: Data-moderate Bayesian Surplus Production Model Approach

N. Ducharme-Barth, C. Castillo-Jordán, F. Carvalho, and P.

Hamer

WCPFC-SC21 · Nuku'alofa, Tonga · 13–21 August 2025

Openscience

All data inputs, model code, key model outputs, figures, report and presentation files are publicly available on GitHub:

https://n-ducharmebarth-noaa.github.io/2025swpo-mls-bspm/

Assessment context

- Strategic shift from integrated age-structured model to a Bayesian datamoderate approach
- Previous challenges with:
 - Data conflicts and poor fits to size composition
 - Challenges estimating population scale
- Bayesian Surplus Production Model (BSPM) offers simplified yet robust alternative when data limitations exist
- Complements integrated assessment (Part I) for holistic stock status view

Why BSPM?

Advantages:

- Focuses on estimating productivity and scale given catch and index data
- Efficient exploration of parameter space
- Explicitly incorporates biological uncertainty through priors
- Proven robust and effective for pelagic fish assessments

Trade-offs:

- Simplifies complex age-structured dynamics
- Assumes single well-mixed population
- Knife-edged selectivity assumption

Model framework

Fletcher-Schaefer production model

Population dynamics:

$$N_t = (N_{t-1} + \operatorname{Production}_{t-1}) imes \operatorname{Process\ error}_t imes \operatorname{Fishing\ survival}_{t-1}$$

Fishing impact linked to effort:

Fishing survival_t inversely proportional to Fishing mortality_t

Fishing mortality_t = Catchability_t \times Fishing effort_t

Key features:

- True population (numbers) is treated as an unobserved random variable
- Model only fits to observations of relative abundance and catch
- Catchability is allowed to vary temporally so fishing mortality can match catch
- ullet Biology captured in **Production** as max rate of population growth R_{Max}

Input data

Standardized CPUE indices:

- DWFN longline index (1979-2022) & New Zealand recreational sportfish indices (1975-2022)
- Several observer-based indices explored as sensitivities

Blue line is a moving average and not a model fit!

Model development approach

1. Develop priors:

- ullet Use biological simulation framework to develop initial prior for R_{Max} and production function shape parameter n
- Develop priors for population scale and catchability based on maximum observed catch and early period CPUE

2. Prior pushforward:

- Pass random parameter combinations through the population dynamics model
- Filter parameter combinations for biological and fishery realism
- Develop a multivariate prior based on emergent parameter correlations

3. Fit models to data **1**

- Evaluate model performance (fits & diagnostics)
- Draw inference from posterior updates
- Consider sensitivities to data inputs

Diagnostic model

- Fits to the DWFN index
- Uses a robust likelihood for fitting to catch data
- ullet Estimates scale, R_{Max} , production shape, annual catchability deviates, process error, and index observation error
- Posterior distributions of estimated quantities were derived from sample chains starting from 5 different starting points
- Standard Bayesian diagnostics indicated that all sample chains satisfactorily converged to a stable distribution without issue

Diagnostic	Value	Criteria	Status
Max \hat{R}	1.008	< 1.01	1
Min ESS	788.000	> 500	✓
Divergent	0.000	= 0	✓
Tree Depth	0.000	= 0	1

Diagnostic model: Fits

The diagnostic case model is model 0100.

Diagnostic model: Validation

Hindcast

- · Model predictions of the index holding out up to 20 years of data
- · Good hindcast index fit indicates production and catch drive model estimates

Diagnostic model: Inference

i Posterior update

- If posterior (solid line)
 differs from realized
 prior (dotted line)
 distribution, data inform
 estimates
- \cdot Both key population dynamics parameters for scale (logK) and R_{Max} (r) indicate strong influence of data on estimates

Key sensitivities

$oldsymbol{i}$ Alternative R_{Max} prior

- Lower productivity assumption based on Atlantic white marlin
- · Results in larger population scale but similar relative stock status metrics
- · Choice of shape *n* prior impacts scale estimate and *MSY* based reference points

Model ensemble

i Marginal posterior distributions

- \cdot D/D_{MSY} : Majority of distribution (74%) below D/D_{MSY}
- \cdot F/F_{MSY} : Minority of distribution (23%) above F/F_{MSY}
- Population scale: Data supports a small recent population with large, asymmetric uncertainty to the high side

 D_{recent} refers to the average over 2019-2022

 F_{recent} refers to the average over 2018-2021

Ensemble models: 0100, 0102, 0105, 0107.

Stock status

Metric	Median [95% CI]	Probability
Recent Status		
$\overline{D_{recent}/D_{MSY}}$	0.77 [0.33–2.3]	74% below D_{MSY}
$\overline{F_{recent}/F_{MSY}}$	0.77 [0.05–1.51]	22.9% above F_{MSY}
Latest Status		
D_{latest}/D_{MSY}	0.81 [0.32–2.36]	70% below D_{MSY}
$\overline{F_{latest}/F_{MSY}}$	0.69 [0.05–1.51]	18.4% above F_{MSY}

Conclusion: Stock is **overfished** but **not undergoing overfishing**. Only 22.9% joint probability of being simultaneously overfished and undergoing overfishing.

Projections

i Projection assumptions

- · Recent average catch (2018-2022)
- Stationary productivity& environment
- Process error resampled from model period

Future overfished probabilities:

- . 2027: 40.9%
- · 2032: 26%

Conclusion: Continued recovery expected under recent catch levels with decreasing risk of overfishing.

Limitations

Data representativeness:

- CPUE indices may not represent true stock trends
- Potential under-reporting of catches for bycatch stock
- Stock structure uncertainty (genetic evidence of SWPO fish in North Pacific catches)

Model simplifications:

- Single well-mixed population assumption
- Knife-edged selectivity
- No age structured dynamics
- Stationary productivity and carrying capacity over 70 years

Parameter uncertainty:

- Substantial uncertainty in absolute population scale
- Shape parameter n not estimable from data
- ullet High uncertainty in key biological processes translates to uncertainty in $R_{\it Max}$

Environmental factors:

- Future variability in environmental and oceanographic conditions are not explicitly modeled
- Process error spikes suggests unmodeled dynamics

Recommendations

Stock structure research:

- Develop conceptual model for SWPO striped marlin
- Collaborate with ISC Billfish Working Group

Data and biological research:

- Reduce uncertainty in key biological processes where possible
- Investigate representativeness of abundance indices
- Address stock connectivity questions with genetic research

Future modeling approach:

- Progressive development within Bayesian framework
- Move toward Bayesian fully integrated agestructured models similar to WCPO oceanic whitetip shark

Conclusions

- In the end, the BSPM shows similar results to the SS3 model
- Existing data do not support a large population, but a small highly productive stock
- ullet Maximum catches are $\sim 70 \mathrm{k}$ but average between $20 \mathrm{k} 30 \mathrm{k}$
- Since indices show declines given those catches, the population must be small
- However, as seen in the sensitivities, different productivity assumptions,
 larger catches or a flatter CPUE index would all support a larger population
- Relative to the SS3 model, the BSPM identifies a production function giving greater confidence in model estimates, and more appropriately integrates over possible uncertainty in population scale and productivity

Acknowledgements

Collaborative Assessment Process

This assessment greatly benefited from collaboration with a broad group of interested parties and stock assessment experts where feedback was provided in an iterative manner throughout the model development process. Leveraging their diverse expertise helped produce a stronger scientific product.

Special thanks to:

K. Kim (SPC), N. Davies (Te Takina Ltd.), S. Hoyle (Hoyle Consulting), R. Ahrens (PIFSC), and M. Nadon (PIFSC)

for their insights and thoughtful discussion which improved the assessment!