

SC21-SA-WP-02 skipjack stock assessment

SCIENTIFIC COMMITTEE
TWENTY-FIRST REGULAR SESSION
Nuku'alofa, Tonga
13–21 August 2025

Structure

- Catch-conditioned, quarterly time-step, 1972-2024
- 8-region spatial structure (slight change in R5)
- 32 extraction fisheries:
 - PH and ID PS fisheries split (conflict in length data)
- 10 index fisheries:
 - JPPL in regions 1-4,7 & 8
 - PS in regions 5-8
 - Geostatistical CPUE standardisation (sdmTMB)
- Length compositions
- Tagging data: tag mixing informed by IKAMOANA simulations
 - Dissimilarity (untagged vs. tagged population) *K* statistic 0.1 (longer mixing; 8.3% included), 0.2 (moderate; 31%), and 0.3 (shorter mixing; 53.2%)

Key changes

- Model ensemble with uncertainty estimation (Monte Carlo)
- SSAP tagging data excluded
- Change in reporting rate (RR) groupings, only estimate RR where tagging data is adequate

- Lorenzen M
- Orthogonal polynomial recruitment (OPR)
- Effort creep applied to JPPL
- Growth: L1 and L2 estimated, k fixed, VB offsets
 ages 2 & 3 qtrs

Minor changes

- LL length data aggregated to single time-step (Q3 2000)
- Dirichlet Multinomial (DM) groupings from 3 to 4 (PL and PS separated)
 - DM-4: PL, PS, LL, ID/PH/VN-MISC
- Length-based selectivity
- Updated tag seeding and tagger effects
- Updated fecundity (Ashida, 2020)
- LL asymptotic selectivity relaxed for older fish
- Initial population: lightly exploited (2% of *M*)

- CPUE indices:
 - selectivity and likelihood ungrouped
 - Time-varying CVs
- Region 5 (WPEA) tag returns grouped (uncertainty in fishery allocation)
- Growth: VB offsets for ages 2 and 3 quarters

Catch

Stepwise

Fishery data – CPUE trends

Fishery data – CPUE residuals

Fishery data – length data (extraction fisheries)

Year-quarter

Fishery data – length data (CPUE indices) Pacific Community Communauté du Pacifique 33.PL.JP.INDEX.1 34.PL.ALL.INDEX.2 Samples 36.PL.ALL.INDEX.4 38.PL.JP.INDEX.7 39.PL.ALL.INDEX.8 **Purse seine** Year-quarter Length (cm) Pole-and-line 37.PS.IDID PHPH.INDEX.5 40.PS.UNASSOC.INDEX.6 Samples 41.PS.UNASSOC.INDEX.7 42.PS.UNASSOC.INDEX.8 Year-quarter

Length (cm)

Fishery data – tagging data

Fishery data – tagging data

Max gradient = 5.9e-05

No parameters on bounds, 38 movement parms. near lower bounds (bound = 0)

Correlation of parameters: (99.9% not correlated), 9 correlations from selectivity spline nodes

Stable recruitment trend

- Jitter analysis
- Retrospectives

Pacific Community Communauté du Pacifique

Likelihood profile (LP)
 conflict between LF with CPUE and tag data

Figure 63: Likelihood profiles by fishery for CPUE indices.

LP by fishery

CPUE: PL-R4

conflict with

PL-R2 & PL-R8

LF: PS-SA-R6 and PS-SU-R7 conflict with the others

 Age-structured production model (ASPM; remove length data)

Consistency indicates CPUE and tagging data inform scale and trends

• ASPM-alt:

Alternate run with tag data removed

- Catch-curve analysis (CCA; CPUE removed)
 - Inconsistency indicates CPUE inform trends, lengths inform short-term variability (high recruitment in later years)

• Tag-free model

Difference in scale indicates tags largely moderate population scale

 Diagnostic case reporting rate priors

 Uninformative priors on RR priors
 Difference in scale SB and SB depletion

M senescence
 Very little effect
 on the key model
 outputs

• Effort creep 10%, median,& 90%

Moderate effects on early years of model outputs

Influential on recruitment

Tag mixing
 Dissimilarity
 K=0.1, 0.2, 0.3
 Highly influential on the key model outputs

—h=0.80

• Steepness 0.65, 0.8, 0.95 Impacts MSY

Alternate k
 Not highly influential

Potential interactions with other uncertainties

• ID catch uncertainty ± 20%

Very little effect on the key model outputs

Fishery impacts

Model ensemble

- 271 of 300 converged
- Steepness distribution
- Effort creep multiplier distribution of trajectories
- Mixing periods dissimilarity K= 0.1,
 0.2, 0.3
- Growth *k* as U[0.2,0.4]

Model ensemble

- Trajectories
 - SB depletion
 - F
 - SB
 - Recruitment

Model ensemble

- Monte Carlo approach
 - bootstrap 1000 random samples using ensemble (271 models) means and standard deviations

Blue line: median, Green line: mode

Majuro and Kobe plots

Projections and iTRP

Management quantities

	Mean	Median	Min	10%	90%	Max
$F_{ m MSY}$	0.28	0.28	0.22	0.25	0.32	0.37
$f_{ m mult}$	3.01	2.85	1.88	2.25	4.12	5.42
$F_{ m recent}/F_{ m MSY}$	0.35	0.35	0.18	0.24	0.44	0.53
MSY	2,506,046	2,374,800	1,819,600	2,090,400	3,200,800	4,204,000
$SB_{ m latest}$	3,715,913	3,365,822	$2,\!320,\!595$	2,747,472	5,231,863	5,801,571
$SB_{ m recent}$	3,681,316	3,248,438	2,337,134	2,641,802	5,337,579	6,023,691
$SB_{F=0}$	6,844,279	$6,\!466,\!725$	5,102,043	5,753,337	8,444,739	9,440,668
$SB_{\text{latest}}/SB_{F=0}$	0.54	0.53	0.42	0.46	0.62	0.82
$SB_{\mathrm{latest}}/SB_{\mathrm{MSY}}$	4.17	3.91	2.24	3.07	5.62	8.92
$SB_{ m MSY}$	924,241	893,900	399,400	624,900	1,232,000	1,908,000
$SB_{\rm MSY}/SB_{F=0}$	0.13	0.14	0.07	0.10	0.16	0.20
$SB_{\text{recent}}/SB_{F=0}$	0.53	0.51	0.40	0.45	0.63	0.68
$SB_{\rm recent}/SB_{\rm MSY}$	4.11	3.91	2.14	2.98	5.60	8.92
$Y_{F_{ m recent}}$	440,394	438,000	362,400	398,500	486,800	562,600
$20\%SB_{F=0}$	1,368,856	1,293,345	1,020,409	1,150,667	1,688,948	1,888,134
$SB_{\text{recent}}/SB_{F=0}$:iTRP	0.98	0.98	0.83	0.94	1.01	1.05
Including estimation un	ncertainty					
$F_{ m recent}/F_{ m MSY}$	0.35	0.35	0.16	0.24	0.45	0.59
$SB_{\text{recent}}/SB_{F=0}$	0.53	0.51	0.37	0.45	0.63	0.74
$SB_{ m recent}/SB_{ m MSY}$	4.11	3.90	1.92	2.95	5.61	10.73

- Median 0.35 F_{recent}/F_{MSY} (0.35 with estimation uncertainty)
 - Zero risk > F_{recent}/F_{MSY}
- Median 0.51 $SB_{recent}/SB_{F=0}$ (0.51 with estimation uncertainty)
 - Zero risk < 0.20 $SB_{recent}/SB_{F=0}$
- Median 0.98 $SB_{recent}/SB_{F=0}$: iTRP

The stock is not overfished and overfishing is not occurring

Recommendations

- Develop better information on growth and age structure (i.e., epigenetics)
- Develop better information on metapopulation, especially linkage between east Asian waters and WCPO
- Develop better information on tag mixing
 - Model tags as release conditioned in SEAPODYM
 - External tagging analysis
- Improve reporting rate priors
- Resolve data conflict (LF with CPUE and tag data) by improved filtering (collaboration between observer and port sampling programmes of CCMs)

Questions

Catchability – PS

MSY

