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Introduction 
 
The Pelagic Longline Catch Rate Standardization meeting was held at the Imin 
Conference Center, University of Hawaii, Honolulu, from February 12−16 2007.  The 
meeting was jointly hosted by the Secretariat of the Pacific Community (SPC) and 
Pelagic Fisheries Research Program (PFRP) funded project "Performance of Longline 
Catchability Models in Assessments of Pacific Highly Migratory Species". Workshop 
convenors were Keith Bigelow of the US National Marine Fisheries Service, and Simon 
Hoyle of  the Oceanic Fisheries Programme, SPC.  

The objectives of the meeting were to provide a technical review of current (and 
alternative) longline CPUE standardization techniques used for the yellowfin and bigeye 
stock assessments in the Western and Central Pacific Ocean (WCPO), and to formulate a 
research plan to meet the objectives of the PFRP longline catchability project. SPC had 
an additional objective of obtaining some guidance on the analysis of CPUE data from 
the longline fleet, and addressing the key issues identified by WCPFC Scientific 
Committee 2. The standardized longline data are one of the most influential components 
in the stock assessments for yellowfin and bigeye tuna in the WCPO.  

John Sibert of the University of Hawaii welcomed participants. The meeting was chaired 
by Keith Bigelow. Adam Langley of SPC chaired discussions of issues directly related to 
SPC stock assessments on days 4 and 5. Simon Hoyle was rapporteur, and notes were 
also provided by Mark Maunder, Adam Langley, and Keith Bigelow.  

The meeting was attended by about 25 scientists from a number of organizations: the 
SPC (Don Bromhead, Simon Hoyle, Adam Langley, Brett Molony), Inter-American 
Tropical Tuna Commission (Mark Maunder), Institut de Recherche pour le 
Développement (Pascal Bach, Daniel Gaertner), CSIRO (Rob Campbell), Bureau of 
Rural Sciences (Australia) (Peter Ward, Emma Lawrence), Western and Central Pacific 
Fisheries Commission (SungKwon Soh), Japanese Far Seas Fisheries Lab (Kotaro 
Yokawa, Momoko Ichinokawa), Tokyo University of Agriculture (Minoru Kanaiwa), and 
the US National Marine Fisheries Service (Keith Bigelow, Jon Brodziak, Emmanis 
Dorval, Marco Kienzle, Pierre Kleiber, Kevin Piner). In addition, Phil Goodyear (US) 
and three fisheries staff from Pacific Island countries and territories attended the meeting 
(Jone Amoe, Pam Maru, and Cedric Ponsonnet). 
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Summary of recommendations 

Recommendations for stock assessments – 2007 

Regional weighting factors 
- Consider a time period from 1975 to 1986. Re-weight using 1960-1974 and 1975-

1986, and compare outcomes. Outcomes may differ between species; e.g. 1960-74 
may be better for yellowfin 

- Consider including interaction terms in the model, including region and hooks 
between floats (HBF) 

 
Data resolution, and analyses using other datasets 

- Set by set analyses for target species are recommended, both to compare indices 
with those from aggregated data and to investigate factors that might affect catch 
rates. Suitable data sources include:  

o Hawaii-based longline data: e.g. moon phase, time of day of set, bait type, 
vessel id, vessel length. Compare with coarser 1º and 5º monthly data..  

o Within-EEZ logsheet data for all longline fleets, particularly regarding 
gear configuration 

- Spatial and effort contraction of the Japanese longline fishery over the past decade 
makes it important to include other datasets in order to develop CPUE indices 
relevant for the entire WCPO.  

- Compare nominal indices of the Japanese fleet and other fleets at appropriate 
spatial and temporal scales.  

- Explore standardization for Korea and Taiwan CPUE for a global CPUE index  
- Where possible, indices for all countries to be made available.  

 
Examine sensitivities of the stock assessment models to assumptions in the GLM. 

- Examine sensitivity to the assumption that HBF=5 before 1975.  
- Examine sensitivity to the assumption that HBF effects are equivalent throughout 

the time period, given that longline material specific gravity may have changed 
for many vessels during and after 1993.  

- Examine sensitivity to plausible increases in fishing power. Define ‘plausible’, 
perhaps via a paper from Peter Ward. See also paper by Miki Ogura on pole and 
line fishery, presented to SCTB several years ago.  

- Attempt to standardise using data only from main gear configurations – this 
implies subdividing the CPUE index. Is data for specific gear configurations 
available? Yokawa-san will ask Okamoto-san, and provide if it is reliable.  

 
Reporting at the WCPFC Scientific Committee 

- Report against biological hypotheses – compare model parameterization to 
biologically-based expectations, such as HBF.  

- Explain implications of statistical assumptions in terms of biology, fleet 
dynamics, and population dynamics.  
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- Compare depth distribution from archival tags with depth/habitat at capture on 
longlines for all species.  

 

Recommendations for stock assessments – Longer term 

Spatial effects 
- Develop standardization using spatial backfilling – investigate effects of 

alternative approaches, (e.g. Campbell et al, Ahrens PhD research, and Maunder - 
combining pop dynamics and GLM).  

- Develop methods to include uncertainty in spatial back-filling approaches.  
- Model population dynamics of region 3 at a smaller spatial resolution, to examine 

potential effects of spatial heterogeneity in fishing effort and population structure.  
- Compare results of a simple GLM, an area-weighted model, and an abundance-

weighted model.  
- Given the geographical diversity of region 3, and the limited information 

regarding the western part of region 3, carry out a sensitivity analysis to removing 
the western part from the CPUE analysis.  

 
Modelling approaches  

- Determine which of the currently available methods for standardizing CPUE are 
generally applicable and the conditions under which they will perform better than 
other methods.  

- When using simulation analysis, start with simple models to test the utility of 
existing methods and test where the methods break down. Build in increasing 
complexity to determine their performance in realistic applications. 

- Review literature on CPUE standardization, and note covariates and factors for 
which standardization substantially changes the year effect from nominal CPUE.  

- Combine GLM with pop dynamics model – examine outcomes via simulation 
 

Missing covariates,  
- Take a statistical approach to estimating missing observations, using the EM 

algorithm for example.  
 

Time horizon 
- Given the uncertainty about the factors affecting pre-1975 CPUE, consider 

starting assessments in 1975 instead of 1952, or at least using only the post-1975 
period to infer long-term average recruitment. Consider the implications for the 
assessment model and for management.  

 
Targeting 

- Cluster analysis for Japanese data to compare the observed clustering with HBF 
and area targeting information, in order to see how well the clustering approach 
works. This can be used to validate the approach for other fleets.  
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- Market demand (by species, fish condition, fat content (also affected by area & 
time of year)) can affect targeting. Consider how market demand can be 
integrated into the determination of targeting 

- Consider how oceanography can be integrated into the determination of targeting.  
- Review approaches for including data from other species in GLMs.  
- Investigate simultaneous standardization across species to resolve changes in 

targeting behaviour.  
- Investigate analyses of targeting that include data from multiple fleets.  
 

Data resolution, and analyses using other datasets 
- Develop CPUE indices for all countries/fleets where longline data exist.  

 
Data requirements 

- Determine the status of current data holdings, including identifying the nature and 
magnitude of deficiencies, and determine the priority for data collection for 
current model applications.  

- Identify what data should be collected in the logbooks for all fleets to improve our 
ability to capture changes in the relationship between catch and effort, and to 
ensure the ability to maintain the information context and usefulness of long-term 
data series.  

 
Quantify changes in gear configuration, and time series changes in catchability 

- Further development to include additional species and to estimate actual gear 
depth using multi-species statHBS approach.  

- Develop alternative likelihoods for multi-species approach.  
- Investigate possibility that major discontinuities (10−25%) in CPUE indices are 

related to introduction of new technologies.  
- Examine CPUE indices to investigate the possibility of simultaneous changes in 

catch rates across multiple oceans / species.   
- Investigate the effectiveness of a variety of equipment, such as acoustic Doppler 

current profiler (ADCP).  
- Review Japanese research reports for information on gear configuration changes 

in 1975, 1993, and at other times.  
- Investigate possible changes in gear selectivity at 5 HBF pre- and post-1975 for 

Japanese longline vessels in the Pacific (as noted for similar vessels in the Indian 
and Atlantic Oceans).  

 
Sensitivity analyses to known or potential changes in gear configuration 

- Mainline composition changed with the introduction of monofilament in 1990s.  
HBF changed, but depth may not have. This change was associated with 
diversification of gear configurations. Examine potential sensitivity of year effect 
to this change.  

- Estimate separate catchabilities before and after 1975 in the assessment model, 
sharing selectivity.  

 4 



Pelagic longline catch rate standardization meeting, Feb 2007  

Recommendations relating to PFRP project 

Data suggestions for observer programs 
- Incorporate details from table 1 in background paper 10.  
- Validate longline gear depth with temperature depth recorders (TDR’s).  
- Collect gear attributes such as line types, hook types and sizes, weights, weighted 

swivels, bait type etc.  
- Use more hook timers to validate time of capture.  
- Observers to report which hook each fish was caught on, and time of day caught.  
- Geographical coordinates at start and end of haul.  
- Validate logbooks using observer data.  

 
Other data collection recommendations  

- National scientists to describe fishery gear configurations, particularly upon 
introduction of new gear technologies.  

- Possible provision of Japanese longline data stratified by material type.  
 
Oceanographic effects 

- GLM with CPUE as a function of oceanography alone, without temporal and 
spatial effects, to explore how oceanography (which is confounded with space and 
time) may affect catch or CPUE.  

- Review availability of fine-scale spatial and temporal oceanographic data, 
especially remotely sensed rather than model-derived data. Compare coherence of 
both data types, and investigate biases.  

- Use existing and develop new algorithms, at appropriate spatio-temporal 
resolution, to describe the evolution, decay, and persistence of features such as 
eddies and frontal structures, for both fish accumulation and fishery targeting. 

 
Model selection 

- Investigate alternative hypotheses, and use model averaging to integrate over 
model selection uncertainty where it occurs.  

- Develop tests appropriate for determining which standardization methods provide 
the best index of relative abundance from a set of candidate methods. 

- Evaluate the performance of candidate tests using simulation analysis. 
 
Gear dynamics 

- Further experiments to quantify longline shoaling due to horizontal current shear 
and changes in sag ratio. 

- Characterize intra-set variability in gear depth, and statistically determine 
optimum number of TDR’s given variability. 

- Investigate functional relationship relating depth fished with HBF/longline 
material. 
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Summary of meeting 

1. Overview of longline effort standardizations in current Pacific HMS 
assessments 

A number of different methods have been used for standardizing CPUE data for highly 
migratory species in the Pacific. Methods currently used for WCPFC stock assessments 
of the Western and Central Pacific Ocean (WCPO) were summarized by Adam Langley 
(see abstract page 40). For further detail see Langley et al. (2005).  

Japanese longline data are critical for developing these indices of abundance, because of 
their large-scale spatial coverage, the length of the available time series, and the 
consistency of reporting, which are not matched by any other time series of catch and 
effort data. There are also long time series of purse seine catch and effort data, but due to 
the nature of the fishing method, purse seine data are less appropriate for developing 
indices of abundance.  However, the contraction of the Japanese longline fishery in recent 
years, which continues, makes it increasingly important to evaluate the integration of data 
from other fisheries into standardizations.  

The WCPO is generally modelled as six separate regions, and the CPUE standardization 
is carried out separately for each region, and reweighted later (see reweighting, section 
8). The six regions can be viewed as six separate assessments, but parameters are shared 
among the regions, and inter-region movement rates estimated.  

Catch and effort are aggregated spatially and temporally by 5x5º - month, and number of 
hooks between floats (HBF). Catch by stratum is modelled as a function of effort and 
other parameters. The relationship between catch and effort is modelled as a third order 
polynomial, to accommodate possible saturation at high effort and searching behaviour in 
strata with low effort; although these effects will be somewhat complicated by the 
inclusion of HBF in the stratification. The relationship is estimated to be linear over most 
of the range of the data, and abundance indices are similar when the relationship is 
constrained to be linear.  

For yellowfin in the WCPO, the GLM models generally find the expected relationship 
between CPUE and HBF, i.e. CPUE generally declines with increasing HBF (increased 
hook depth). However, the bigeye CPUE index does not reveal the converse trend that 
would be expected from our understanding of the depth distribution of the species and 
changes in target practice. There is concern that the temporal trend in increased HBF (and 
therefore increasing bigeye catchability) is not captured by the GLM models, and that the 
resulting CPUE indices may be positively biased. Catch rates may be influenced by 
factors that interact with HBF, but are not included in the aggregated data. Analyses of 
set-by-set data are suggested, as they may provide relevant insights.  

Methods used in the Eastern Pacific Ocean (EPO) over the past decade were described by 
Mark Maunder (see abstract page 41). The most recent methods are described by Hoyle 
and Maunder (2006). The IATTC has applied multiple methods to standardize catch rates 
for yellowfin and bigeye tuna in the EPO, most recently using a delta lognormal GLM 
approach (Hoyle and Maunder 2006). The most important conclusion to be drawn from 
the results is that almost all of the methods used, including nominal CPUE, produce 
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similar results for the parameter of interest: the quarterly abundance index. Only the 
deterministic habitat based standardization model (Hinton and Nakano 1996) has 
produced a substantially different abundance index (Maunder et al. 2002). The 
explanatory variables included in the EPO model have generally not affected the relative 
index of abundance  (Figure 1−2). In the WCPO, however, the yellowfin index of 
abundance has been modified by the explanatory variables HBF, bigeye CPUE, and 5º 
square (Figure 3), resulting in changes to management quantities.  
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Figure 1: Indices of yellowfin tuna abundance in the EPO resulting from standardization of CPUE 
data from 2000 to 2006, using the following methods: 2000−2001 nominal CPUE; 2002 deterministic 
HBS; 2003−2004 neural networks; 2005 delta gamma GLM; 2006 delta lognormal GLM.  

 

 7 



Pelagic longline catch rate standardization meeting, Feb 2007  

BET

0

0.5

1

1.5

2

2.5

1970 1975 1980 1985 1990 1995 2000 2005
Year

S
ta

nd
ar

di
se

d 
C

P
U

E

2000 2001 2002 2003 2004 2005 2006
 

Figure 2: Indices of bigeye tuna abundance in the EPO resulting from standardization of CPUE data 
from 2000 to 2006, using the following methods: 2000−2001 regression trees; 2002 deterministic 
HBS; 2003−2004 neural networks; 2005 statistical HBS; 2006 delta lognormal GLM.  
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Figure 3: Comparisons among standardizations of yellowfin CPUE in region 3 of the WCPO. 
Standardizing by HBF gives an index of abundance quite different from nominal CPUE. Adding 
‘proportion bigeye in the catch’ further modifies the trend, while adding ‘bigeye CPUE’ has less 
effect.  
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Momoko Ichinokawa’s presentation (see abstract page 42), on standardization of CPUE 
data for striped marlin in the North Pacific, a non-target but retained species, revealed 
some difficulties. Rapid decline of nominal CPUE around the Hawaiian islands in the 
Central Pacific during the early 1970’s was inconsistent with CPUE trends elsewhere. 
The decline may have been affected by gear configuration changes. Japanese longliners 
had not been operating in the Central and Eastern Pacific since the 1960’s, and gear 
configurations changed dramatically between the 1960’s and 1970’s.  However, 
introducing set by set data (with gear configuration information) for 1962−1966 and 
1975−2005 into the standardization did not explain the rapid decline. Further study is 
needed of historical changes of gear configuration in Japanese longline fisheries and their 
possible effects on catch rates. Catch rates by species can also vary markedly due to the 
targeting practices of individual vessels, and this deserves further exploration.  

A further problem was related to an area of the eastern Pacific, thought to be a spawning 
area, with striped marlin catch rates about 10 times those elsewhere. Longline effort in 
this area has been decreasing since the 1970’s, with little effort since 1990; a change 
partly caused by a shift of target species in the Eastern Pacific from striped marlin to 
bigeye tuna.  Such situations sometimes occur with bycatch species.   

This change raised several issues. First, the CPUE trend in this area of high abundance 
may not be the same as the trend elsewhere. If this is the case, then the area of high 
abundance can be standardized separately; or a single standardization can include an 
interaction term between time and location, and the locations reweighted later. 
Reweighting in such cases should be by abundance rather than by area. This issue is dealt 
with in more detail in section 9 on spatial considerations. However, for some species, 
catch rates in spawning areas tend to be hyperstable due to aggregation of fish from other 
areas at certain times of year. This type of hyperstability can be dealt with by ignoring the 
CPUE during the spawning season, and only using the CPUE when the fish are dispersed. 
Alternatively, the supposed spawning area can be modelled separately and the effect of 
hyperstability modelled explicitly.  

Second, the lack of effort in this high abundance area leaves overall abundance very 
uncertain – see the spatial considerations section 9 for more discussion of this issue.  The 
uncertainty caused by the shift of target species and the biased distribution of fishing 
efforts should be quantitatively evaluated, with a view to making changes for future stock 
assessments. Despite the gradual shift in targeting from marlin to tunas, an expected 
negative correlation between CPUE of these species was not apparent.  

The above highlights the need to develop methods to model the effects of, and indicators 
of, targeting, so that targeting can be taken into consideration in the CPUE 
standardisation.  

See also Molony (2005) for information on factors affecting billfish catches by longline 
fisheries in the WCPO.  
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2. Models for standardizing longline effort: GLMs, GAMs, neural networks, 
and covariates 

Many explanatory variables can be used to standardize CPUE data. These variables can 
come from the process that was used to record the CPUE data (e.g. from logbooks) or 
from other sources which can be mapped to the CPUE data (e.g. environmental data from 
remote sensing; general circulation models). The type of variables available will often 
depend on the spatial and temporal resolution of the data set that is used.  

It is not clear which explanatory variables should be given the highest priority for 
reporting in data and use in analyses. It might be useful to review all available CPUE 
standardization analyses to identify which explanatory variables have been found to be 
influential, and use those as a recommended set of variables to consider. However, 
factors not yet considered may in future be found to be influential.  

If a large number of variables are considered for inclusion in the model, many of these 
might be correlated. Methods to eliminate correlated variables may be useful. However, 
if the objective of the analysis is to produce an index of abundance and not to identify 
important factors, having correlated covariates may not be so important.  

Care should be taken to ensure that covariates are only included if they influence 
catchability, rather than abundance. For example, if it was found that an oceanographic 
parameter explained significant variation in yellowfin catch rates via its effect on 
abundance, and this parameter exhibited a long term trend, then the relationship would 
have important ecological ramifications. However, it should not be included in the 
standardization to produce an index of abundance, because including the parameter 
would remove some of the abundance trend. Additional investigations, possibly in 
conjunction with ocean modelers, should be undertaken to determine if the change in 
CPUE is due to changes in abundance, or due to changes in catchability associated with 
an oceanographic variable with a long term trend. 

Key covariates in the model with a strong temporal trend, such as the HBF variable 
which steadily increases over time, may be confounded with the year effect. Without 
sufficient within-year overlap in the HBF categories, the model may not be able to 
separate the trend in catchability from the trend in abundance. Overlap between the 
different levels of the covariate in some years will avoid confounding with the year 
effect. The same argument applies to oceanographic variables – although this is probably 
not a serious problem when fishing occurs over broad habitat areas.   

The form of the covariate used in the model also needs to be considered. GAMs are good 
for visualizing the relationship with covariates. The forms suggested by the GAM can 
then be used for formulating the GLM model. If a GAM is used to generate the index of 
abundance, a categorical variable should be used for the year effect, because the stock 
assessment model smoothes the year effect and it should not be smoothed by the GAM 
beforehand.  

CPUE data often contain many zero catch records, particularly for minor species and data 
at fine spatio-temporal scales. GLMs with a lognormal error distribution cannot accept 
zeros; there are several ways of dealing with this. When there are few zeroes they can be 
omitted (e.g. Langley et al. 2005) and the results checked to see if there is any effect. 
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Checking can be done by comparing results with other approaches, such as a delta-based 
or zero-inflated analysis. Delta approaches (such as the delta lognormal, e.g. Hoyle and 
Maunder 2006) model the zeros explicitly with a mixture model that includes a binomial 
component – taking care to model the probability of catching nothing as a function of 
effort. Zero-inflated approaches (e.g. the zero-inflated negative binomial, Minami et al. 
2007) also use a mixture approach. Given the same distribution for non-zeroes, delta or 
zero-inflated approaches are statistically more appropriate than omitting zeroes, but the 
advantages of omitting the zeroes include simpler, more flexible, faster and less memory-
hungry analyses, and easier access to variance estimates.  

Count-based distributions such as the Poisson and negative binomial can also cope with 
zero values. Lack of independence and consequent over-dispersion in catch rate data 
usually make the more flexible negative binomial distribution more appropriate than the 
Poisson. However, many processes can contribute to observed zero catches, and there are 
often more zeroes than will fit even the negative binomial distribution. Momoko 
Ichinokawa’s preliminary modelling of set by set data for striped marlin found that the 
negative binomial distribution was inadequate and resulted in a skewed distribution of 
model residuals. The zero-inflated negative binomial can be recommended as a good 
approach for modelling bycatch and minor species data (e.g. Minami et al. 2007), which 
are often characterized by many zeroes and some quite large catches.  

Oceanographic variables 

Oceanographic variables are potentially important in the GLM models for yellowfin, 
bigeye and South Pacific albacore. A PFRP-funded workshop was held in Honolulu in 
May 2002 to consider the use of oceanographic data in longline standardizations (Kleiber 
2002). However, the relationship between oceanographic variables and catch rates is 
circumscribed by the resolution of the available oceanographic and fishery data. Catch 
and effort data included in the WCPFC assessments are limited by the resolution of the 
early data to a relatively broad spatial (5º) and temporal (monthly) scale. Oceanographic 
data, derived from physical-biogeochemical models, are available at a comparable 
resolution. Averages over broad spatial and temporal scales do not represent the fine-
scale heterogeneity that may exist (and affect catch rates) in the environment, fish 
distribution, and vessel distribution. Similar arguments are made to explain the poor 
performance of the deterministic habitat-based standardization (HBS) models.  

Analysis of Japanese longline data of bigeye and yellowfin catch at a 1º - month scale, 
presented by Adam Langley (see abstract page 42), found statistically significant and 
biologically meaningful relationships between catch rates and a range of oceanographic 
variables. However, including these variables in the GLM model did not alter the index 
of abundance. Albacore catch rates showed some relationship with current speed and 
direction, but not to the extent that the index of abundance was affected.  

Even with fine-scale fishery data, analyses are limited by the resolution of the 
oceanographic data. Marco Kienzle reported that, in modelling set by set data for 
albacore in Samoan waters, oceanographic variables explained only 1% of the variation. 
The 1º - month stratum represents an average of the oceanography, and fish movement 
and targeting occurs at much smaller temporal and spatial scales. Research to look at 
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oceanographic effects on catch rate on smaller temporal and spatial scales is needed. 
Such research is currently under way at the CSIRO, Australia, using fine-scale remotely 
sensed data averaged over two days and 2-3 km.  

The most accurate oceanographic data are sourced from remote sensing. Oceanographic 
data are all processed to some degree and contain error and uncertainty, but the level of 
uncertainty in available oceanographic products is usually not included in CPUE 
analyses.  

Consistent oceanographic variation between locations is confounded with spatial and 
seasonal effects (depending on the spatial extent of the data) and broad scale 
oceanographic changes within regions are confounded with the abundance index. It may 
therefore be useful to investigate relationships between oceanography and catch rate at 
the 1º- month scale, but without fitting 5º-month square or year-quarter as explanatory 
variables.  

Different data products are likely to be suitable for different species. Oceanographic 
influences on species, such as bigeye tuna, that interact with processes occurring at 
greater depth may be harder to find, because data precision and accuracy decline with 
depth. It may be easier to find oceanographic effects on catch for species that spend more 
time at the surface, such as yellowfin, skipjack, and billfish. A model derived from 
oceanographic data is likely to be much more precise if it uses data from the last two 
decades than using data from an earlier period.  

Most oceanographic data are included into CPUE standardisation in simplistic forms (e.g. 
SST, current speed), but CPUE may be influenced by more complex oceanographic 
features (e.g. fronts). Research is needed to develop methods to quantify these features so 
that they can be included in CPUE standardisation. For example, Japanese longline 
fishers report that fish accumulate into an eddy over time, so the evolution, persistence 
and decay of the eddy should be considered as well as its current state.  

Including oceanographic data in GLM models is not likely to account for increases in 
fishing efficiency associated with effort directed at fine-scale oceanographic features with 
higher tuna catch rates. Such increases in catchability of tuna are likely to have occurred 
through the adoption of remote sensing products (e.g. SST maps) available to the longline 
fleet. Any attempt to resolve these trends with oceanographic data would require both 
oceanographic and fisheries data at a much finer spatial and temporal scale than is 
currently available. A more useful approach may be to focus on the technology on the 
vessels. Keith Bigelow (see abstract page 43) presented a comparison of GAMs for set-
by-set observer data on blue marlin catches, fitted entirely with operational or 
environmental variables. A model with operational variables explained 33% of the null 
deviance, while environmental variables explained 20%. Nevertheless, the inclusion of 
the oceanographic data in the current GLM models does provide the potential to increase 
our insights into the habitat preferences of these species.  

Given the number of environmental variables available for comparison with catch rates, 
spurious correlations may be found by chance. Relationships should be investigated 
based on assumptions about the underlying processes. Since they derive from biologically 
determined species behaviour patterns, relationships between environmental variables 
and catch rates are likely to be consistent between oceans.  
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Model selection and model averaging 

Selecting covariates to include in a model is an important part of standardizing CPUE 
data. However, with the plethora of different methods to standardize CPUE data, methods 
are needed to determine which method is appropriate. Standard statistical methods, such 
as the Akaike Information Criterion (AIC), can be used to test between many of the 
methods as well as to choose which covariates to include. These methods can also be 
used for model averaging, which in some situations provides better results. The resulting 
increase in uncertainty is often more realistic, with greater predictive accuracy. Jon 
Brodziak (see abstract page 43) presented an application of model averaging to the 
standardization of CPUE data. 

However, model selection is not always important because including more covariates 
than indicated by standard model selection criteria generally does not substantially 
influence the estimated index of abundance. Including irrelevant explanatory variables 
generally only influences the results if it explains some of the variation that should be 
attributed to abundance. The effect of including covariates on the standard errors of index 
of abundance is less important because the standard errors are usually inflated in the 
stock assessment models to account for unexplained variation in catchability and other 
model processes.  

In subsequent discussions it was pointed out that if the different models produce very 
different results, and particularly if the differences have important implications for 
management, then it may be better to present both results rather than an average. In such 
cases it is possible to include model uncertainty in the processes used to produce 
management advice.  

Further model validation and selection can be carried out using cross validation and a 
holistic approach (Hinton and Maunder, 2003 ). This holistic approach is used to check 
whether the index of abundance is consistent with the other data (e.g. length frequency) 
and the population dynamics represented by the stock assessment model.  

It is important to keep in mind that the goal of standardization is usually to produce an 
index of abundance. Where different methods produce essentially the same index, 
features such as ease of use, and the clarity of the underlying assumptions, become 
important. For example, the delta lognormal GLM gives a very similar index of 
abundance for WCPO yellowfin tuna to the lognormal GLM with zero-catch observations 
deleted. However, the lognormal GLM runs much more quickly in R, estimates 
variances, uses less memory, and is a better research tool, since it is easier to examine 
and interpret explanatory variables. Similarly, neural networks have produced very 
similar indices of abundance to GLM approaches for yellowfin and bigeye tuna in the 
EPO, but the neural network approach does not facilitate interpretation of the explanatory 
variables.  

Such practical considerations are reinforced by the point that fishery data are often 
modelled as statistically independent, when they are not. Data may be overdispersed 
relative to the assumed distribution (as indicated by the magnitude of the deviance 
relative to the degrees of freedom (Venables and Ripley 2002, p 208), because the 
aggregated 5º - month cells share features such as trips and vessels, and trip and vessel 
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are believed to explain significant variation. Overdispersion breaks the assumptions 
behind statistically-based tests such as AIC and BIC, and tends to make them over-
sensitive, with estimated variances that are too small. Methods are needed to adjust for 
this problem. Keith Bigelow (see abstract page 43) demonstrated an analysis of an 
overparameterized GAM that was inaccurate (26% greater than corrected logbook data) 
and imprecise (wide confidence intervals) despite being the preferred model based on an 
AIC criterion that did not consider breaches of assumptions. A model with fewer degrees 
of freedom and the same operational and environmental predictors predicted unobserved 
catches accurately and with reasonable precision.  

We also note that model selection criteria other than AIC are available, and may be more 
suitable in many circumstances. These include the Bayesian Information Criterion (BIC) 
and the Generalized Information Criterion (GIC), which are suited for different purposes. 
The purpose of AIC is to maximise the predictive accuracy of the chosen model 
(Kieseppä 2003), and not to determine the ‘correct’ model, i.e. the causal factors 
underlying the observed pattern. It tends to overestimate the number of parameters when 
sample sizes are large (Shono 2005). The purpose of BIC is to maximise the researcher’s 
probability of choosing the correct model, depending on the likelihood of evidence, and 
on the prior probabilities of the models and their evidence (Kieseppä 2003). The BIC 
may often be the most appropriate selection tool for the large datasets used in CPUE 
standardization. The GIC (Konishi and Kitagawa 1996; Minami et al. 2007) generalizes 
AIC to estimation methods other than maximum likelihood. 

The dependent variable 

Either CPUE or catch can be used as the dependent variable. Using CPUE, or using catch 
with effort as a linear effect, implies a linear relationship between catch and effort. A 
nonlinear relationship may be appropriate to accommodate saturation at high effort and 
searching behaviour at low effort; although these effects will be somewhat complicated 
by the inclusion of hooks between floats in the stratification. 

Japanese research fishing analyses have used catch per unit of time as the dependent 
variable, but CPUE standardizations have generally used catch per hook. Is the soak time 
important (e.g. Ward et al. 2004 on ‘fish lost at sea’), and does the area swept by the 
longline contribute to the catch rate in some way? Perhaps multiple measures of effort 
could be included in the model as covariates, and the model used to select which measure 
or combination of measures is appropriate.  However, soak time is rarely reported except 
for some research and observer datasets.  

Modelling variance   

There is a need for alternative statistical approaches, given that some apparent violations 
of the GLM assumptions are likely to affect the index of abundance. The GLMs used in 
CPUE standardization generally use 5º- monthly strata as observations, and therefore 
each stratum has equal weight, even if the number of sets or the abundance in the stratum 
is low. When the objective is to estimate abundance, this approach is problematic if, as 
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seems to be the case, the trends of high and low abundance strata are not parallel. The 
weight of each stratum should be related to its relative abundance, but uncertainty (a 
function of effective sample size and CPUE variability) in its estimates must also be 
considered. Some strata may have more CPUE variability than others due to the nature of 
those strata (e.g. more variable environments). Therefore, the likelihood should be 
weighted differently. One method to do this is to modify the variance of the likelihood 
function. The variance could be modelled as a function of the effort or covariates.   

Missing values for covariates 

An overview of methods for dealing with missing values for covariates was presented by 
Mark Maunder (see abstract page 44). Frequently, covariates to be included in CPUE 
standardization have missing values for some CPUE observations. In these cases a 
decision needs to be made about how to deal with these data. Simple methods involve 
either deleting the observations with missing data (probably best if only a few 
observations have missing data), or not using the covariate (probably best if most 
observations have missing data). However, if the covariate is influential or if the values 
are missing for a reason, it may be better to retain both the covariate and the observations 
with missing values. The missing values can be replaced by average values for the 
covariate, or a separate categorical variable created to represent if an observation has or 
does not have a missing value, and the coefficients of this categorical variable estimated. 
A more appropriate approach may be to treat the missing values as parameters and 
estimate them in the model. If these parameters are treated as random effects they 
average over the possible values of the covariate and can share information from the 
known covariate values and from other covariates. In a simple approach the mean and 
variance for the random effect can be calculated from the known values of the covariate. 
The random effect could be implemented in a frequentist (e.g. using ADMBre) or 
hierarchical Bayes framework, using MCMC. 
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Methods to deal with missing covariates are comprehensively treated in the statistical 
literature (Little, R., and D. Rubin. 1987. Statistical analysis with missing data. John 
Wiley and Sons, New York, 278 pp.).The expectation-maximisation (EM) algorithm can 
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be used to implement the methods. When imputing the missing values, the relationship to 
other covariates needs to be considered. If the covariate is missing for a reason, then it 
may not be appropriate to delete the data points. 

3. Models for standardizing longline effort: depth-related and habitat-related 
vulnerability 

Catch rates and species caught by the longline fishing fleet can be influenced by the 
habitat in which they deploy their gear. A catch rate of a species will increase if the gear 
is deployed in the habitat in which that species prefers to feed. The fleet can use setting 
techniques to modify the vertical structure of the longline gear, such as by changing the 
number of hooks between floats. Environmental factors can change the vertical structure 
of the habitat, or the depth at which the gear fishes (e.g. through shoaling caused by 
currents). Standardization of longline CPUE data should consider the habitat that gear is 
fishing.  

Habitat-based standardization was initially developed using a deterministic approach, 
with depth and temperature data from archival tags the primary sources of habitat 
information (Hinton and Nakano 1996, detHBS). A similar methodology was applied to 
depth information from detailed catch by hook position data (Ward and Myers 2005; see 
abstract page 44). A statistical approach for habitat-based standardization (statHBS) has 
also been developed (Maunder et al. 2006; see abstract page 45).  

Deterministic habitat-based standardization matches the depth of the gear (from the 
catenary curve) with environmental data (from general circulation models) and the 
habitat preference of the species of interest to estimate effective longline effort. However, 
statistical tests of the archival tag-based method have found that in some cases this 
method performs worse than nominal effort at predicting catch. In general, the problems 
arise because of inadequacies in the data. For example, habitat preference data from 
archival tags includes information from when the fish are not feeding, has limited spatial 
and/or temporal coverage, and is sometimes borrowed from different species or different 
oceans. The biggest impact is probably due to temporal and spatial mismatch between the 
habitat preference data, which is recorded in the exact proximity of the fish at that 
instance in time, and the environmental data, which is usually averaged by 5º square and 
month.  

Striped marlin distribution at depth calculated from archival tags is shallower than that 
calculated from longline catch (Yokawa et al. 2006), indicating that habitat preference 
calculated from archival tags is inappropriate for inferring catchability at depth for use in 
CPUE standardisation. This type of information should be presented for all species. 

One advantage of the catch by hook approach for estimating depth is that it uses far more 
data to generate the depth preference than does the archival tag approach. The depth 
preference is calculated from hook by hook information from longline gear, so any biases 
in the calculation should, on average, be similar to the commercial gear and therefore 
cancel out. For this reason, bias in the absolute depth calculated from the catenary curve 
is not as influential. The method also avoids the problem of spatial and temporal scale 
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mismatch and the nonfeeding problems associated with using archival tags for habitat 
preference. Additional catch by hook, hook depth, and hook timer data are needed.  

A problem with both approaches is that the variables they use may not be the main 
factors regulating species distribution and catchability. The habitat variables used may 
not have a large influence on species distribution. Depth preferences may vary spatially 
and in relationship with thermocline depth and other environmental variables. Inferences 
from depth preferences should therefore be restricted to the area from which they were 
derived.   

The statistical habitat-based standardization (statHBS) has the advantage that it estimates 
the habitat at capture from the data, at the scale of those data: 5º monthly averages. 
Habitat at capture on this scale are different from those suggested by the archival tag 
data. When information from archival tags is used as a prior on habitat preference, it is 
overwhelmed by the estimated habitat and does not affect the model results.  

Abundance indices from the statHBS model are currently not used in assessments, 
because the oceanographic variables currently available to include in the model are not 
adequate to define habitat and/or the feeding depth of the species. This is evident from 
the fact that including a spatial (latitude and longitude) effect as a surrogate for habitat 
substantially improves the fit to the data. Current statHBS implementations model one or 
two habitat preference across the species range. Modelling some spatial heterogeneity in 
habitat preferences may be useful.  

 

A number of modifications could improve the statHBS model, some of which have been 
applied in unpublished analyses. These include:  

• User interface 
• Incorporating setting and retrieval of sets 
• Adjusting the depth fished due to shoaling based on covariates for current shear 

and gear material / specific gravity 
• Alternative and/or multiple habitat factors  

o current flow 
o depth of the Deep Scattering Layer 
o identification of front/eddy features, etc 

• Auxiliary data  
o proportion caught on retrieval 

• Adjusting for total habitat 
• Parameterizing the habitat preference 

o Using a GLM framework 
o Day/night 
o Sex 
o Size 
o Life stage (adult v juvenile) 

• Parameterizing the effort models  
o Estimate the parameters of hook-model 

• Alternative likelihood functions  
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o Delta-models 
• Multi-species 

o Assists in estimating the gear model 
o Assists in estimating day/night habitat preferences 

• Apply to multiple data scales 
o Use both commercial and research (hooking depth and time) data 

• Include hook competition due to multiple species, prey concentrations 
• Allow for spatial and temporal (seasonal) changes in the habitat preference 
• Make the computer code more efficient so that it runs faster, can analyze larger 

data sets, and accommodate the modifications listed above.  

 
Minoru Kanaiwa presented a multi-species version of the statHBS model (ms-statHBS), 
which uses data from three species to estimate parameters of longline gear depth (see 
abstract page 46). Japanese longliners have modified gear components historically over 
time, by area and season. Introducing data from multiple species with different vertical 
distribution patterns into a single standardization process brings more information to the 
model. The approach shows promise in providing information on the gear model (length 
of float lines, branch lines and catenary angle). Suggested improvements include 
differentiating between night and day, because many species, and the deep scattering 
layer, occupy different depths by night and by day. The model could also be extended to 
include other key species, especially bigeye tuna. The model obtains most information 
from data when there is contrast in the depth distributions of the species.  

One concern with the ms-statHBS is that data from each species indicates a different gear 
configuration. Therefore, the appropriate weighting of likelihoods from each species is 
important. Alternatively, this could indicate that the underlying gear model (catenary) is 
not appropriate or that additional parameters need to be estimated for the gear model. The 
analysis used priors on habitat preference from archival tags, but comparison of 
deterministic and statHBS model results indicate that archival tag habitat preference data 
is often not suitable. Depth distribution from catch by hook data may be more useful. It is 
not certain if ms-statHBS can run without priors; this needs to be tested. Additionally, the  
ms-statHBS model assumes uses a lognormal distribution of residuals, and adds 1 to zero 
observations. A delta-lognormal model may be preferable. 

Keith Bigelow presented a model comparison of estimating longline catch by assuming 
that vulnerability was determined by depth versus habitat (see abstract page 47). 
Vertically distributing a species by habitat (statHBS approach) provided the best fit to the 
variation in both bigeye and blue shark catch in the Japanese longline fishery. The use of 
depth distribution to infer catch rates provided no enhanced performance, as deterministic 
depth models were marginally better than using nominal effort for both species. Trends in 
relative abundance (standardized CPUE) differed markedly for each species, depending 
on the assumption of vertical distribution by depth or habitat. Spatial considerations are 
important in most standardization approaches and oceanographic variability needs to be 
considered especially when determining the spatial area for a statHBS application.   
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4. Targeting  

Targeting of particular species can affect catch rates in ways that are difficult to model if 
the target species is not identified. Simon Hoyle presented a discussion of targeting (see 
abstract page 47). The Japanese longline fleet has changed its targeting practises through 
time, with widespread increases in HBF since the 1970’s (Figure 4) paralleled by 
increases in the proportion of bigeye in the overall catch, particularly in regions 3 and 4 
(see Figure 6 for a map of the regions). Other fleets have also seen adjustments in 
average targeting. A range of factors provide motivation for targeting particular species, 
including price, relative abundance, contractual obligations of vessels, and the 
preferences and skill-sets of skippers and crews. It was suggested that some skippers use 
the first 500 hooks to target the species, and the remaining hooks to determine where the 
fish are moving to.  

Practices that enable vessels to target particular species or groups of species include 
fishing in particular regions, seeking appropriate local environmental conditions, using 
particular gear configurations (including HBF), materials and bait types, and adjusting 
the time of set. Vessels may target different species depending on moon phase, and there 
may be interactions between HBF and time of day, and time of day and moon phase. This 
emphasises the need for operational data.  
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Figure 4: Distribution of hooks between floats through time by region of the WCPO, as defined in the 
WCPO bigeye and yellowfin assessments in 2005 and 2006.  

Various approaches have been used to include targeting in analyses. Since many factors 
are involved in targeting a species or species assemblage, a parameter that is strongly 
correlated with targeting a particular species will absorb the effects of other targeting 
practises that are not included in the analysis.  

The hooks between floats (HBF) parameter is commonly used as a categorical variable or 
covariate when standardizing yellowfin and bigeye data, to indicate set depth and as a 
proxy for targeting. Between 1975 and 1990 catch rates generally increased with HBF for 
bigeye and reduced for yellowfin (Figure 5). However, changes in gear configuration and 
material have affected this parameter through time. Before 1975 HBF is not reported. It is 
often assumed to be 5, but this assumption may be problematic. Since the early 1990’s 
the Japanese fleet has largely moved to different gear materials, and the lower specific 
gravity of monofilament lines compared to the tar-coated kuralon used earlier has led to 
more variable set depths at the same HBF. Standardizing yellowfin and bigeye CPUE by 
HBF in 5 and 10 year blocks shows a different relationship between HBF and catch rate 
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after 1995 from that seen from 1975 to 1990, varying between regions and species. This 
is further discussed in section 5 on longline gear depth, shoaling, and HMS vulnerability.   

 
Figure 5: Proportion of yellowfin in the catch of yellowfin + bigeye, through time by region of the 
WCPO, as defined in the WCPO bigeye and yellowfin assessments in 2005 and 2006.  

Catches of other species may be indicative of targeting. Recent WCPO standardizations 
of bigeye catch rates have used the CPUE of yellowfin tuna caught in the stratum as a 
covariate; yellowfin standardizations have used bigeye CPUE. Proportion of other 
species might be used instead of CPUE of the other species. However, given that only 
bigeye and yellowfin catches are included in the data analysed, the proportion of the 
‘other’ species is strongly confounded with the catch of the species of interest, and also 
affected by the abundance of the other species. Including this covariate may remove some 
of the temporal abundance signal from the data, and is not recommended.  

Several other potential approaches to address targeting were presented for comment, both 
involving a joint analysis of yellowfin and bigeye catch. The first approach involved 
estimating a targeting parameter a(yr), representing the annual proportion of effort 
targeted at each species. The second involved modelling catch of each species as a 
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function of the observed CPUE of the other species, offset by the predicted CPUE of the 
other species.  
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This approach is intended to identify strata where targeting was greater than predicted by 
the explanatory variables. However, this may be confounded because the other variables 
(HBF, area, time of year) also predict targeting. An alternative method used by Maunder 
and Hoyle (2006) for purse seine CPUE data is to include the known abundance of the 
other species based on stock assessment results. However, this approach does not take 
into account variation in the expected catch rate of the other species given the latitude, 
HBF, and other explanatory variables, and must be calibrated for the size selectivity of 
the longline gear, which can change in space and time.  

The methods described above use the alternative target species, but using bycatch and 
minor species may also be appropriate. However, bycatch and minor species are not 
always reported, and are not currently available for the aggregated Japanese longline 
dataset, which reports only yellowfin, bigeye, and albacore. It is possible that presence-
absence theory (e.g. MacKenzie et al. 2003) could be used to determine targeting of 
longline gear based on multiple species information. This approach may require set by set 
information and use consecutive sets as multiple samples of presence-absence. 

Given set by set data, targeting could also be examined on a vessel basis, because it is 
unlikely that consecutive sets by the same vessel will be targeting different species. The 
species composition from individual longline sets could also be used in a statistical 
clustering approach to identify effort of different targeting types.  

Such alternative methods of determining targeting are needed because some fleets do not 
report targeting or gear configuration. This is particularly important because the spatial 
area and fishing effort of the Japanese fleet are reducing as their fleet size reduces. 

5. Longline gear depth, shoaling and HMS vulnerability  

Gear configuration influences the depth at which the gear fishes. Some of the major 
operational factors that influence hook depth are: 

• length of branch line 
• length of float line 
• catenary angle 
• distance between hooks 
• composition of the gear 
• line setting speed 
• hooks between floats 
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However, of these factors only hooks between floats (HBF) is reported in the summarized 
Japanese longline data currently used for bigeye and yellowfin CPUE indices. Given the 
observed recent changes in the effect of HBF on catch rate (see targeting, section 3), 
investigation is needed of the relationships between gear characteristics, HBF, fishing 
depth, and catch rates.  

The type and quality of information recorded in Japanese longline fishery logbooks have 
changed through time. The new distant water Japanese longline fishery logbook records 
information about gear, such as length of float line, length of branch lines, material, etc. 
However, there are some problems, e.g. there are three material codes on the logbook, but 
10 different materials are in use and the consistency with which these are recorded is 
unknown.  

HBF and catenary maximum fishing depth estimates should be used with caution in 
CPUE standardization. Environmental factors such as current surface velocity, current 
shear, and wind stress can also influence the depth that the gear fishes. Swordfish and 
tuna gear in the Hawaiian longline fishery were found to reach only about 50% and 70% 
respectively of the depth expected from a catenary algorithm (Bigelow presentation, BP6, 
see abstract page 48). Research in the very dynamic Windward Passage in the Caribbean 
found a large amount of variation in shoaling between and within shallowly deployed sets 
(Goodyear presentation, see abstract page 49). In some cases the deepest hook was at 
similar depths to the shallowest hook. The modes of the distributions for deep and 
shallow hooks were the same. However, given the high currents where this research was 
carried out, results may not necessarily apply to the tuna fleets. The gear was also 
different than that used by the tuna fleets.  

Hook depth observations collected during monitored longline fishing experiments in the 
central South Pacific (Bach and Gaertner presentation, see abstract page 48) also showed 
that shoaling (absolute and relative) can be affected by current shear, set direction, and 
the shape of the mainline (i.e., the tangential angle), which is the strongest and the most 
consistent predictor in GLMs. HBF is the explanatory variable most frequently used to 
relate hook depth to preferred feeding depth of the species being analyzed. However, 
there are many problems with using HBF. These include interactions between area and 
HBF effect, and between quarter and HBF effect.  

The recent change to 20 HBF may not have increased hook depth because it is associated 
with a change in the longline material to monofilament, which is more buoyant than the 
older material. Longline depths are therefore more variable now than previously, and 
depth can be adjusted by other methods such as with weights attached to the line.  

Shoaling may also change during a set, with hooks initially at their maximum, but 
reducing in depth partway through the set. A captured fish can also shoal the longline. 

Latitude and longitude often explain more catch rate variation than HBF. When latitude 
and longitude are used in the statHBS model, the habitat preference often becomes 
constant. This implies that the environmental variables averaged over the spatial and 
temporal strata used in the standardization are fairly constant over time. Spatial changes 
in the relationship of HBF and catch rate should be investigated.  
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A software package named COPAL was presented by Pascal Bach (see abstract page 50) 
and is a tool designed for fishermen and scientists that estimates the underwater 
configuration of the fishing gear from set characteristics and drift speed of the mainline, 
based on catenary algorithms.   

Further information on pelagic longline gear depth and shoaling can be found in Bigelow 
et al (2006).  

6. Longline CPUE simulations   

It is very important that methods used to standardize CPUE are tested, using simulation, 
to determine how well they perform, and in which situations the results can be validated. 
Phil Goodyear (see abstracts page 51) presented results of some analyses of simulated 
longline CPUE data, generated for blue marlin in the Atlantic. Initial analyses using this 
relatively realistic simulator showed that for this application, all the methods applied 
performed poorly.  

Realistic simulators are good for evaluating the performance of methods, but it is often 
difficult to identify the reason why a method fails. It can also be useful to start with 
simple simulators and then add complexity, to determine which factors cause the 
problems. In the Atlantic blue marlin example, changes in the spatial effort distribution 
and/or gear configurations probably caused the methods to fail. However, more 
simulation work is needed to verify this. It is unlikely that the statHBS model will 
improve the analysis if the detHBS does not work with known habitat preference. 

The simulation analyses showed some interesting characteristics. For example, even with 
constant ‘true’ abundance the CPUE declined, presumably due to changes in gear 
configuration. It was also interesting to note that the standardized CPUE was not very 
different from nominal CPUE. Something similar occurs in many applications, including 
standardization of bigeye CPUE in the WCPO, for which the standardized abundance 
indicator is similar to the trend from nominal CPUE despite changes in targeting and set 
depth, and inclusion of HBF in the standardization. This aspect of the standardization is 
important and deserves further investigation.  

The poor relationship between some simulated abundance and CPUE data, even when 
standardized, suggests that, in some cases, using the index of abundance in the stock 
assessment will lead to misleading results, possibly with false precision. Since 
information quality is often poor about early parts of the fishery, it may be appropriate to 
focus on a more recent period than to include the historical CPUE data. Given estimates 
of recruitment, assumptions about the stock recruitment relationship, and information on 
depletion level from length frequency data, comparisons can be made with the biomass 
that would be available if there was no fishing. In analyses for the WCPO, most of the 
important management parameters are insensitive to data from before 1975. The early 
length frequency data are useful however for estimating asymptotic length. There are also 
well-established / entrenched reference points that require historical benchmarks.  

In many analyses, CPUE standardization has little influence on the year effect compared 
to nominal values. Does this mean that nominal CPUE is generally good for longlines, so 
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we don’t need to collect additional data, or is it because we don’t have the right 
covariates? Given the results of the longline CPUE simulations, the latter hypothesis 
seems more likely.  

7. Time-series changes in catchability: Quantifying technological improvements  

WCPFC stock assessments assume that longline catchability remains constant after 
standardizing for area and HBF, although this cannot be true. Many factors have 
influenced catchability through time. Longliners are motivated to upgrade their fishing 
gear and practices to improve fishing power and increase catchability. Ward and Myers 
(see abstract page 52) review technological changes in the fishery, which are largely 
likely to have increased catchability of target species.  

These include electronic devices that facilitate navigation, communication and finding 
target species. Synthetic materials for lines and hooks have increased the probability of 
hooking and landing target species. Other changes have improved search efficiency (e.g., 
satellite imagery) or increased the proportion of time spent on fishing grounds (e.g., 
freezers). The number of hooks deployed daily has steadily increased since 1950, but 
without changing average soak time, as faster longline retrieval and deployment have 
balanced the increased hook numbers. All baits were once available at dawn; now more 
are available at dusk and at night. In the 1970s, several longline fleets began to exploit a 
much greater depth range, resulting in increased catchability for deep-dwelling species 
(e.g., bigeye tuna) and reduced catchability for epipelagic species like blue marlin. 
Recent bycatch mitigation measures have affected fishing power and catchability. 
Progressive improvements in expertise and technological improvements in the gear will 
also have affected fishing power, but are particularly difficult to quantify. New 
technologies that are effective are quickly taken up by all vessels, making them difficult 
to standardize out even if usage information were available. It is dangerous to rely on 
commercial data without also having fishery independent surveys or other means of 
calibrating the time-series.  

The possibility of changes that may have reduced catchability was also discussed. Price 
signals from the market have changed through time, and fish quality may now be more 
important than previously, compared to the number of fish caught. Fish quality varies 
among areas, and better quality fish with higher fat content are generally found in cooler 
water. Thus the areas fished may have changed, and overall catch rates reduced. This 
change should be partly taken into account by the current practice of including 5º square 
as a categorical variable in the model, but there may be a need to further examine this 
issue by including a seasonal interaction.  

The experience of skippers and crews is important given, for example, the need to 
understand oceanic currents. The economic strength of the Japanese longline fishery has 
declined since the 1980’s. In the early 1950’s and 1960’s the fishery, which began with 
demobilized navies, was very important both economically and culturally, and crews 
were of high quality. Vessels operated in groups and shared information. Fleets have now 
shrunk, so information sharing is less effective. Since the 1990’s there have been fewer 
Japanese crew on the vessels which may have reduced catchability.  
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Technological changes that substantially improve catchability are likely to have been 
introduced rapidly across all fisheries and ocean basins. It would be useful to look for 
gear introduction effects by examining CPUE indices for similar species across all 
oceans.  

For additional information on gear technology and factors likely to affect catch rates, see 
a summary of sources in Itano (2006), and also Itano (2004), Millar and Schneiter (2004), 
Swenarton and Beverley (2004), and Campbell and Young (2006).  

8. Regional weighting  

Regional weighting is highly influential in determining the status of yellowfin and bigeye 
in the WCPO (Hoyle presentation, see abstract page 53). The current weighting method 
uses a simplified version of the CPUE standardization model with data from 1960 to 
1986 and in areas with HBF data and significant catch. There are a number of 
assumptions inherent in this approach, including that HBF has the same effect across all 
regions, and that the pre-1975 HBF is assumed to be five and consistent across regions.  

The discussion converged with the earlier discussion on internal weighting of the regional 
abundance indices. Regions are standardized separately because their abundance trends 
differ, but there is also important variation in the abundance trend within regions. An 
appropriate response to this is to weight spatially by abundance. The current method of 
weighting by area is good for stable, well mixed stocks, but if there is significant 
interaction between area and time it can be misleading. Trends in CPUE by 5º square in 
the WCPO have been consistent within the main regions fished (Langley 2006b). 
Weighting by abundance can be done by estimating a separate abundance trend for each 
5º square, and summing the results to give overall abundance.  

A major constraint that has prevented weighting by abundance across the whole WCPO 
is that current software (R GLM) and computer memory do not permit such large 
analyses. There is a newly developed R package named biglm which is designed to be 
memory efficient and to analyze data in batches, for carrying out very large analyses. 
However, some problems have been encountered with its use. Alternatively, SAS could 
be used for standardization, because it may be more memory-efficient than R. Purpose-
built AD Model Builder programs could also be used to fit large models.   

9. Spatial considerations   

Spatial variation occurs, at multiple spatial and temporal scales, in the distribution of both 
fish and fishing effort. Adam Langley (see abstract page 53) presented analyses of several 
related issues. The exclusion of the Japanese longline fleet from the domestic waters of 
Pacific Island countries/territories following the declaration of their EEZs would have 
biased assessments if the CPUE trends had been different inside and outside these zones. 
However, there was no apparent difference in CPUE indices, prior to the closures, within 
and outside these zones.  
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The analysis highlighted both a spatial contraction of fishing effort and a shift toward the 
spatial cells with the highest bigeye CPUE (away from cells with high yellowfin CPUE). 
Thus from the mid-1980s the abundance index is increasingly driven by CPUE in the 
core bigeye cells, and there are limited data regarding changes in abundance beyond these 
cells. Further analysis indicates that, for yellowfin at least, the decline in CPUE is greater 
in the higher abundance cells than in the lower abundance cells. This indicates potential 
bias in the yellowfin CPUE index.  

Addressing these biases may require the adoption of a more spatially-based approach to 
the CPUE analysis. Addressing variation in CPUE trend within the region will require 
weighting by abundance rather than by area. The current method, which includes 5º 
square in the standardization, weights by area within a region, and assumes that the ratios 
of abundances between areas remain constant through time. Given the lack of data from 
some areas, assumptions will need to be made regarding the level of CPUE in the cells 
where no (or very low) fishing occurred. Various plausible assumptions can be made 
about CPUE trends in unfished areas, so a sensitivity analysis approach may be required 
(e.g. Campbell 2004). See also Ahrens and Walters (2005).  

One way to deal with unfished cells is to model abundance in them using a population 
dynamics model. Mark Maunder presented such an approach (see abstract page 54). The 
overall approach of combining the CPUE analysis with a population dynamics model has 
advantages beyond its utility for unfished cells, but also some disadvantages.  

Unfished cells occur early in the fishery, as the fleet expands its spatial coverage; and 
during the fishery, as the stock status changes in different areas, and the operating 
conditions affecting fishery participants change. If each area is modelled as a separate 
population, and the CPUE standardization integrated with the population dynamics 
model, the population model can be used to estimate the abundance in years without data. 
A Pella-Tomlinson (PT) surplus production model can be used to model the population 
dynamics. Given the difficulty of estimating the parameters of the PT model from catch 
and effort data, particularly for areas with missing data, it would be advantageous to treat 
the parameters as random effects and share information among areas. The spatial 
correlation in parameters could be modelled using a spatial conditional autoregressive 
(CAR) model, and estimated using a frequentist (e.g. using ADMBre) or hierarchical 
Bayes framework using MCMC. A more complex model such as MULTIFAN-CL, which 
can incorporate other information (e.g. length frequency), and processes (e.g. movement 
between areas) may be more appropriate and effective, but is currently computationally 
infeasible.  

Regional stratification of the WCPO was also discussed. Stock assessment models 
assume a homogeneous pool of fish. When modelling an area as large as the WCPO, the 
strong spatial variation in abundance trends is accommodated by dividing the area into 
regions and assessing them separately (Figure 6). Ideally the model would be run at a 
smaller spatial scale, but constraints include the time needed to run assessments, the 
spatial stratification of size sampling data, and the difficulty of estimating migration rates 
between regions. Assessment at a finer spatial scale over a short time period was 
suggested as a useful sensitivity analysis.  
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Figure 6: Regional structure of the WCPO, coloured to show the relative catch per unit effort by 5º 
square between 1975 and 1986.  

Previous analyses (Langley 2006a) have demonstrated justification for moving the 
northern boundary of regions 3 and 4 south by 10 degrees, for more homogeneous catch 
rates and size data. There is also an argument for splitting region 3 into two parts, 
because of the different size distributions and CPUE trends of these parts (Langley 
2006b, 2006c), and the influential and unreliable catch data from the west of region 3. 
However, there are also sound administrative reasons for retaining the current structure, 
and a further disaggregated assessment is currently carried out as a sensitivity analysis. 
Disaggregating region 3 into two parts makes it difficult to assess the stock in the western 
part, although it is arguable that keeping the two parts together and assuming regional 
homogeneity reduces the accuracy and reliability of the overall assessment.  

Alternative stock assessment stratifications could be based on oceanographic or 
biogeographical conditions, using Longhurst areas for example, although the 7-region 
version of the model (Langley 2006a) is a very close approximation to the Longhurst 
regions. CPUE data could be analyzed using regression trees and then simulated 
annealing used to partition the WCPO into regions of space with similar trends in CPUE 
(q.v. Watters and Deriso 2000), though this is a similar approach to that used by Langley 
(2006a), given the 10 x 20 degree spatial structure of the size data.  

 28 



Pelagic longline catch rate standardization meeting, Feb 2007  

10. Data: resolution, stratification, and data from other fleets (Korea, Taiwan, 
domestic)   

Most analyses to estimate indices of abundance use data stratified by 5º square by month. 
However, some data are available in finer detail. For example, set by set data are 
available for commercial gear, and some hook by hook research data are available. These 
more detailed data provide potential benefits over stratified data, and requires 
investigation. For example, the set by set data contain more covariates (e.g. vessel, 
skipper, bait type, gear material, time of set) and can be associated with more 
environmental data (e.g. moon phase); factors that may explain variation in CPUE which 
could otherwise bias the year effect.  

Momoko Ichinokawa’s presentation (Ichinokawa and Yokawa 2006; see abstract page 
42) was notable for its use of set by set Japanese longline data. Ichinokawa and Yokawa’s 
preliminary analyses have focused on spatial and seasonal variation in CPUE and its 
relationship with HPB.   

Work is under way at the National Institute of Far Seas Fisheries to recover set by set 
longline data, which is of variable quality, both through time as logbooks change, and 
between vessels and skippers. Only major species are reported in the early period. The 
data contain no information on time of set. Gear material, length of branch line, and 
length of float line are recorded once per month, although length of float line is likely to 
have changed more frequently than this.  

The meeting encouraged this data recovery work and noted the great potential of these 
data for improving indices of abundance and stock assessments. Catch rates are 
heterogeneous within the aggregations currently used, and the detailed data are likely to 
be informative about the characteristics that lead to this heterogeneity.  

It was noted that fishing at randomly selected set locations often produced no fish. This 
reinforces the potential importance of effects not included in models using aggregated 
data, such as skipper experience and ability. It also suggests that fishery independent 
surveys are not practical.    

Several sources of set-by-set longline data are currently available for the WCPO. These 
are the in-country data held by the SPC from distant water fishing nations (principally 
Japan, Korea, Taiwan) fishing within the EEZs of Pacific states. In addition there are 
observer data for five to six 5º squares around Fiji over a 10 year period. These data 
could be used to examine assumptions and methodologies, and to estimate indices of 
abundance for comparison with those currently used.  

The availability of Japanese set by set longline data is currently constrained by the needs 
to carefully prepare and validate the data, and to ensure that the complexity of the 
changing logbooks and data quality issues are understood by analysts. Until these data are 
better understood and described, collaborative projects with Japanese scientists will be 
the most useful approach.  

Standardizing longline data at a 1º rather than 5º scale can be advantageous, but this 
depends on the methods used. Standardizing Japanese longline data for the WCPO 
aggregated at 1º and 5º using a model that include quarter, HBF, and 5º area found no 
difference in the year effect. However, targeting may occur at the 1º scale, a scale 
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important for southern bluefin tuna, so it is important to consider how this might affect 
analyses.  

As noted earlier, since the early 1990’s the Japanese fleet has largely moved to different 
gear materials, and the lower specific gravity of monofilament lines compared to the tar-
coated kuralon used earlier has led to more variable set depths at the same HBF. 
Additional stratification of the Japanese longline data provided to RFMO’s would be 
useful, particularly given the apparent importance of the post-1993 change in gear 
material and its specific gravity.  

Given the progressive and ongoing reduction of the Japanese longline fleet, and the 
contraction of its area of operation, there is a need to make greater use of data from other 
fleets, particularly the relatively long time series available from the Korean and Chinese 
Taipei longline fleets. It would be useful to compare the abundance indices and other 
parameters derived by area and period. For example, the Korean longline fleet have 
wide spatial coverage, and would make an interesting comparison with the Japanese 
longline data, given their different targeting practises. There are some concerns about 
data quality that need to be considered, such as the lack of gear information and observer 
coverage, but the Korean fleet generally uses 5 to 8 HBF.  

One possible approach would be to use a cluster analysis on the species composition of 
the catches to identify the target species (He et al. 1997). This approach would not be 
appropriate for aggregated data, since targeting occurs at the set level. The approach 
could be applied to within-country Japanese and Korean logsheet data held by SPC. It is 
unlikely to be applicable to Taiwanese data, which generally reports only albacore and 
bigeye. Comparison of indices from different fleets, and the clusters within the fleets, 
may be highly informative.   

One possible difference between fleets is their setting practises, which may lead to 
different catchabilities. For example, there is anecdotal evidence of some Korean and/or 
Taiwanese vessels setting twice per day, up to 5000 hooks per day. These vessels carry 
double crews, and may set and haul at the same time. It will be important to establish an 
observer program, and/or obtain descriptions of the fisheries from national scientists, in 
order to understand the fishing practises.  
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Appendix I: Agenda 
 

 

Pelagic Longline Catch Rate Standardizations 
February 12−16, 2007  

Imin Conference Center  
University of Hawaii, Honolulu  

 
 

10:30 a.m. Monday, February 12th  
9 a.m. Tuesday-Friday, February 13-16

th 
 

 
Opening  John Sibert  
 
1. Introductions  Simon Hoyle/Keith Bigelow  
 
2. Overview of longline effort standardizations in current Pacific HMS assessments  

A. Western and central Pacific Ocean tunas  Adam Langley  

Longline CPUE indices for bigeye and yellowfin in the Pacific Ocean using GLM 
and statistical habitat standardisation methods (BP1).  

B. Eastern Pacific Ocean tunas  Simon Hoyle/Mark Maunder  

Standardization of yellowfin and bigeye CPUE data from Japanese longliners, 
1975−2004 (BP2)  

C. Standardization of striped marlin caught by Japanese longliners in the North Pacific 
 Momoko Ichinokawa/Kotaro Yokawa  

 
3. Models for standardizing longline effort  

A. Generalized Linear (GLMs), Generalized Additive Models (GAMs) and Neural 
Networks − covariates, oceanographic and otherwise (e.g. albacore data)  

Oceanographic influences on CPUE  Adam Langley  

Aspects of model selection for GLMs applied to striped marlin in the Hawaii-
based longline fishery (WP1)  Jon Brodziak  

Analyses of Observed Longline Catches of Blue Marlin , Makaira nigricans, 
using GAMs with Operational and Environmental Predictors (BP3)  
 Keith Bigelow  

B. Standardization models with depth-related vulnerability  
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A method for inferring the depth distribution of catchability for pelagic fishes and 
correcting for variations in the depth of longline fishing gear (BP4)  Peter Ward  

C. Standardization models with habitat-related vulnerability (statHBS)  

Developing indices of abundance using habitat data in a statistical framework 
(BP5)  Mark Maunder  

Using statHBS with a multiple species approach (WP)  Minoru Kanaiwa  

Does habitat or depth influence catch rates of pelagic species?  
 Keith Bigelow/Mark Maunder  

 
4. Targeting  

Hooks between floats and Japanese longline data.   Simon Hoyle/Adam Langley  

Joint analysis of YFT and BET CPUE from Japanese longline data.   
 Simon Hoyle/Adam Langley  

Using hooks between floats as a proxy for maximum fishing depth (BP7, BP8) 
 Pascal Bach/Daniel Gaertner  

 
5. Longline gear depth, shoaling and HMS vulnerability  

Pelagic longline gear depth and shoaling (BP6)  Keith Bigelow  

Pelagic longline fishing depth: Confronting catenary theory data with depth 
observations from monitored longline fishing experiments (WP5)  
 Pascal Bach/Daniel Gaertner 

Recent topics of tuna longline CPUE analysis within the National Research 
Institute of Far Seas Fisheries  Kotaro Yokawa  

Longline observations and marlin vulnerability (WP2, WP3)  Phil Goodyear  

The COPAL software: a tool to estimate both hook depths and the maximum 
fishing depth of longlines according to setting tactic information  
 Pascal Bach/Daniel Gaertner  

 
6. Longline CPUE simulations (BP9, BP10)  Phil Goodyear  
 
7. Time-series changes in catchability: Quantifying technological improvements  

An overview of historical changes in the fishing gear and practices of pelagic 
longliners (WP4)  Peter Ward  

 
8. Regional weighting  Simon Hoyle  
 
9. Spatial considerations  Adam Langley  

A. Focusing on ‘core’ areas and the effects on CPUE of EEZ declaration and subsequent 
exclusion  
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B. Defining appropriate regional stratification for a spatially structured assessment model  

C. Modelling at differing scales: individual longline sets, 1º and 5º data  

Relative abundance trends of tuna and billfishes in the Pacific Ocean inferred 
from Japanese longline spatial catch and effort data (WP6) Robert Ahrens 

spatial catch effort data 

 
10. Utility of data from other fleets (Korea, Taiwan, domestic) (tentative)  
 
11. Summarize recommendations for longline effort standardization for use in 
current stock assessments  
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Appendix II: List of working and background papers 
 

Working papers  

WP1 − Aspects of model selection for GLMs applied to striped marlin in the Hawaii-
based longline fishery. Jon Brodziak 

WP2 − Estimation of hook depth during near surface pelagic longline fishing using 
catenary geometry: theory versus practice. Patrick Rice, C. Phillip Goodyear , Eric 
Prince, Derke Snodgrass and Joseph E. Serafy  

WP3 − Aspects of the Physical Habitat of Atlantic Blue Marlin: Predicting Vulnerability 
to Longline Fishing Gear.  C. Phillip Goodyear, Jiangang Luo, Eric D. Prince, Derke 
Snodgrass, Eric Orbesen and Joseph Serafy 

WP4 − An overview of historical changes in the fishing gear and practices of pelagic 
longliners. Peter Ward and Sheree Hindmarsh 

WP5 − Pelagic longline fishing depth: Confronting catenary theory data with depth 
observations from monitored longline fishing experiments, Pascal Bach and Daniel 
Gaertner 

WP6 − Relative abundance trends of tuna and billfishes in the Pacific Ocean inferred 
from Japanese longline spatial catch effort data. Robert Ahrens 

WP7 − Standardization by using statHBS with multiple species. Minoru Kanaiwa 

 
Background papers 

BP1 − Longline CPUE indices for bigeye and yellowfin in the Pacific Ocean using GLM 
and statistical habitat standardisation methods. Adam Langley, Keith Bigelow, Mark 
Maunder

 
and Naozumi Miyabe 

BP2 − Standardization of yellowfin and bigeye CPUE data from Japanese longliners, 
1975-2004. Simon Hoyle and Mark Maunder 

BP3 − Analyses of Observed Longline Catches of Blue Marlin , Makaira nigricans, using 
Generalized Additive Models with Operational and Environmental Predictors. William 
Walsh, Evan Howell, Keith Bigelow and Marti McCracken 

BP4 − Inferring the depth distribution of catchability for pelagic fishes and correcting for 
variations in the depth of longline fishing gear. Peter Ward and Ram Myers 

BP5 − Developing indices of abundance using habitat data in a statistical framework.  

Mark Maunder, Michael Hinton, Keith Bigelow and Adam Langley 

BP6 − Pelagic longline gear depth and shoaling. Keith Bigelow, Michael Musyl, Francois 
Poisson and Pierre Kleiber 

BP7 − Simulated Japanese Longline CPUE for blue marlin and white marlin. C. Phillip 
Goodyear 
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BP8 − Performance diagnostics for the longline CPUE simulator. C. Phillip Goodyear 

BP9 − Historical shifts in hooks between floats and potential target species of the 
Japanese longline fishery in the equatorial Western Indian Ocean. Pascal Bach and Alain 
Fonteneau  

BP10 − Why the number hooks per basket (HPB) is not a good proxy indicator of the 
maximum fishing depth in drifting longline fisheries? P. Bach, P. Travassos, D. Gaertner 
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Appendix III: Abstracts 

1. Overview of longline effort standardizations in current Pacific HMS 
assessments  

i. Application of catch and effort data in WCPO assessments - Adam Langley  

Japanese longline catch and effort data represent a crucial data set in the stock assessment 
of WCPO yellowfin and bigeye tuna. This data set has been used to address key structural 
assumptions in the assessment models; the definition of the regional boundaries of the 
assessment model and the relative weighting of each of the regions within the model.  

In addition, for each region, a GLM approach is applied to the data set to derive a 
standardized CPUE (year/quarter) index for the longline exploitable biomass. The index, 
applied in the model as a standardized effort series, represents the principal abundance 
index for the region (catchability is assumed to be temporally invariant). 

Predictor variables included in the GLM models are year/quarter, fishing effort (number 
of hooks), gear configuration, latitude.longitude interaction, and the proportion of the 
other species in the catch (yellowfin or bigeye). The latter variable was included to 
attempt to account for changes in fishing target practices that appeared to be not 
adequately accounted for by the inclusion of the gear configuration (HBF) variable, 
particularly for bigeye tuna. The resulting CPUE index for yellowfin is sensitive to the 
inclusion of the species (bigeye) proportion variable. The inclusion of this variable may 
be problematic as it somewhat confounded with the abundance of the species of interest. 

Relative weighting of the regions in the assessment model is necessary because of the 
assumption of an equivalent catchability (q) for the key longline fisheries in each of the 
six model regions. To account for differences in region size and relative density of fish 
between regions, it is necessary to rescale the standardized effort series by the (inverse of 
the) regional scaling factors. The regional scaling factors are calculated by applying a 
GLM approach over the entire model spatial domain to estimate coefficients for each of 
the latitude.longitude cells. For each region, the regional weighting factor is calculated as 
the sum of the coefficients of the cells that comprise that region. 

A number of data issues were identified; most importantly, the decline in the effort and 
spatial extent of the Japanese longline fishery, changes in targeting practice and the 
underlying assumption of constant catchability over time which is probably unrealistic. 
These key assumptions and associated data issues are to be examined in more detail 
through the course of the workshop. 

Langley, A. Bigelow, K. Maunder, M.N. and Miyabe, N. (2005) Longline CPUE indices 
for bigeye and yellowfin in the Pacific Ocean using GLM and statistical habitat 
standardisation methods. WCPFC–SC1 SA WP–8, 40p. (BP1) 
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ii. Methods used to standardize longline catch and effort data in the EPO  – Mark N. 
Maunder and Simon D. Hoyle.  

The IATTC has developed and used several methods to standardize longline CPUE data 
to generate relative indices of abundance for use in stock assessment models. These 
methods include regression trees (Watters and Deriso 2000), habitat based 
standardization (HBS, Hinton and Nakano 1996), statistical habitat based standardization 
(statHBS, Maunder et al. 2006), neural networks (Maunder and Hinton 2006), GLMs 
(Hinton et al. 2005), and delta-log normal GLMs (Hoyle and Maunder 2006). The habitat 
based standardization approaches are based on the scientific understanding of how the 
longline fisheries operate and the interaction between fish, their habitat, and the gear. 
Regression trees and neural networks are nonparametric approaches that allow the data to 
estimate the relationship between CPUE and covariates rather than relying on the 
scientific understanding. The GLM approaches are more traditional and the delta-
lognormal models explicitly model the zero catches. Oceanographic data have been 
included in GLMs as an alternative to the HBS methods. In general, the methods produce 
similar relative indices of abundance, except the deterministic habitat based 
standardization method. The explanatory variables used in the analyses generally do not 
impact the estimate of the relative index of abundance. A method developed for 
analyzing purse seine CPUE data that is based on the ratio of catch to that of a species for 
which abundance is known (e.g. from a stock assessment) may provide an alternative 
method for analyzing CPUE data, particularly for bycatch and minor species (Maunder 
and Hoyle 2006). Currently, the delta-lognormal GLM method with the explanatory 
variables hooks between floats and 5x5 degree square is used to develop indices of 
abundance. However, this is because there is currently no preferred method and all 
methods produce similar results.     

Hinton, M. G., Bayliff, W.H. and J. Suter. 2005. Assessment of swordfish in the eastern 
Pacific Ocean. Inter-Amer. Trop. Tuna Comm. Stock Assess. Rpt. 5, 291:326. 

Hinton M.G. and Nakano H. 1996. Standardizing catch and effort statistics using 
physiological, ecological, or behavioral constraints and environmental data, with an 
application to blue marlin (Makaira nigricans) catch and effort data from the Japanese 
longline fisheries in the Pacific. Inter-Am. Trop. Tuna Comm. Bull. 21: 171–200. 

Hoyle, S.D. and Maunder M.N. (2006) Standardisation of yellowfin and bigeye CPUE 
data from Japanese longliners, 1975-2004. IATTC Working Group on Stock 
Assessments, 6th Meeting, SAR-7-07. (http://www.iattc.org/PDFFiles2/SAR-7-07-LL-
CPUE-standardization.pdf) (BP2) 

Maunder, M.N., Hinton, M.G., Bigelow, K.A. and Langley, A.D. (2006) Developing 
indices of abundance using habitat data in a statistical framework. Bulletin of Marine 
Science, 79(3): 545–559. 

Maunder, M.N. and Hinton, M.G. (2006) Estimating relative abundance from catch and 
effort data, using neural networks. Inter-American Tropical Tuna Commission Special 
Report 15. pp. 19. (http://www.iattc.org/PDFFiles2/Special-Report-15-Neural-
Networks.pdf) 
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Maunder, M.N. and Hoyle, S.D. (2007) Analysis of skipjack catch per unit of effort 
(CPUE). IATTC Working Group on Stock Assessments, 6th Meeting, SAR-7-07b 
(http://www.iattc.org/PDFFiles2/SAR-7-07b-SKJ-CPUE-analysis.pdf) 

Watters, G. and Deriso, R. (2000). Catch per unit of effort of bigeye tuna: a new analysis 
with regression trees and simulated annealing. Bull. Int. Am. Trop. Tuna Commun. 21 
(8), 527–571. 

iii. Standardized CPUE of striped marlin caught by Japanese distant water longliners 
in the North Pacific – Momoko Ichinokawa and Kotaro Yokawa  

This presentation overviewed the Japanese longliners fishing for striped marlin (STM) in 
the North Pacific, and suggested major problems in standardizing CPUE of STM.  The 
first problem is a rapid decline of nominal CPUE around Hawaii islands in the Central 
Pacific during early 1970’s.  Because 1960’s was a very early period of Japanese 
longliners operating in the Central and Eastern Pacific, and gear configuration of the 
Japanese longliners drastically changed from 1960’s to 1970’s, possible changes of the 
gear configuration could cause a decline in STM CPUE  However, the latest results of 
standardization of STM, using set-by-set data including information on gear 
configuration during 1962-1966 and 1975-2005, could not explain the rapid decline.  
Therefore, further study would be needed for investigating the historical change of gear 
configuration in Japanese longline fisheries, and its possible effects to the CPUE 
standardization.  The second is a shift of targeting species from STM to bigeye tuna in 
the Eastern Pacific.  Longline effort targeting STM at its spawning area in the Eastern 
Pacific has been decreasing since 1970’s, and rarely occurred since 1990.  Because 
CPUE in the spawning area of STM is about 10 times larger than those in the other 
regions, it makes overall CPUE weighted by area very uncertain.  Such a situation is 
sometimes observed in by-catch species.  The uncertainty of CPUE caused from a shift of 
targeting species and biased distribution of fishing efforts should be quantitatively 
evaluated, and incorporated into stock assessment in a future study.  

2. Models for standardizing longline effort: GLMs, GAMs, neural networks 
and covariates  

iv. Incorporation of oceanographic data in the standardization of longline CPUE for 
the WCPO stock assessments – A. Langley 

Previous reviews of longline CPUE standardizations have identified the potential 
importance of including oceanographic variables in the GLM models for yellowfin, 
bigeye and South Pacific albacore. Catch and effort data included in these models are 
available at a relatively broad spatial (5º lat/long) and temporal (monthly) scale. 
Oceanographic data, derived from physical-biogeochemical models, are also available at 
a comparable resolution. Both data sets represent average conditions over a relatively 
broad spatial/temporal scale and do not characterise the fine-scale heterogeneity that may 
exist in both the environment and fish distribution.  
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A wide range of oceanographic variables were calculated for potential inclusion in GLM 
models for yellowfin, bigeye, and albacore. These variables were also included as 
potential interaction factors between other variables in the model (e.g. HBF). For each of 
the GLM models a number of oceanographic variables were statistically significant in the 
GLM fitting procedure. In general, the parameterization of these variables was consistent 
with our understanding of the biology of the species. However, in each case, the inclusion 
of oceanographic variables in the model did not result in a significant difference in the 
resulting year effects derived from the model.  

The incorporation of oceanographic data in the GLM models may only serve to account 
for broad scale deviations from the average seasonal and spatial trends in CPUE. 
However, the inclusion of these data in the GLM models is not considered likely to 
account for increases in fishing efficiency associated with effort directed at fine-scale 
oceanographic features which may have higher densities of tuna. Such increases in 
catchability of tuna are likely to have occurred through the adoption of remote sensing 
products (e.g. SST maps) available to the longline fleet. Any attempt to resolve these 
trends would require oceanographic and fisheries data at a much finer spatial and 
temporal scale than is currently available. Nevertheless, the inclusion of the 
oceanographic data in the current GLM models does provide the potential to increase our 
insights into the habitat preferences of these species. 

v. Aspects of model selection for GLMs applied to striped marlin in the Hawaii-based 
longline fishery (WP1) Jon Brodziak 

Striped marlin (Tetrapturas audax) is an incidental (retained non-target) species in the 
Hawaii-based longline fishery that targets tunas and swordfish. In this paper, we 
developed an approach to standardize striped marlin bycatch data from the Hawaii-based 
longline fishery. To account for uncertainty in model structure, we applied model 
selection and averaging techniques to generalized linear models (GLMs) fitted to the 
striped marlin data. A suite of candidate GLMs with alternative model structures and 
assumptions were developed and fit to the bycatch data using a generalized additive 
model analysis as a guide. The candidate models included four alternative treatments of 
the spatial component of the GLM to explore the impact of differing spatial scales. Fits of 
the resulting models were then compared using Bayesian model selection and averaging 
along with a sensitivity analysis based on Akaike information criterion (AIC). The results 
indicated that the spatial component was best modelled using low order polynomials and 
identified a set of CPUE predictors and an appropriate GLM structure for CPUE 
standardization. Overall, model averaging provided an objective way to evaluate different 
hypotheses about the estimation of standardized CPUE. 

vi. Analyses of Observed Longline Catches of Blue Marlin, Makaira nigricans, using 
GAMs with Operational and Environmental Predictors – K. Bigelow  

Generalized additive models (GAMs) were developed and evaluated to analyze blue 
marlin catches by fishery observers in the Hawaii-based longline fishery (1994−2004). 
GAM coefficients were applied to corresponding predictor variables in logbooks from 
unobserved fishing trips to predict catches. Results demonstrated that application of an 
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overparameterized GAM yielded an inaccurate (26% greater than corrected logbook data) 
and imprecise (wide confidence intervals) despite being the preferred model based on an 
AIC criterion. A model with fewer degrees of freedom and the same operational and 
environmental predictors predicted unobserved catches accurately and with reasonable 
precision. A comparison of GAMs fit entirely with operational or environmental 
variables indicated that a model with operational variables explained 33% of the null 
deviance while environmental variables explained 20%.  

Walsh, W.A., Howell, E.A., Bigelow, K.A. and McCracken, M.L. (2006).  Analyses of 
observed longline catches of blue marlin, Makaira nigricans, using generalized additive 
models with operational and environmental predictors. Bulletin of Marine Science, 79(3): 
607–622. (BP3) 

vii. Dealing with missing values for covariates – Mark N. Maunder 

Frequently, covariates to be included in CPUE standardization have missing values for 
some CPUE observations. In these cases a decision needs to be made about how to deal 
with these data. Simple methods involve either deleting the observations with missing 
data (probably best if only a few observations have missing data), or not using the 
covariate (probably best if most observations have missing data). However, if the 
covariate is influential or if the values are missing for a reason, it may be better to retain 
both the covariate and the observations with missing values. The missing values can be 
replaced by average values for the covariate, or a separate category created to represent 
observations with missing values, and the coefficient estimated. A more appropriate 
approach may be to treat the missing values as parameters and estimate them in the 
model. If these parameters are treated as random effects they average over the possible 
values of the covariate and can share information from the known covariate values and 
from other covariates. In a simple approach the mean and variance for the random effect 
can be calculated from the known values of the covariate. The random effect could be 
implemented in a frequentist (e.g. using ADMBre) or hierarchical Bayes framework, 
using MCMC. 

3. Models for standardizing longline effort: habitat-related and depth-related 
vulnerability  

viii. A method for inferring the depth distribution of catchability for pelagic fishes and 
correcting for variations in the depth of longline fishing gear – Peter Ward  

We present a new method that uses generalized linear mixed models to infer the depth 
distribution of pelagic fishes. It uses existing data from research surveys and observers on 
commercial vessels to estimate changes in catchability when longline fishing gear is 
lengthened to access deeper water. We infer the depth distribution of catchability for 
37 fish species that are caught on pelagic longlines in the Pacific Ocean. We show how 
the estimates of catchability can be used to correct abundance indices for variations in 
longline depth. Our method facilitates the inclusion of data from early surveys in the time 
series of commercial catch rates used to estimate abundance. Unlike habitat-based 
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standardisations, absolute depth of longline hooks does not need to be known to use our 
method. Instead, the same method of depth estimation (i.e., the catenary curve) is applied 
to the source of information on the depth distribution and the catch and effort data that is 
corrected. Observer data from representative strata are required to develop estimates of 
the depth distribution of catchability for other fisheries. 

Ward, P. and Myers, R.A. (2005). Inferring the depth distribution of catchability for 
pelagic fishes and correcting for variations in the depth of longline fishing gear. Can. J. 
Fish. Aquat. Sci. 62: 1130–1142. (BP4) 

ix. Developing indices of abundance using habitat data in a statistical framework  – 
Mark N. Maunder, Michael G. Hinton, Keith A. Bigelow, and Adam D. Langley 

Catch rates and species caught by the longline fishing fleet can be influenced by the 
habitat in which they deployed their gear. The catch rates of a species will increase if the 
gear is deployed in the habitat in which that species prefers to feed. Because of the 
vertical structure of longline gear, and the ability of the fleet to modify the vertical 
structure by modifying how the gear is set (e.g. by changing the number of hooks 
between floats), the vertical distribution of habitat is important in determining catch rates. 
Changes in the vertical structure of the habitat or changes in the depth of the gear fished 
(e.g. shoaling caused by currents) influence which habitat the gear fishes. Standardization 
of longline CPUE data should consider the habitat that gear is fishing. The habitat based 
standardization of Hinton and Nakano (1996, detHBS) uses a deterministic approach to 
match the depth of the gear (from the catenary curve) with environmental data (from 
general circulation models) and the habitat preference of the species of interest (from 
archival tags) to determine the effective effort of the longline data. However, statistical 
tests have found that in several cases this method performs worse than nominal effort at 
predicting catch, indicating that it is inappropriate to use in these cases. In general, the 
problem arises because of inadequacies of the data used in the method. For example, the 
habitat preference data is usually obtained from archival tag data, which includes 
information from when the fish are not feeding, has limited spatial and/or temporal 
coverage, is sometimes borrowed from different species or different oceans. The habitat 
variable used may not have a large influence on the distribution of the species. The 
biggest impact is probably due to the temporal and spatial mismatch between the habitat 
preference data, which is recorded in the exact proximity of the fish at that instance in 
time, and the environmental data, which is averaged over 5x5 degree squares and one 
month. The statistical tests of the detHBS model led to the development of a statistical 
application of the habitat based standardization (statHBS), which estimates the habitat 
preference from the data. The habitat preference in this case refers to the data used to 
represent the habitat (the preference for 5º-month averages). The statHBS model includes 
a GLM component so that additional covariates can be included to explain changes in 
catchability. Other modifications of the statHBS model that have been applied include 
using a prior on habitat preference, incorporating setting and retrieval, adjusting the depth 
fished due to shoaling based on covariates for current shear, multiple habitat factors, and 
using auxiliary data (e.g. proportion caught on retrieval). Some possible future 
modifications include adjusting for total habitat, parameterizing the habitat preference 
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(e.g. using GLM) or effort models (estimating parameters of the hook-model), and using 
alternative likelihood functions (e.g. delta-models).  

Bigelow, K., Maunder, M.N. and Hinton, M. (2003) Comparison of deterministic and 
statistical habitat-based models to estimate effective longline effort and standardized 
CPUE for bigeye and yellowfin tuna. SCTB16 RG-3. 

Hinton, M. G. and Nakano, H. (1996). Standardizing catch and effort statistics using 
physiological, ecological, or behavioural constraints and environmental data, with an 
application to blue marlin (Makaira nigricans) catch and effort data from the Japanese 
longline fisheries in the Pacific. Inter-Am. Trop. Tuna Comm. Bull. 21: 171–200. 

Hoyle, S.D. and Maunder M.N. (2006). Standardisation of yellowfin and bigeye CPUE 
data from Japanese longliners, 1975-2004. IATTC Working Group on Stock 
Assessments, 6th Meeting, SAR-7-07. (http://www.iattc.org/PDFFiles2/SAR-7-07-LL-
CPUE-standardization.pdf).  

Langley, A. Bigelow, K. Maunder, M.N. and Miyabe, N. (2005) Longline CPUE indices 
for bigeye and yellowfin in the Pacific Ocean using GLM and statistical habitat 
standardisation methods. WCPFC–SC1 SA WP–8, 40p. 

Maunder, M.N., Hinton, M.G., Bigelow, K.A., and Harley, S.J. (2002) Statistical 
comparisons of habitat standardised effort and nominal effort, SCTB 15, MWG-7, 18p. 

Maunder, M.N., Hinton, M.G., Bigelow, K.A., Langley, A.D. (2006) Developing indices 
of abundance using habitat data in a statistical framework. Bulletin of Marine Science, 
79(3): 545–559. (BP5) 

x. Using statHBS with a multiple species approach  – Minoru Kanaiwa  

We introduce a method to estimate parameters of longline gear depth by the catenary 
equation in the statHBS framework using multiple species. Our previous applications of 
statHBS have included only a single deterministic catenary curve, but recent information 
indicates that Japanese longliners have modified gear components historically over time, 
by area and season. Introducing multiple species data, which have different vertical 
distribution patterns into a single standardization process, provides a wider and a greater  
range of vertical information into the model. We examined various scenarios by changing 
the catenary curve parameters of float and branch line length and catenary angle, and 
selected an optimal scenario by minimizing AIC. The model estimated the set depth of 
longline gear changes by area, season and target species. A test run was conducted using 
catch and effort data of Japanese longliners in recent years for blue marlin, striped marlin 
and yellowfin tuna. Vertical distribution pattern derived from electronic tag data was 
used as a prior. Oceanographic data provided from NMFS was used as habitat 
information. The result of the test run was rather realistic, e.g., a shallower gear depth in 
temperate areas and a deeper gear depth in tropical areas. However, the results depend on 
the weighting of each species’ likelihood and we need to consider how we decide on the 
weighting. This indicates that the fitting of multiple CPUE data may improve estimates of 
longline shape parameters obtained from statHBS models. 
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xi. Does habitat or depth influence catch rates of pelagic species? – K. Bigelow/M. 
Maunder  

The predominant factor governing the efficiency of a pelagic longline fishing operation 
and the species composition of the catch is the relationship between the distribution of 
hooks and species vulnerability, whereby the hook distribution can be considered in 
terms of either depth or some suite of environmental variables. We therefore fitted 
longline catch rate models to determine whether catch is estimated better by vertically 
distributing a species by depth or environmental conditions (e.g. temperature, 
thermocline gradient, and oxygen concentration). Catch rates were estimated by two 
methods: (1) calculating catch-per-unit-effort (CPUE) from monitored pelagic longlines 
where the vertical distribution of hooks and fish catch in relation to depth and 
environmental conditions is known, and (2) applying a statistical Habitat-Based 
Standardization (statHBS) model to fishery and environmental data to develop indices of 
relative abundance for bigeye tuna (Thunnus obesus) and blue shark (Prionace glauca), 
two ecologically diverse species in the Pacific Ocean. Analyses based on depth-specific 
catch rates can lead to serious misinterpretation of abundance trends inferred from CPUE 
data despite the use of sophisticated statistical techniques (e.g. generalized linear mixed 
models). 

4. Targeting  

xii. Hooks between floats and Japanese longline data; and joint analysis of YFT and 
BET CPUE from Japanese longline data – S. Hoyle/A. Langley  

Targeting particular species occurs via multiple strategies, some of which are reflected in 
the data, and some are not. Bigeye usually occur deeper than yellowfin, a fact that can be 
exploited by setting gear deeper to target bigeye. However, many other features of the 
fishing strategy can also be manipulated to target particular species. Where the act of 
targeting involves multiple strategies, the reported factors act as proxies in the analysis 
for targeting, and absorb the effects of the other factors. HBF is often used as a proxy for 
targeting via its relationship with depth. However, changes in gear material since the 
1990’s may have invalidated the use of HBF as a depth indicator. Analysis of bigeye and 
yellowfin catch rates by region, including HBF as a categorical variable in 5 and 10 year 
blocks, shows that the relationship between catch rate and HBF has changed since the 
early 1990’s, but not consistently across all regions.   

Using catches of other species (not the species being analyzed) as covariates is another 
approach that can be informative about targeting. Other species can be used via their 
catch, their CPUE, or as a proportion of total catch. Proportion of other species in the 
catch explains significant variation in the WCPO bigeye and yellowfin GLMs. However, 
when the species being analyzed makes a large contribution to total catch, including 
‘proportion of other species’ in the model results in the species of interest occurring on 
both sides of the equation. This confounding removes information from the model and 
can bias the index of abundance. Another approach is to include the CPUE of other 
species. However, the abundance of other species changes in the long term, which can 
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affect the index of abundance. Abundance of other species also varies among 5 degree 
squares and seasonally.  

Two joint approaches for analysing catch rates were proposed. The first method estimates 
a parameter a, describing the proportion of effort targeted at each species, and two 
catchability parameters each for yellowfin and bigeye, when they are either targeted or 
not targeted. The second method uses CPUE of the other species as a covariate, but 
offsets it by the expected CPUE of the species in the stratum.  

5. Longline gear depth, shoaling and HMS vulnerability  

xiii. Pelagic longline gear depth and shoaling – K. Bigelow  

Temperature-depth recorders (TDR’s) were attached to pelagic longline gear in the 
Hawaii-based commercial fishery to obtain actual fishing depths and to test the accuracy 
of catenary algorithms for predicting fishing depths. Swordfish gear was set shallow by 
typically deploying four hooks between successive floats. The observed depth of the 
settled deepest hook had a median value of 60 m for 333 swordfish sets. Tuna longline 
gear deployed more hooks between floats (mean = 26.8), and the observed median depth 
of the deepest hook was 248 m (n = 266 sets). Median values of the predicted catenary 
depth were 123 m for swordfish sets (n = 203) and 307 m for tuna sets (n = 198). Shallow 
swordfish sets reached only ~50% of their predicted depth, while deeper tuna sets 
reached about 70%. GLMs and GAMs were developed to explain the percentage of 
longline shoaling as a function of predicted catenary depth and environmental effects of 
wind stress, surface current velocity, and current shear. The GAM explained 67.2% of the 
deviance in shoaling for tuna sets and 41.3% for swordfish sets. The inclusion of 
environmental information in the GAM approach explained an additional 10% to 17% of 
the deviance compared to the GLMs.  

Bigelow, K., Musyl, M.K., Poisson, F. and Kleiber, P. (2006) Pelagic longline gear depth 
and shoaling. Fisheries Research 77 (2006) 173-18. (BP6).  

xiv. Pelagic longline fishing depth: Confronting catenary theory data with depth 
observations from monitored longline fishing experiments (WP5) – Pascal Bach and 
Daniel Gaertner  

The aim of this paper is to ascertain the accuracy of hooks depth distribution estimated 
from the catenary theory model commonly used in CPUE standardization. From hook 
depth observations collected during monitored longline fishing experiments conducted in 
the central part of the South Pacific Ocean, we explore the effects of several 
environmental descriptors and variables describing gear configuration and fishing tactic 
on the longline shoaling (i.e., the difference between the observed and the theoretical 
maximum fishing depth). Our results showed that the shoaling (absolute and relative) can 
be significantly influenced by the current shear, the direction of the setting and the shape 
of the mainline (i.e., the tangential angle) which is the strongest and the most consistent 
predictor in GLMs. Some simple transformations are proposed to account for the non-
linearity between the shoaling and the explanatory variables. As a consequence, our 
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findings suggest that catenary maximum fishing depth estimates or the number of hooks 
per basket should be used with caution in methods addressed for CPUE standardization. 
In addition, we conclude by a discussion on how suitable data could be collected 
routinely on commercial fishing vessels in order to estimate the maximum fishing depth 
at the set operation level. 

Bach, P. and Fonteneau, A. (2005). Historical shifts in hooks between floats and potential 
target species of the Japanese longline fishery in the equatorial Western Indian Ocean. 
IOTC-2005-SC-INFO16. (BP7).  

Bach, P., Travassos, P. and Gaertner, D. (2006). Why the number of hooks per basket 
(HPB) is not a good proxy indicator of the maximum fishing depth in drifting longline 
fisheries? Col. Vol. Sci. Pap. ICCAT, 59(2): 701-715. (BP8).  

xv. Recent topics of tuna longline CPUE analysis within the National Research Institute 
of Far Seas Fisheries – Kotaro Yokawa  

Kotaro Yokawa reviewed longline research at the National Research Institute of Far Seas 
Fisheries including:   

1) The problem of vertical and horizontal unbalanced distribution pattern of observation.  
2) Vertical CPUE distribution pattern of Atlantic billfishes estimated using longline 
research data.  
3) Vertical CPUE distribution pattern of striped marlin in the north eastern Pacific 
estimated using longline research data and, 
4) Progress of ongoing research for estimating underwater movement of longline gear.  

xvi. Estimation of hook depth during near surface pelagic longline fishing using 
catenary geometry: theory versus practice (WP2)  – Patrick Rice, Phil Goodyear, 
Eric D. Prince, Derke Snodgrass, and Joe Serafy 

This study monitored hook time at depth for shallow set commercial longlines (i.e., 4 
hooks between surface buoys) targeting swordfish Xiphias gladius in the Windward 
Passage between the Republic of Haiti and the Republic of Cuba in 2003. Temperature–
depth recorders (TDR’s) were placed on about every 13th hook and attached to 
branchlines just above the hook. Most TDR’s were placed on branchlines predicted by 
catenary geometry to be at the deepest hook position between floats. Additional TDR’s 
were also placed at the shallowest predicted hook position. We monitored ten pelagic 
longline sets with an average set length of 44.9 ± 2.0 km. Time at depth for each TDR 
was binned into 5 m depth intervals. The expected bimodal distributions of hook time at 
depth were not observed and modes were 40 m for both the shallowest and deepest 
predicted hook position. The majority of the hook depth distributions for both shallow 
and deep hook positions achieved only 43% and 31%, of the depth predicted by catenary 
equations (i.e., < 92 m and < 127 m), respectively. Individual TDR’s were poor 
estimators of hook time at depth for other TDR’s in the same catenary hook position 
during the same set (76.2% - 100% significant mean depth differences), and even worse 
predictors of the depths fished during other sets (100% significant mean depth 
differences). Hook depth predictions based on catenary geometry drastically 
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overestimated actual fishing depths in the present study. These results indicate that the 
use of catenary geometry for estimating hook depth and subsequent vertical fishing effort 
is inadequate and fails to capture both within- and among-set variability.  

xvii. Aspects of the Physical Habitat of Atlantic Blue Marlin: Predicting Vulnerability to 
Longline Fishing Gear (WP3)  – Phil Goodyear, Jiangang Luo, Eric D. Prince, 
Derke Snodgrass, Eric Orbesen, and Joe Serafy.  

This study characterized temperature-depth habitat utilization from data collected by 52 
electronic popup satellite archival tags (PSATs) attached to Atlantic blue marlin, Makaira 
nigricans, released by recreational and commercial fishers. Most source data were in the 
form of 3- or 6-hour, temperature- and depth-frequency histograms transmitted by the 
tags to the ARGOS satellite system. However, high resolution time series of temperatures 
and depths (30- or 60–second resolution) were obtained from 6 tags that were physically 
recovered. The distributions of times at depth were significantly different between day 
and night. During daylight hours, the fish were typically below the near-surface layer, 
often at 40 to 100+ m sometimes remaining below the near-surface layer at depth 
throughout the daylight hours, but often returning briefly to the surface. At night, the fish 
spent most of their time at or very close to the surface. This pattern of behaviour also 
meant the distributions of time at temperature were significantly different between day 
and night, with the fish occupying warmer strata during darkness. The study also 
evaluated the fractions of time spent by each fish within each degree of water temperature 
relative to the temperature of the surface mixed layer to assess assumptions used to model 
population abundance trends from longline catch per unit effort (CPUE) data. Frequency 
distributions were determined for periods of darkness, daylight, and where possible, 
twilight. Results were highly variable within the time series for individual fish, and 
among individuals.  

xviii. The COPAL software: a tool to estimate both hook depths and the maximum fishing 
depth of longlines according to setting tactic information – P. Bach/D. Gaertner  

Our project for developing a software devoted to the automatic estimates of the 
maximum fishing depth of the longline and the related hook depth distribution started at 
the end of 2004. COPAL means “COmportement de la PALangre”, in reference of the 
“longline behaviour”. In COPAL, the estimations of the maximum fishing depth (i.e., the 
average of the depths at the middle position on the mainline between two floats) and the 
distribution of hook depths are based on the catenary algorithms (Yoshihara, 1951; 1954). 
The deformation on the mainline (i.e. the difference between the predicted depth and the 
observed depth defined as the absolute shoaling) is estimated by using the average drift 
speed of the longline during the soak time as a proxy of the impact of external factors 
such as surface current velocity and shear on the mainline (Bach, 1997; Bach et al., 
1999). 

COPAL is made up of three menus. The first one entitled “how deep was your mainline” 
is implemented to know the behaviour of the longline according to inputs describing the 
fishing tactic (setting and hauling positions, boat speed, line shooter speed, setting time 

 50 



Pelagic longline catch rate standardization meeting, Feb 2007  

duration of baskets, lengths of branchline and floatline). Main users concerned by this 
first menu are fishermen. 

The second menu, entitled “Select a fishing tactic” is broken down in two sections. The 
first section (i.e., the sub-menu “Maximum fishing depth for a given tactic”) allows one 
to control for the results of a fishing tactic which has been selected by the user. The 
second sub-menu “which tactic to reach your targeted depth” calculates the main 
parameters of the fishing tactic (boat speed, line shooter speed, time duration of baskets) 
on the basis of the shape of the mainline introduced as input data and knowing the lengths 
of the floatline and the branchline. Main people concerned by this second menu are 
fishermen and fishery biologists who plan to develop a sampling protocol in the frame of 
longlining surveys. 

The development of the third menu is still in progress. This menu will comprise two sub-
menus: “analysis of time depth recorders data” and “statistical construction of the 
distributions of hook depths”. It will be developed as a tool for both fishery biologists and 
observers with the aim of analysing monitored longline fishing operations in a statistical 
framework. 

6. Longline CPUE simulations 

xix.  Simulation and analysis of longline catch and effort data – P. Goodyear  

The ICCAT Working Group on Assessment Methods recommended that CPUE 
standardization methods for the Japanese longline time series in the Atlantic be evaluated 
against simulated data where the true abundance trend is known. Phil Goodyear described 
the design and initial application of the resulting longline simulator designed to test the 
CPUE estimation methods for Atlantic blue and white marlin. The model integrates 
species distributions with longline-hook distributions of time at depth to predict catch per 
set for each of up to six species. Each species may be partitioned into up to four sex-age 
groups to accommodate different sex-age/size differences in spatio-temporal 
distributions. The species’ habitat is stratified by month, latitude, longitude and depth. 
Spatial resolution was 1 by 1 degree of latitude and longitude and 46 depth 10 m depth 
layers. Externally-derived relative abundances by latitude and longitude are input and 
distributed by depth according to the decay in temperature with depth relative to the 
temperature of the surface mixed layer. The temperature-depth profiles are input by year, 
month, longitude and latitude. The spatial distributions of longline sets by gear 
configuration were input by year, month, latitude and longitude based on the observed 
effort by the Japanese longline fleet in the Atlantic from 1956 through 1995. The 
program was used to simulate longline CPUE assuming marlin depth distributions 
predicted by temperature relative to that in the surface mixed layer. The stocks were 
assumed to be either stable or declined with time. CPUE standardizations of the initial 
simulations were evaluated at an ICCAT Billfish data preparatory meeting. None of the 
CPUE standardization methods (GLM, deterministic HBS, Integrated assessment model) 
applied to the simulated data successfully recovered the underlying trends for the full 
time series, though the GLM was reasonably successful for the period post-1975 that had 
HPB data. Subsequent diagnostic evaluations of the simulator performance suggested that 
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it was performing as designed. Inspection of the input data indicated a problem with the 
definitions of fishing depths for a 5-hook per basket gear assumed to be the only gear 
fishing in the first 20 years of the fishery. The switch from this gear to subsequent gears 
caused a discontinuity in catchability in the simulated data between 1975 and 1976. 
Spatial variability in the annual fishing patterns of the Japanese fleet used to define the 
simulated fishing distributions were also problematical.  

Goodyear, C.P. (2006). Performance diagnostics for the longline CPUE simulator. Col. 
Vol. Sci. Pap. ICCAT, 59(2): 615-626. (BP9) 

Goodyear, C.P. (2006). Simulated Japanese longline CPUE for blue marlin and white 
marlin. Col. Vol. Sci. Pap. ICCAT, 59(1): 211-223. (BP10).  

7. Time-series changes in catchability: Quantifying technological improvements  

xx. An overview of historical changes in the fishing gear and practices of pelagic 
longliners (WP4) – P. Ward and S. Hindmarsh.  

We describe changes in pelagic longline fishing gear and practices that need to be 
considered in developing indices of abundance from commercial catch and effort data. 
Longliners have upgraded their fishing gear and practices to improve fishing power and 
catchability, which has altered the relationship between catch rates and abundance. Many 
electronic devices have been introduced to assist in navigation, communication and 
finding target species. The development of synthetic materials allowed improvements to 
lines and hooks that increased the probability of hooking target species and landing them. 
Other changes increased fishing power by improving searching efficiency (e.g., satellite 
imagery) or the time spent on fishing grounds (e.g., freezers). The number of hooks 
deployed in daily longlining operations has steadily increased since 1950. However, 
average soak time did not change significantly because faster longline retrieval and 
deployment speeds balanced the increased hook numbers. There has been a shift from 
having all baits available at dawn, to having more available at dusk and at night. In the 
1970s, several longline fleets began to exploit a much greater depth range, resulting in 
increased catchability for deep-dwelling species (e.g., bigeye tuna) and reduced 
catchability for epipelagic species like blue marlin. Research has focused on the effects of 
longline depth on the catchability of target species. Recent experiments have quantified 
the effects of bycatch mitigation measures on fishing power and catchability. Progressive 
improvements in expertise and technological improvements in the gear will also affect 
fishing power, but are particularly difficult to quantify. The paper highlights dangers in 
relying on commercial data without also having fishery independent surveys or other 
means of calibrating the time-series.  
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8. Regional weighting 

xxi. Regional weighting – S. Hoyle  

WCPO stock assessments estimate a separate abundance index for each species in each of 
the 6 regions. The indices are then reweighted by assuming that catchability is equivalent 
across all regions. Regional weighting is very influential in determining the status of 
yellowfin and bigeye in the WCPO. The current reweighting method uses a simplified 
version of the CPUE standardization model with data from 1960 to 1986 and in areas 
with HBF data and significant catch. Coefficients for 5º squares are summed to give 
relative abundance by region, and this relative abundance is applied to the standardized 
CPUE estimates for the same period. However, this method has problems including: no 
weight is given to cells not included; HBF is assumed to have the same effect across all 
regions; pre-1975 HBF data assumed to be accurate and consistent across regions. 
Alternative approaches need to be explored, and some suggestions were made for 
discussion, including standardizing and reweighting at a finer scale; or simply carrying 
out the full CPUE standardization for all regions together, and including a space*time 
interaction. The main constraint on such approaches is computer memory, although this 
may be a software issue. 

9. Spatial considerations  

xxii. Consideration of a range of spatial effects that may influence CPUE indices for 
yellowfin and bigeye in the WCPO – A. Langley 

Previous reviews of longline CPUE indices derived for yellowfin and bigeye tuna in the 
WCPO expressed concerns about the potential biases introduced by the exclusion of the 
Japanese longline fleet from the domestic waters of Pacific Island countries/territories 
following the declaration of their EEZs. This was investigated for region 3 of the 
assessment models – an area of high catch rates and also dominated by EEZ waters, 
especially around PNG where the Japanese fleet historically fished. A GLM modelling 
approach was used to derive CPUE indices from multiple data sets; principally comprised 
of a group of lat/long cells that were consistently fished through the time period and 
another group of cells that also included lat/long cells fished prior to the declaration of 
the EEZ but not subsequently fished. For bigeye and yellowfin, there was no apparent 
difference in the CPUE indices derived from these two datasets indicated that no 
significant bias was introduced following exclusion of the Japanese fleet from domestic 
EEZs. Further, the analysis was also undertaken using data aggregated at 1º and 5º 
lat/long with no detectable difference in the year effect. 

However, the analysis did serve to highlight a spatial contraction of fishing effort and a 
strong shift in the spatial distribution of fishing effort in the region towards the spatial 
cells with the highest bigeye CPUE (away from cells with high yellowfin CPUE). This 
means that from the mid 1980s, the CPUE index is increasing driven by the CPUE in the 
core bigeye cells and there are limited data regarding changes in abundance beyond these 
cells. Further analysis indicates that, for yellowfin at least, the decline in CPUE is greater 
in the higher abundance cells than in the lower abundance cells. This indicates a potential 
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bias in the yellowfin CPUE index. Addressing this bias may require the adoption of a 
more spatially based approach to the CPUE analysis, although this requires assumptions 
regarding the level of CPUE in the cells where no (or very low) fishing occurred.  

xxiii. Filling in missing cells by integrating CPUE standardization with a population 
dynamics model – M. Maunder 

As a fishery develops, the distribution of effort often changes. Initially, some areas are 
not fished as the fleet expands its spatial coverage. Over time, as the goals of the fishery 
change and the status of the stocks in different areas change, some areas are not fished. In 
some analyses it is necessary to determine the abundance in these areas where there is no 
information so that the total stock abundance can be determined. One possible method is 
to model each area as a separate population and integrate the CPUE standardization with 
the population dynamics model. The population model can then be used to fill in the 
abundance in the years when there is no data. In a simple illustration, a Pella-Tomlinson 
(PT) surplus production model can be used to model the population dynamics. However, 
it is well know that estimation problems occur when estimating the parameters of the PT 
model from catch and effort data and this will be particularly true for the areas with 
missing data. Therefore, it would be advantageous to treat the parameters as random 
effects and share information among areas. It is reasonable to assume that the parameters 
would be spatially correlated and a spatial conditional autoregressive (CAR) model 
would be appropriate. The model parameters could be estimated using frequentist (e.g. 
using ADMBre) or hierarchical Bayes framework using MCMC. The model described 
above is a simple representation and a more complex model may be appropriate. For 
example a model similar to MULTIFAN-CL, which can incorporate other information 
(e.g. length frequency), would be desirable. Movement between areas would also cause 
bias in the analysis and should be considered in the implementation. Movement includes, 
migration, diffusion, density dependent movement, and environmental mediated shifts in 
distribution.  

Maunder M.N. (2001) A general framework for integrating the standardization of catch-
per-unit-of-effort into stock assessment models. Can. J. Fish. Aquat. Sci., 58: 795-803.  

Maunder, M.N. and Langley, A.D. (2004) Integrating the standardization of catch-per-
unit-of-effort into stock assessment models:  testing a population dynamics model and 
using multiple data types. Fisheries Research 70(2-3): 389-395. 

Besag, JE. (1974). Spatial interaction and the statistical analysis of lattice systems. 
Journal of the Royal Statistical Society, Series B 36: 192-236. 

Cressie N. (1993). Statistics for Spatial Data, Revised Edition. New York: John Wiley 
and Sons. 

Haining R. (1990). Spatial Data Analysis in the Social and Environmental Sciences. 
Cambridge: Cambridge University Press. 
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xxiv. Relative abundance trends of tuna and billfishes in the Pacific Ocean inferred from 
Japanese longline spatial catch and effort data (WP6) – Robert Ahrens  

Simple ratio estimators such as catch-per-effort (CPUE), where catch and standardized 
effort are summed over some units of time and space, are liable to produce exaggerated 
trend indices due to variation in spatial and temporal distribution of fishing effort with 
respect to species of interest.  A method for calculating relative abundance trends for tuna 
and billfishes within the Pacific Ocean from Japanese 5º catch and effort data, following 
recommendations in Walters (2003), is presented. Trend indices using alternative 
methods for filling catch-rate in unfished areas are compared to simple ratio estimators 
and to estimators where only fished areas are averaged.  

Expansion of the longline fleet across the Pacific resulted in highly non-random spatial 
sampling of all species during early years, exacerbated by effort within a given area 
focused initially only within a few months of the year. Simple ratio estimators therefore 
indicate either rapid declines or increases in stock abundance within the first few years of 
the fishery expansion, either due to depletion of local abundance or the movement of 
effort into areas/times of higher abundance. The simple ratio estimators for yellowfin 
tuna and blue marlin produce very high initial CPUE estimates, but these are derived 
from effort in a small area during a short proportion of the year. Conversely, for striped 
marlin and southern bluefin tuna, abundances appear to increase rapidly as fishing effort 
moves into core areas of abundance.  

Differences between ratio filling and arithmetic mean filling methods are subtle but 
highlight the importance of correcting for non-representative sampling within a cell 
within a year. Combining catch and effort data across months gives more weight to 
months with more effort. Such a calculation is a repeat of the "folly" described by 
Walters (2003) but within time not space. The use of the arithmetic mean of monthly 
cpue addresses this problem to some degree. It would be advantageous if seasonal 
patterns of abundance could be calculated. Poorly sampled strata could then be corrected 
given known seasonal patterns.  

In general abundance trends derived using the method presented indicate much slower 
rates of decline when compared to simple ratio or mean of fished areas trends.  

Walters, C. (2003). Folly and fantasy in the analysis of spatial catch rate data. Can. J. 
Fish. Aquat. Sci. 60(12), 1433-1436. 
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Appendix IV − Summary of gear configuration from observer 
programs and research cruises 
 

Period Owner  Central Pacific experimental longline 
research 1989−1997 PIFSC, NOAA 

Fisheries 

Gear configuration attributes: 

• Longline dimensions, setting and hauling details 

• Each catch identified by hook number and time, body size (length) 

• TDRs and hook-timers deployed 

• 118 tuna sets (56,000 hooks) and 122 swordfish sets (41,000 hooks) observed 

Period Owner  Australian domestic observer program 

2001−Present AFMA 

Gear configuration attributes: 

• Longline dimensions, setting and hauling details 

• Each catch identified by hook number and time, body size (length) 

Period Owner  Australian observers on licensed Japanese 
longliners 1980−1996 AFMA 

Gear configuration attributes: 

• Longline dimensions, setting and hauling details 

• Time of each catch recorded, body size (length) 

Period Owner  CSIRO Coral Sea Survey of commercial 
Australian longliners 1995−1996 CSIRO 

Gear configuration attributes: 

• All catch species identified by hook and time 

• TDRs (archival tags) and hook-timers deployed 

• 109 sets observed and 234 TDR observations collected 

Period Owner  CSIRO project − Determination of effective 
effort in the Eastern Tuna and Billfish 
Fishery (ETBF) August 

2004−Present 
AFMA 

Gear configuration attributes: 

• Two sets of TDRs (~10 per set) and hook-timers (~80 per set) deployed by AFMA 
observers on commercial Australian longliners operating in the ETBF. All trips 
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departing from port of Mooloolaba 

• Full observer logsheets recorded 

• 290 sets observed and ~1,680 TDR observations collected as of December 2006 

Period Owner  French Polynesia EEZ 

1993−1997 IRD & French 
Polynesian Fishing 
Services 

Gear configuration attributes: 

• Longline dimensions, setting and hauling details 

• Each catch (2,230 fish) identified by hook number and time, body size (length) 

• Tuna capture − 354 bigeye, 258 yellowfin and 638 albacore 

• TDRs and hook-timers deployed 

• 160 sets observed and ~1,400 TDR observations 
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Appendix V − Summary of longline standardization methods and 
analyses  
 

Method − GLM 

Bigeye and yellowfin tuna in the western and central Pacific Ocean 

Who conducted: Secretariat of the Pacific Community (SPC) 

Scale of fishery data. Japanese 5º - monthly by hooks between float (HBF) categories 

Standardization model: 
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Error distribution: normal, zero-catches deleted 

Advantages: efficient 

Disadvantages: doesn’t model zero catches, so most suitable for major species 

Ref: Langley, A., Bigelow, K., Maunder, M. and Miyabe, N. (2005). Longline CPUE 
indices for bigeye and yellowfin in the Pacific Ocean using GLM and statistical habitat 
standardisation methods. WP SA–8, WCPFC-SC1, Noumea, New Caledonia, 8−19 
August 2005. 

Method − GLM 

Striped marlin in the North Pacific 

Who conducted: PIFSC & NRIFSF 

Scale of fishery data: 1º set-by-set Japanese data including zero-catch 

Standardization model:  

errorHooks
qtgearareaqtareayrqtyrgearareaqtyrcatchSTM

+
+⋅+⋅+⋅+⋅++++=

 

Error distribution: negative binomial 

Advantages: Set-by-set data are composed of the data with high resolution, and have part 
of information about hooks per basket before 1975.  Therefore, CPUE trends can be 
adjusted by gear configuration prior to 1970.   

Disadvantages: Too much zero-catch data caused a skewed distribution patterns of 
residuals.  Appropriate models that can treat zero-catch data well will be needed for using 
set-by-set data in the future. In addition, set-by-set data with information about gear 
configuration before 1975 are not fully error-checked. Shift of targeting from striped 
marlin to bigeye tuna during the last two decades in the Eastern Pacific has caused high 
uncertainty of overall CPUE of striped marlin, which is calculated by area-weighting.   

Ref: Ichinokawa, M. and Yokawa, K., ISC/06/MARLIN&SWO-WG/05 
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Method − statistical habitat-based standardization (statHBS) 

Yellowfin tuna, striped marlin and blue marlin in the North Pacific 

Who conducted: Tokyo University of Agriculture, NRIFSF and PIFSC 

Scale of fishery data: 5º - monthly Japanese data 

Standardization model: Catch for each species, HBF, hooks and oceanographic data 
(relative temperature from SST) 

Further description of covariates used. If oceanographic, provided source: 

Temperature at discrete depths was obtained from the Global Ocean Data Assimilation 
System (GODAS) developed at the National Centers for Environmental Prediction 
(http://cfs.ncep.noaa.gov/cfs/godas/). Model has 10 and 31 vertical layers in the upper 100 
and 1000 m; respectively, and a spatio-temporal resolution of 1/3º latitude and 1° 
longitude by one month (1980−2005). 

Error distribution: log-normal distribution  

Advantages: possibility to estimate catenary curve 

Disadvantages: appropriate weighting of each species' log likelihood 

Ref: Kanaiwa, M. and K. Yokawa 2006 ISC/06/MARWG&SWOWG-2/ 08 and Working 
Paper 7 (this workshop) 

Method − Delta GLM 

Bigeye and yellowfin tuna in the Eastern Pacific Ocean 

Who conducted: IATTC 

Scale of fishery data: Japanese 5º - monthly by HBF categories 

Predictor variables: Quarterly time period, latitude and longitude interaction, HBF, effort 

Response variable: Catch 

Error distribution: binomial for probability of catch, lognormal for positive catches 

Advantages: Models zero catches 

Disadvantages: 

Ref: Hoyle, S.D. and Maunder M.N. (2006) Standardisation of yellowfin and bigeye 
CPUE data from Japanese longliners, 1975-2004. IATTC Working Group on Stock 
Assessments, 6th Meeting, SAR-7-07. (http://www.iattc.org/PDFFiles2/SAR-7-07-LL-
CPUE-standardization.pdf) 

Method − Neural networks – EPO 

Bigeye and yellowfin tuna in the EPO 

Who conducted: IATTC 

Scale of fishery data: Japanese 5º - monthly by HBF categories 

Predictor variables: Quarterly time period, HBF, month, and temperature at depths of 40, 
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120, 200, 280, 360, and 440 meters, effort 

Response variable: Catch 

Error distribution: Lognormal 

Advantages: Allows data to define functional relationship 

Disadvantages: 

Ref: Maunder, M.N. and Hinton, M.G. (2006) Estimating relative abundance from catch 
and effort data, using neural networks. Inter-American Tropical Tuna Commission Special 
Report 15. pp. 19. (http://www.iattc.org/PDFFiles2/Special-Report-15-Neural-
Networks.pdf) 

Method − Deterministic habitat-based standardization (HBS) 

Bigeye and yellowfin tuna in the EPO, blue marlin 

Who conducted: IATTC 

Scale of fishery data: Japanese 5º - monthly by HBF categories 

Predictor variables: NA 

Response variable: NA 

Error distribution: NA 

Advantages: Uses scientific understanding 

Disadvantages: Spatial-temporal mismatch between habitat preference and oceanographic 
data  

Ref: M. G. Hinton and Nakano, H. (1996). Standardizing catch and effort statistics using 
physiological, ecological, or behavioral constraints and environmental data, with an 
application to blue marlin (Makaira nigricans) catch and effort data from the Japanese 
longline fisheries in the Pacific. Inter-Am. Trop. Tuna Comm. Bull. 21: 171–200. 

Method − statistical habitat-based standardization (statHBS) 

Bigeye tuna in the EPO 

Who conducted: IATTC 

Scale of fishery data: Japanese 5º - monthly by HBF categories 

Predictor variables: NA 

Response variable: Catch 

Error distribution: Lognormal 

Advantages: Uses scientific understanding and estimates habitat preference on correct 
spatial-temporal scale 

Disadvantages:  

Ref: Maunder, M.N., Hinton, M.G., Bigelow, K.A., Langley, A.D. (2006) Developing 
indices of abundance using habitat data in a statistical framework. Bulletin of Marine 
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Science, 79(3): 545–559. 

Method − GLM 

Swordfish in the EPO 

Who conducted: IATTC 

Scale of fishery data: Japanese 5º - monthly by HBF categories 

Predictor variables: NA 

Response variable: NA 

Advantages: Uses scientific understanding 

Disadvantages: Spatial-temporal mismatch between habitat preference and oceanographic 
data  

Ref: Hinton, M. G., Bayliff, W.H. and Suter, J. (2005). Assessment of swordfish in the 
eastern Pacific Ocean. Inter-Amer. Trop. Tuna Comm. Stock Assess. Rpt. 5, 291:326. 

Method − Regression trees 

Bigeye tuna in the EPO  

Who conducted: IATTC 

Scale of fishery data: 5º latitude and 10º longitude - monthly Japanese data 

Predictor variables: Year, month, latitude, longitude 

Response variable: CPUE 

Advantages: Allows data to define functional relationship 

Disadvantages: 

Ref: Watters, G. and Deriso, R. (2000). Catch per unit of effort of bigeye tuna: a new 
analysis with regression trees and simulated annealing. Bull. Int. Am. Trop. Tuna 
Commun. 21 (8), 527–571. 

Method − GLM combined with population dynamics model  

Species X 

Who conducted: IATTC 

Scale of fishery data:  

Predictor variables:  

Response variable: NA 

Advantages: Ensures year effect is consistent with population dynamics 

Disadvantages: Computationally intensive 

Ref: Maunder M.N. (2001) A general framework for integrating the standardization of 
catch-per-unit-of-effort into stock assessment models. Can. J. Fish. Aquat. Sci., 58: 795-
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803.  

Maunder, M.N. and Langley, A.D. (2004) Integrating the standardization of catch-per-
unit-of-effort into stock assessment models:  testing a population dynamics model and 
using multiple data types. Fisheries Research 70(2-3): 389-395. 

Method − GLM 

South Pacific albacore 

Who conducted: Marco Kienzle – JIMAR, Univ. of Hawaii 

Scale of fishery data: individual longline set as reported on logbooks for the American 
Samoa-based fishery from 1996 to 2005 

Standardization model: Catch (number) ~ Year:Month:Hooks+HBF*Thermocline depth 
(GODAS15):Hooks 

Further description of covariates used. If oceanographic, provided source: 

Oceanographic measurements were matched to the longline logbook data on a spatio-
temporal basis: thermocline depth: monthly mean depth of the 15oC (GODAS15) and 
27oC (GODAS27) isotherm in the Pacific Ocean by 1.5o longitude and 1o latitude, 
generated from the Global Ocean Data Assimilation System (GODAS). 

Advantages: modelling the variance with a negative binomial overcomes the 
overdispersion induced by using a Poisson distribution. Model comparison conducted by 
AIC with over 200 models fit. 

Disadvantages: catches by individual longline sets are not independent as catch is more 
similar within fishing trips than between fishing trips. Therefore, using a GLM to analyse 
this type of data (i.e. longitudinal) is a violation of independent observations in a GLM 
framework. Mixed GLMs can be applied to analyse such data, but these types of models 
have been developed relatively recently and have few applications. 

Ref: contact the author (Marco. Kienzle@noaa.gov) 

Method − GLMs/GAMs 

Striped marlin abundance trends and interactions between fishery sectors 

Who conducted: Bureau of Rural Sciences (BRS) 

Scale of fishery data: Australian Eastern Tuna longline (set) and recreational tournament 
data (daily, aggregated)  

Standardization model: GAMs were used to explore functional relationships.  

Error distribution: delta approach (binomial and lognormal) 

Advantages: delta log-normal accommodated the large number of zero catches 

Disadvantages: 

Ref: Knight et al. (2007). Knight, E., Park, T., Bromhead, D., Ward, P., Barry, S. and 
Summerson, R. (2006) Analyses of interactions between longline and recreational 
gamefish fisheries taking or tagging striped marlin off New South Wales. Bureau of Rural 
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Sciences. Canberra. 

Method − Generalized Linear Mixed Model 

Estimate the observed depth distribution of catchability 

Who conducted: Ward, P., and Myers, R.A. 2005. Inferring the depth distribution of 
catchability for pelagic fishes and correcting for variations in the depth of longline fishing 
gear. Can. J. Fish. Aquat. Sci. 62: 1130−1142. 

Scale of fishery data. Several tropical and temperate Pacific observer datasets (hook-level 
data) 

Standardization model: Generalized Linear Mixed Model 

Further description of covariates used: depth derived from catenary geometry, separate 
day/night distributions 

Error distribution: Poisson, also considered negative binomial 

Advantages:  

• Doesn’t require absolute depth of longline hooks to be known 

• Can be applied to non-target species and existing catch and effort time-series 

• Doesn’t require assumptions about longline vulnerability 

Disadvantages: 

• Should not be extrapolated outside the range of input data 

• Need to characterize variability in distribution with regard to: area, season, year, 
oceanographic conditions and fleets 

Method − Generalized Linear Mixed Model 

Estimate effects of soak time and fishing time 

Who conducted: Ward et al. 2004. Fish lost at sea: the effect of soak time on pelagic 
longline catches. Fish. Bull. 102:179–195. 

Scale of fishery data. Observer data from six tropical and temperate Pacific fisheries 
(hook-level data) 

Further description of covariates used: season, year, soak time, exposure of hooks with 
regard to dusk and dawn 

Error distribution: binomial 

Advantages: accounts for effects of soak time and timing which are significant over the 
time-series 

Disadvantages: doesn’t integrate with other correlates such as depth  

Methods − Generalized Estimating Equations 

Estimate catchability effects of bait loss 

Who conducted: Ward, P., and Myers, R.A. In Press. Bait loss and its potential effects on 
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fishing power in pelagic longline fisheries. Fisheries Research 

Scale of fishery data. 1950s survey data from tropical Pacific (hook-level data) 

Standardization model: Generalized estimating equations (GLMMs also tested) 

Further description of covariates used: quarter, latitude and longitude, lunar phase, time of 
day, catenary depth, soak time, bait type, local abundance of species, in situ SST and 
thermocline depth 

Error distribution: Binomial 

Advantages: can adjust for fishing power for historical changes in bait, depth and soak 
time 

Disadvantages: should not be extrapolated outside the range of input data 
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Keith Bigelow, Pacific Islands Fisheries Science Center (PIFSC), Honolulu, HI, USA, 
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Robert Campbell, CSIRO Marine and Atmospheric Research, Hobart, Australia, 
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Pierre Kleiber, PIFSC, Pierre.Kleiber@noaa.gov.  
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Emma Lawrence, Bureau of Rural Sciences (BRS), Canberra, Australia, 
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Pam Maru, Ministry of Marine Resources, Rarotonga, Cook Islands, 
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Mark Maunder, Inter-American Tropical Tuna Commission, La Jolla, CA, USA, 
mmaunder@iattc.org.  

Brett Molony, SPC, brettm@spc.int.  

Kevin Piner, SWFSC, kevin.piner@noaa.gov.  

Cedric Ponsonnet, Service de la Peche, Papeete, French Polynesia, 
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Sung Kwon Soh, Western Central Pacific Fisheries Commission, Pohnpei, FSM, 
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Peter Ward, BRS, peter.ward@brs.gov.au.  

Kotaro Yokawa, National Institute of Far Seas Fisheries, Shimizu, Japan, 
yokawa@affrc.go.jp.  
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