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1 Executive summary

Rev 1: In the initial version, the median values listed in Table 8 actually reported the mean from the
posterior distribution. In the current revision this has been fixed, and the median values are reported.

This working paper presents part II of the 2025 stock assessment of Southwest Pacific Ocean (SWPO) striped
marlin (Kajikia audax) and describes a data-moderate Bayesian surplus production model (BSPM) approach.
This assessment represents a strategic shift from the integrated age-structured models used previously, given
challenges with data conflicts, poor fits to size composition data, and difficulties in estimating model initial
conditions in the integrated age-structured model. The complexity of integrated age-structured models
becomes problematic when fundamental data conflicts exist or when key biological parameters are uncertain,
making the simplified yet robust BSPM framework a reasonable alternative. In combination with information
from the integrated stock assessment, the BSPM can provide a holistic view on likely stock status and
population trajectory.

In order to evaluate stock status, a series of BSPMs spanning 1952-2022 were developed following the
Fletcher-Schaefer production model framework, incorporating biological uncertainty through simulation-based
priors, process error in population dynamics, and observation error in abundance indices and catch data.
Informative priors for maximum intrinsic rate of increase RMax and carrying capacity log(K) were developed
through numerical simulation based on biological and fishery characteristics, with prior distributions refined
using pushforward analysis to ensure biological realism. The assessment utilized annual catch data in numbers
aggregated into total removals and fitted to standardized CPUE indices, primarily the distant water fishing
nation (DWFN) longline index and New Zealand recreational sportfish index. An extensive sensitivity analysis
including 38 one-off models was conducted to explore uncertainties in data inputs, model structure, and
biological assumptions, with a four-model ensemble ultimately proposed for the provision of management
advice.

Given that a surplus production modeling approach was used, conventional WCPFC management metrics
related to spawning biomass (SB) were unable to be produced with the surplus production model. Rather
than metrics related to SB, stock status was summarized in terms of the following maximum sustainable
yield (MSY) and depletion D based reference points: total depletion relative to total depletion at which
MSY is produced (D/DMSY ), fishing mortality relative to fishing mortality that produces MSY (F/FMSY ),
and total depletion relative to a generalized limit reference point of 20% depletion from the unfished state
(D/D0.2F =0). All ratios were calculated with respect to two periods: recent and latest. For depletion ratios,
Drecent refers to the average over 2019-2022 and Dlatest refers to 2022. For fishing mortality ratios, Frecent

refers to the average over 2018-2021 and Flatest refers to 2021. Additionally, note that in this report D is the
static depletion of total population numbers relative to the unfished total population numbers, rather than
the time-dynamic depletion reported by age-structured models (e.g., MULTIFAN-CL or Stock Synthesis)

Key uncertainties and limitations of the assessment include:

• Population scale: Substantial uncertainty in absolute population scale, though minimum scale is
well-constrained by the 70-year catch history

• Stock structure: Potential stock connectivity issues given genetic evidence of SWPO fish in North
Pacific catches
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• Data representativeness: Uncertainty in how well available abundance indices represent true stock
trends and whether catch reporting has been complete over the assessment period

• Model structure: The BSPM approach inherently simplifies complex age-structured population
dynamics, assuming a single well-mixed population with knife-edged selectivity

• Biological parameters: Uncertainty in key biological parameters (e.g., natural mortality, steepness,
and growth) propagates through prior distributions and contributes to wide credible intervals around
stock status estimates

The general conclusions of this assessment are as follows:

• Population trajectory: The SWPO striped marlin stock declined substantially from the assumed
unfished state in 1952, reaching minimum levels around the mid-2010s, with strong evidence of recovery
since approximately 2015

• Current stock status: The stock is estimated to be overfished but not undergoing overfishing, with
recent depletion relative to DMSY at 0.77 (95% CI: 0.33 – 2.3) and recent fishing mortality relative to
FMSY at 0.77 (95% CI: 0.05 – 1.51)

• Stock status probabilities: There is a 74% probability that the stock is below DMSY and only a
22.9% probability that overfishing is occurring

• Future projections: Ten-year projections assuming recent average catch levels indicate continued
recovery, with median D/DMSY projected to reach 1.32 by 2032 and only a 26.05% chance of remaining
overfished

The assessment provides the following recommendations:

• Stock structure research: Development of a conceptual model for SWPO striped marlin, potentially
in collaboration with the ISC Billfish Working Group, to address stock connectivity given genetic
evidence of SWPO fish in North Pacific catches

• Biological parameter refinement: Reduction of uncertainty in growth, maturity, natural mortality,
and steepness parameters through targeted research, and data collection

• Future modeling approach: Progressive development within a Bayesian framework toward full
age-structure through delay-difference models, age-structured production models, and fully integrated
age-structured models

• Management strategy evaluation (MSE): Development of robust management measures through
MSE approaches can provide utility given substantial uncertainties in model inputs
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2 Introduction

Stock assessments of Southwest Pacific Ocean (SWPO) striped marlin (Kajikia audax) have presented
significant technical challenges. As documented in the joint NOAA-SPC modeling meeting report (Ducharme-
Barth et al., 2025), key issues identified by WCPFC SC20 included poor fits to size composition data and
relative abundance indices, conflicts between different data sources, and difficulties in estimating model initial
conditions.

Discussions at the 2025 SPC Pre-Assessment Workshop highlighted additional challenges related to the
estimation of total population scale. The low biomass scale indicated by previous versions of the assessment
appeared at the time to largely be driven by the size composition from multiple fisheries. While estimation of
low biomass scale in these preliminary models (Ducharme-Barth et al., 2025) was not inherently problematic,
the resulting high ratio of fishing mortality (F) to natural mortality (M) that was maintained over multiple
decades in the face of relative stability in catches and catch-per-unit-effort (CPUE) was noted as suspicious
and flagged for further investigation.

The complexity of integrated age-structured models, while providing detailed population dynamics represen-
tation, can become problematic when fundamental data conflicts exist or when key biological parameters
are uncertain. For SWPO striped marlin, these challenges are compounded by spatiotemporal heterogeneity
in fleet coverage, potential non-representativeness in mixed-fleet composition data, and limitations in age
data from opportunistic sampling. Changes to productivity assumptions (growth, natural mortality, maturity,
and/or steepness) or selectivity patterns will impact biomass scaling through predictions of expected size
composition data.

Scaling back model complexity to a data-moderate approach, like Bayesian surplus production models
(BSPMs), offers analysts a simplified yet robust alternative for stock assessment when data limitations or
conflicts present challenges for more complex models (Kokkalis et al., 2024). These models have proven
effective in recent pelagic fish stock assessments (Winker et al., 2018), and are routinely applied for WCPFC
shark assessments (ISC, 2024; Neubauer et al., 2019, 2024). They facilitate a more tractable exploration of
model assumptions by distilling productivity and fishing assumptions into a restricted parameter subset. The
BSPM framework allows for explicit incorporation of parameter uncertainty through informative priors while
maintaining computational efficiency and interpretability.

One advantage of the Bayesian approach is the use of prior information to propagate uncertainty in model
assumptions. Biological simulation approaches can provide robust methods for parameterizing key population
dynamics parameters (ISC, 2024; Pardo et al., 2016). For species with complex life histories like striped
marlin, these simulation-based priors can incorporate uncertainty in growth, maturity, natural mortality, and
reproductive parameters to derive realistic distributions for maximum intrinsic rate of increase and carrying
capacity. Additionally, prior pushforward checks (Kim & Neubauer, 2025; Monnahan, 2024) can be used to
further refine parameter distributions by identifying parameter combinations that produce clearly improbable
outcomes.

This analysis presents a data-moderate approach for SWPO striped marlin that addresses some of the key
technical challenges identified in previous assessments while providing a robust framework for stock status
evaluation. The model incorporates biological uncertainty through simulation-based priors and includes
approaches to address catch uncertainty and population depletion. It is important to note that this analysis
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complements the 2025 revised stock assessment report (Castillo-Jordan et al., 2025). While the relative
simplicity of data-moderate approaches offers some advantages relative to more data-intensive approaches
like fully-integrated age-structured stock assessment models, particularly when uncertainty in data or key
assumptions is high, this comes at the cost of simplifying the model fishery and population dynamics.
Oversimplification of key age-structured processes, or lack of spatiotemporal specificity could result in biases
in data-moderate approaches. Taking multiple modeling approaches into account can give managers a holistic
view on the likely status and trajectory of the stock.

3 Methods

3.1 Modelling framework

To address some of the issues raised in Section 2, a series of Bayesian state-space surplus production models
(BSPMs) spanning the period 1952-2022 were developed following the Fletcher-Schaefer production model
framework (C. Edwards, 2024; Winker et al., 2019). Development of the BSPM followed the approach of (ISC,
2024; Neubauer et al., 2019) and incorporated recent best practices for surplus production models (Kokkalis
et al., 2024) and Bayesian workflows for stock assessment (Monnahan, 2024) as guides for model development,
analysis, and presentation.

The models were implemented in the Stan probabilistic programming language (Team, 2024b) to take
advantage of enhanced convergence diagnostics, greater efficiency in posterior sampling through the no-U-turn
(NUTS) Hamiltonian Monte Carlo (HMC) algorithm (Betancourt & Girolami, 2013), and greater flexibility
with model configuration and prior specification. Implementation in R using the rstan package (Team, 2024a)
provides connection to an ecosystem of R packages for model diagnostics and validation: bayesplot (Gabry &
Mahr, 2024) for posterior visualization and loo (Vehtari et al., 2024).

In their baseline configuration (diagnostic case), the models begin from an assumed unfished state in 1952
and incorporate process error in population dynamics, observation error in the relative abundance index and
catch time series, and uncertainty in biological parameters. Population scale or carrying capacity log(K) is
expressed in the same units as the catch data, which represents total numbers of individuals. The models fit to
a single time series of relative abundance (e.g., standardized CPUE index) at a time. Rather than subtracting
the catch directly, multiplicative survival after fishing mortality was applied. Fishing mortality was estimated
internally by fitting to a time series of observed catches. Computationally, this was necessary to avoid placing
hard constraints on the posterior parameter space which can cause convergence issues for the HMC sampling
algorithm. Additionally, rather than directly estimating the independent fishing mortality values required to
produce the catch, fishing mortality was derived from an estimated time-varying catchability trend and a time
series of nominal observed longline fishing effort. The primary rationale for this modelling choice being that
it is easier to develop a defensible prior for catchability rather than an arbitrary prior for fishing mortality,
given that previous work (ISC, 2024) showed a strong correlation between estimated population scale and
the fishing mortality prior. Unless otherwise mentioned, all models used the same prior parameterizations
(Table 2) based on the biological simulation filtering described in Section 3.5.

Using the diagnostic model1 as a starting point, a number of one-off sensitivity analyses were conducted to
1The Stan code for the diagnostic model bspm_estqsimple_softdep_fullmvprior_x0_sttgamma_flexsigmaC_OPT is publicly

available on GitHub.
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explore key model assumptions or data questions. These are described in Section 3.6 and listed in Table 3.
Based on the results of the sensitivity analyses a model ensemble was developed for the provision of stock
status and management reference points. Full model development code and input data are available online at
the following GitHub repository: https://github.com/N-DucharmeBarth-NOAA/2025-swpo-mls-bspm.

3.2 Input data

The BSPMs were fitted to catch and standardized CPUE data for SWPO striped marlin. Effort was used as
an input to drive the time series of estimated fishing mortality via the estimated catchability trend.

Annual catch data (in numbers of individuals) spanning 1952-2022 were compiled from the 2024 assessment
(Castillo-Jordan et al., 2024) sources and aggregated into total removals by year. The catch series (Figure 1)
shows initially low removals in 1952-1953, followed by a high peak in 1954. Overall, however, catches have
been relatively stable though catches in recent decades have shown a slight decline.

Annual longline effort (in numbers of hooks) matching the SWPO assessment domain, as specified in Castillo-
Jordan et al. (2024), was extracted from publicly available WCPFC data. Longline effort in the assessment
domain (Figure 1) increased gradually from zero in the early 1950s to ~100 million hooks per year in the
early 1970s where it stabilized between 100-150 million hooks per year through the 1990s. Beginning in 2000
effort increased substantially to ~350 million hooks per year in 2003, and has fluctuated around that level for
the last 20 years.

A number of indices were investigated either as one-off sensitivities or included in the structural uncertainty
grid (Figure 2). These included the composite distant water fishing nation (DWFN) longline standardized
CPUE index (1988-2022) from the diagnostic case of the 2024 assessment (Castillo-Jordan et al., 2024), an
Australian longline index (Tremblay-Boyer & Williams, 2024), a New Zealand recreational sportfish index
(Holdsworth, 2023), and three different observer data based indices (Neubauer et al., 2025). The Pacific Islands
observer program indices contained information from New Caledonia, Fiji, Tonga, and French Polynesia
observer programs. Three alternative indices were constructed either by including data from all programs
together, including data from just the western programs (New Caledonia, Fiji, and Tonga) or including data
just from French Polynesia. The DWFN, Australia and observer without French Polynesia indices show recent
increases; the New Zealand and observer with only French Polynesia indices show recent declines; and the all
observer program index shows no trend.

3.3 Population dynamics

The population dynamics follow a hybrid Fletcher-Schaefer surplus production model (C. Edwards, 2024; ISC,
2024) with state-space formulation where population depletion xt (relative to carrying capacity K) evolves
according to:

xt =
(
xt−1 + surplus productiont−1

)
× ϵt × exp(−Ft−1)

where surplus production is defined as:
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surplus productiont−1 =

RMax · xt−1
(
1 − xt−1

h

)
, xt−1 ≤ DMSY

γ ·m · xt−1
(
1 − xn−1

t−1
)
, xt−1 > DMSY

Here, RMax is the maximum intrinsic rate of increase, n is the shape parameter, Ft−1 is the fishing mortality
in year t− 1, and ϵt represents multiplicative process error with ϵt = exp(δt − σ2

P /2) and δt ∼ N(0, σP ). The
intermediate parameters are: DMSY = (1/n)1/(n−1), h = 2DMSY , m = RMax ·h/4, and γ = nn/(n−1)/(n− 1).
MSY is the maximum sustainable yield.

Fishing mortality Ft is in turn defined as a function of fishing effort and time-varying catchability:

Ft = qeff × exp(δq,t − σ2
qdev/2) × Et

where qeff is the base catchability coefficient, Et is the fishing effort2 in year t, and δq,t represents temporal
variation in catchability effectiveness.

The catchability deviations δq,t follow a structured temporal process organized into discrete periods of length
nstep years. In the diagnostic model nstep = 1 which allows for annual catchability deviates across 703 periods
p. Catchability remains constant within periods p, and evolves between periods according to an AR(1) process:

δq,p = ρ× δq,p−1 + ϵq,p × σqdev ×
√

1 − ρ2

where ρ is the autocorrelation parameter, σqdev is the standard deviation of catchability innovations, and
ϵq,p ∼ N(0, 1). The initial period is constrained such that δq,1 = 0. The term

√
1 − ρ2 normalizes the variance

of δq,p to remain stationary at σ2
qdev regardless of the value of ρ.

For each year t, the period assignment is calculated as:

period(t) = min
(⌊

t− 1
nstep

⌋
+ 1, nperiods

)

and the catchability deviation for year t is assigned as δq,t = δq,period(t). This fishing mortality parametrization
is a simplification of the catch-errors formulation in MULTIFAN-CL (Fournier et al., 1998) and allows
catchability to vary smoothly over time while maintaining temporal structure and avoiding overfitting to
annual fluctuations in the effort-catch relationship.

Model initial conditions are defined for t = 1 as xt = x0 × ϵt where x0 is the estimated depletion relative
to unfished at the start of the model period. The prior specified for x0 in the diagnostic case assumes an
unfished initial condition with some uncertainty (Table 2).

2When input in the model the raw input effort, defined as hundred hooks in the WCPFC database is divided by 1e6 to
re-scale catchability so that it is numerically on the same scale as other estimated parameters. This improves convergence of the
HMC sampling of the posterior distribution.

3There are 71 total periods in the model period 1952-2022 and fishing mortality is not estimated in the terminal year.
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3.4 Observation model

The model fits to a standardized CPUE index using a lognormal likelihood:

It ∼ Lognormal(log(q × xt) −
σ2

O,t

2 , σO,t)

where catchability q is analytically derived assuming an uninformative uniform prior, and total observation
error σO,t = σO,input +σO,add combines fixed input uncertainty with an estimated additional error component.

3.4.1 Catch treatment

Population removals (catch) were calculated in each time step as:

Removalst−1 =
(
xt−1 + surplus productiont−1

)
× ϵt × (1 − exp(−Ft−1)) × exp(logK)

As described in Section 3.3, instantaneous fishing mortality Ft was transformed to a discrete proportion
of the population that survived fishing, survivorship, through the exponential decay function exp(−Ft−1).
Removals are simply calculated as the complementary proportion (1 − exp(−Ft−1)) of the total production
(including surplus production and process error) that are removed due to fishing and converted to absolute
units, numbers, through exp(logK).

The model fits to the observed total catch in numbers using a Student’s t-distribution likelihood:

log(Removalsobs,t) ∼ Student-t
(
νc, log(Removalst) −

σ2
C,t

2 , σC,t

)

where the degrees of freedom parameter νc controls the tail behavior4, and the observation error σC,t allows
for time-varying uncertainty in catch observations. However, in the diagnostic model configuration σC,t = 0.2
for all t.

3.5 Prior development

The baseline prior distributions for leading estimated model parameters are specified in Table 2. A description
of the derivation of these prior distributions follows.

Informed prior distributions for RMax, and the Pella-Tomlinson shape parameter n were developed using
numerical simulation based on biological knowledge. Informed prior distributions for log(K), and baseline
catchability qeff were developed using numerical simulation based on existing fishing data observations (e.g.,
catch and effort). Priors for other estimated leading model parameters (initial depletion x0, AR1 correlation
in catchability deviates ρ, variability in catchability deviates σqdev, process error σP , index observation
error σO,add, and degrees of freedom of the catch likelihood νcatch) were based on expert opinion and values
observed in the literature. The naïve or input prior distributions were refined using a prior pushforward
analysis.

4As νc → ∞ the likelihood equation converges to the lognormal distribution Lognormal
(

log(Removalst) −
σ2

C,t

2 , σC,t

)
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3.5.1 Biological simulation framework

Informative priors for key population parameters were developed through biological simulation using Monte
Carlo sampling from biologically plausible parameter distributions5. The simulation framework incorporated
uncertainty and correlations in life history parameters:

• Growth parameters: Francis parameterization with independent sampling
• Natural mortality: Reference mortality Mref negatively correlated with maximum age (r = -0.3)
• Maturity: Length-based logistic function parameters
• Reproduction: Steepness parameter for stock-recruit relationship and random variation around a

50:50 sex-ratio
• Weight-length relationship: Correlated allometric parameters (r = -0.5) with biological constraints
• Fishery selectivity: Length at first capture for depletion prior

Parameter combinations (Table 1) were filtered to ensure biological realism and included correlations between
life history parameters reflecting biological trade-offs (e.g., shorter lived individuals having higher natural
mortality rates).

3.5.1.1 Maximum intrinsic rate of increase (RMax) prior

RMax was calculated by numerically solving the Euler-Lotka equation using bounded optimization (nlminb
function in R) to find the value of RMax that satisfies the equation within convergence criteria. Starting
values and bounds were set to ensure biologically realistic solutions. Formulation of the Euler-Lotka equation
followed the approach implemented in openMSE (Hordyk et al., 2024; Stanley et al., 2009):

α
∑AMax

a=1 lafa exp(−RMax × a) = 1

where α is the slope at the origin of the stock-recruitment curve, la is the probability of survival to age a, and
fa is the fecundity (reproductive output) at age a. Additional technical detail can be found in Section 11.1 of
the Technical Annex. Repeating this calculation across the 500,000 parameter combinations resulted in a
prior distribution of RMax conditioned on plausible biology and life-history characteristics. The resulting
distribution was first filtered to values of RMax < 1.5 representative of what the literature (Gravel et al.,
2024; Hutchings et al., 2012) indicates is most likely for teleosts. A lognormal distribution was fit to the
filtered distribution to derive input prior parameters for the Stan model.

3.5.1.2 Pella-Tomlinson shape parameter (n) prior

Similarly, a prior distribution for the Pella-Tomlinson shape parameter n was derived from the filtered RMax

values and associated biological parameter combinations through a two-step process. First, the inflection
point of the production function was estimated using the relationship established by Fowler (1988):

ϕ = 0.633 − 0.187 × log(TG ×RMax)

where ϕ is the inflection point (representing the population level at which maximum sustainable yield occurs
as a fraction of carrying capacity), TG is the generation time calculated following Grant & Grant (1992) as

5The R code for the simulation 01-01-define-rmax-prior.r is publicly available on GitHub.
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TG =
∑AMax

a=1 a× la × fa/
∑AMax

a=1 la × fa, and RMax is the maximum intrinsic rate of increase.

The Pella-Tomlinson shape parameter n was then derived from the inflection point through the mathematical
relationship ϕ = (1/n)1/(n−1), solved numerically using bounded optimization in R as done for RMax. This
transformation links the biologically-derived inflection point to the production function curvature, where
n = 2 corresponds to the symmetric Schaefer model (e.g., MSY achieved at depletion D = 0.5). Lower values
of n (n < 2) indicate more productive stocks that achieves MSY at D < 0.5 and higher values of n indicate
less productive stocks with MSY occurring at D > 0.5. A lognormal distribution was fit to the distribution of
n to derive input prior parameters for the Stan model. Additionally, linking the shape parameter n to RMax

necessitated a multivariate prior structure so the correlation between the two parameters was estimated as
well.

3.5.2 Fishing data simulation framework

Prior distributions for carrying capacity log(K) and initial catchability coefficient qeff were derived using
catch and effort data combined with the biologically-informed parameter distributions6.

3.5.2.1 Carrying capacity prior (log(K))

The carrying capacity prior was constructed by assuming the maximum observed catch approximates MSY.
This provides a conservative assumption for the upper limit of population scale7 as larger MSY correlates
positively with larger population scale. To account for uncertainty in the maximum catch ∼ MSY relationship
(e.g., true MSY was above or below the maximum observed catch), candidate MSY values were sampled
from a lognormal distribution centered on the maximum observed catch with moderate levels of uncertainty
(MSY ∼ Lognormal(log(max catch), 0.5)).

For each combination of MSY, biologically-derived RMax and shape parameter n, carrying capacity was
calculated as:

K = MSY

r × ϕ× (1 − ϕ)n−1

where ϕ = (1/n)1/(n−1) represents the inflection point of the production function. For the Fox model special
case where n = 1, the relationship simplifies to K = e × MSY/r. Non-finite values and extreme outliers
(log(K) > 20) were replaced through resampling from the valid parameter space to ensure numerical stability.
A lognormal distribution was fit to the filtered distribution to derive input prior parameters for the Stan
model.

3.5.2.2 Initial effort catchability prior (qeff )

Next, the initial catchability coefficient prior was developed using the relationship between CPUE and stock
abundance:

6This is applied in the R script 03-06-new-logK-prior-pushforward-bspm_estqsimple_softdep_mvprior_x0.r lines 64-92
which is publicly available on GitHub.

7The upper limit of population scale is typically more challenging to estimate than the lower population limit as population
scales of infinite sizes can support any observed catches. However, there typically is a hard floor to population scale in that it
must be sufficiently large to maintain a population that produces the time series of observed catches.
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qeff = CPUE

K

where CPUE was calculated from early fishery data (first 10 years of catch and effort records) when the
stock was assumed to be closer to carrying capacity. The prior distribution was constructed by randomly
pairing CPUE values sampled from the early period with carrying capacity values from the log(K) prior
distribution to generate a distribution of qeff values incorporating both the uncertainty in population scale
and the variability observed in early fishery CPUE. Again, a lognormal distribution was fit to the filtered
distribution to derive input prior parameters for the Stan model.

3.5.3 Other priors

As mentioned previously, initial prior distributions for the remaining leading model parameters (initial
depletion x0, AR1 correlation in catchability deviates ρ, variability in catchability deviates σqdev, process
error σP , index observation error σO,add, and degrees of freedom of the catch likelihood νcatch) were specified
either using expert opinion or literature.

Given that the limited large-scale industrial fishing existed in the SWPO prior to the expansion of the
Japanese distant-water longline fleet in 1952, the population was assumed to start at an unfished condition
with some uncertainty. Initial depletion x0 was modeled with a lognormal distribution centered on 1. A
lognormal prior was used for the standard deviation of the process error where the parameters were converted
from the JABBA default prior for process error (Winker et al., 2018). The degrees of freedom nucatch

parameter assumed a gamma prior based on suggestions in the literature that it serves as a sensible default
choice (Juárez & Steel, 2010). The prior for index observation error σO,add assumed a half-normal distribution
following ISC (2024) which provides sufficient support for a broad range of extra estimated observation error.
For the autocorrelation coefficient in catchability deviations (ρ) and the standard deviation of catchability
deviations (σqdev), initial priors were derived from data-filtering simulation results and specified as a bivariate
distribution on the transformed scale: tanh−1(ρ) and log(σqdev).

3.5.4 Prior pushforward

Following Kim & Neubauer (2025), a prior pushforward analysis was conducted to refine the naïve prior distri-
butions derived from the biological and fishing data simulation frameworks. Random parameter combinations
drawn from the input prior distributions were passed through the diagnostic Stan model used for inference
but with the likelihoods turned off ( fit_to_data = 0L ), generating simulated population trajectories and
fishing dynamics under the model structure. This approach ensures that simulated trajectories are consistent
with the actual model structure used for inference.

Parameter combinations were filtered through sequential criteria based on population viability and fishery
realism (Figure 3):

• Initial survival filter ( iter_surve ): Terminal year depletion > 1% ( mindep > 0.01 ), minimum
population size > 15,000 individuals which matches recent observed catch levels ( minN > 15000 ), and
biologically reasonable shape parameter ( shape < 20 )

• Fishing mortality filter ( iter_f ): Maximum fishing mortality < 2.5 ( maxF < 2.5 ) and average
fishing mortality < 0.8 ( avgF < 0.8 ) to ensure realistic exploitation levels
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• Catch consistency filter ( iter_catch ): Simulated catches within realistic bounds relative to
observed data: maximum catch between 0.5-5.0× observed maximum, minimum catch > 0.5× observed
minimum, and average catch between 0.5-5.0× observed average

• CPUE consistency filter ( iter_cpue ): Early period CPUE (first 10 years) between 0.5-5.0×
observed early CPUE average to ensure realistic abundance levels during the initial fishery development

Parameter combinations passing all filtering stages ( iter_cpue ) were used to fit updated multivariate
prior distributions using maximum likelihood estimation (Figure 4). Given that a number of parameters
showed correlations following the prior pushforward, a 7-dimensional multivariate prior was developed for
core parameters: log(K), log(RMax), log(n), log(x0), log(qeff ), tanh−1(ρ) and log(σqdev). Correlations with
absolute values < 0.1 were reset to zero to avoid weak spurious correlations, retaining only meaningful
parameter relationships. Though log(x0) was included in the multivariate prior, for convenience, it was
treated as an unchanged univariate prior from the initial naïve prior distribution since the pushforward did
not provide an update to this parameter.

Prior distributions for process error σP , index observation error σO,add, and degrees of freedom of the catch
likelihood νcatch were unchanged following the prior pushforward analysis and remained as univariate priors.
Final prior distributions are listed in Table 2.

3.6 Description of one-off sensitivities

During the course of model development 38 one-off sensitivity models, organized into 12 groups, were
investigated to explore alternative assumptions, model structures and sensitivities to data inputs. These
models are listed in Table 3 and are described in further detail below.

3.6.1 Index

The diagnostic case model fits only to the DWFN index. One-off model sensitivities were conducted to explore
how model estimates changed as a result of alternative indices:

• 0071 : Fits to the Australian longline index
• 0072 : Fits to the New Zealand recreational sportfish index
• 0073 : Fits to the longline observer data combining the programs from New Caledonia, Fiji, Tonga,

and French Polynesia
• 0074 : Fits to the longline observer data excluding the French Polynesia program
• 0075 : Fits only to the longline observer data from the French Polynesia program

The French Polynesia observer program data was treated separately as it showed differing trends from the
other 3 observer programs (Neubauer et al., 2025). Additionally, given that the shorter indices (Australia and
longline observer) provided little information about population scale, several other models were set-up to
simultaneously fit them with the two longer indices (DWFN and New Zealand).

• 0129 : Fits to the DWFN & Australia index
• 0130 : Fits to the New Zealand & Australia index
• 0131 : Fits to the DWFN & Observer (New Caledonia, Fiji & Tonga) index
• 0132 : Fits to the New Zealand & Observer (New Caledonia, Fiji & Tonga) index
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3.6.2 Catch observation error σC

The diagnostic case model assumes a constant catch observation error of σC = 0.2. Three one-off models
explored alternative assumptions about catch uncertainty:

• 0076 : Time-varying σC following a power curve declining from 0.5 in early years to 0.2 in recent years,
assuming improved catch reporting over time

• 0077 : Constant σC = 0.1, representing lower uncertainty in catch observations throughout the time
series

• 0078 : Time-varying σC following a power curve declining from 0.5 in early years to 0.1 in recent years,
combining both temporal improvement and lower overall uncertainty

3.6.3 Early data

Several models explored sensitivity to problematic early data years, particularly 1952 and 1954 which showed
unusual catch or effort patterns. In particular the 1952 catch observation was anomalously low especially
given the reported effort, and was identified to have high influence on model estimates. This could be a
valid observation, as the Japanese longline fleet expanded into the south Pacific in 1952 they fished closer
to the equator which tended to have lower striped marlin catch rates than in subsequent years when they
fished between Australia and New Caledonia. Alternatively, this outlier point could be the result of erroneous
reporting in either catch or effort. In either case, sensitivity to this data point was investigated:

• 0079 : Recalculates the low 1952 catch observation as the expected catch given the effort and average
nominal CPUE from 1953-1957 (1952 catch is increased substantially).

• 0080 : Recalculates 1952 effort given the low 1952 catch and average nominal CPUE from 1953-1957
(1952 effort is decreased substantially)

Additionally, the large catch event in 1954 has been heavily scrutinized. This could be a valid observation as
the Japanese longline fleet expended considerable effort during the time of year (3rd and 4th quarters of the
year) striped marlin form spawning aggregations, in an area between Australia and New Caledonia where
these aggregations form. Regardless, sensitivity to this observation was investigated in case it is a reporting
error.

• 0081 : The 1954 catch was reduced by 50%
• 0082 : Combined alternative catch values for both 1952 and 1954
• 0083 : Combined alternative 1952 effort and 1954 catch values

These sensitivities address concerns about sensitivity to potentially anomalous observations in the early years
of the fishery when reporting systems were less standardized.

3.6.4 Scaling priors

The diagnostic case model estimates a low population scale relative to the prior. Two models tested the
impact of forcing the model toward higher population scale estimates:

• 0093 : Modified priors on log(K) and catchability (qeff) to favor higher carrying capacity and lower
catchability estimates

• 0096 : Same as 0093 but combined with more conservative shape parameter prior (centered on 2)
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These models explored whether alternative prior assumptions about population scale could shift model
estimates.

3.6.5 Catch observation model

• 0110 : Replaced the default Student-t likelihood for catch observations with a lognormal error structure
to test sensitivity to distributional assumptions about catch observation error

3.6.6 Temporal resolution of catchability deviates

The diagnostic case model estimates catchability deviates in single time steps (annual). Four models explored
different temporal resolutions:

• 0111 : Catchability deviates fixed across 2-year periods (n_step = 2)
• 0112 : Catchability deviates fixed across 3-year periods (n_step = 3)

• 0113 : Catchability deviates fixed across 5-year periods (n_step = 5)
• 0114 : Catchability deviates fixed across 10-year periods (n_step = 10)

These sensitivities tested whether the temporal resolution of catchability changes affected model estimates,
with longer periods resulting in a more parsimonious model but potentially diminishing the models ability to
fit to data.

3.6.7 Catch reporting

Striped marlin are a commercially valuable non-target species, and as such it is assumed that if they are
caught they are retained, and recorded in the logbook. However, given that they are a non-target species
it is possible that they are not, or have not always been reported in the logbook and that under-reporting
of catches or discarding could occur (e.g., given value of striped marlin and hold space required relative to
target species). Three models explored potential systematic under-reporting of catches:

• 0115 : Doubled all observed catch values to test sensitivity to potential 50% under-reporting throughout
the time series

• 0116 : Applied a linear multiplier increasing from 1x to 2x observed catch over time, representing
improving catch reporting

• 0117 : Applied a linear multiplier decreasing from 2x to 1x observed catch over time, representing
deteriorating catch reporting in recent years

3.6.8 Process error σP

The diagnostic case model estimated non-zero process error in the early model period, before the CPUE
index began, and balanced process error with the catchability deviates in order to fit to the catch.

• 0118 : Restricted process error to be negligible (σP ∼ 0) to evaluate the impact of environmental
stochasticity on model estimates by forcing the population to follow deterministic surplus production
dynamics. This is essentially the same thing as the deterministic recruitment model diagnostic (Kapur
et al., 2025; Merino et al., 2022), and can be informative for determining the strength of the estimated
production function.

16



3.6.9 Start year

Given potentially anomalous catch observations in 1952 and 1954, along with uncertainty in the accuracy of
early catch observations, four models explored sensitivity to the assumed initial conditions by starting the
model in different years:

• 0119 : Model starts in 1955 with assumed initial depletion x0 = 0.9, skipping the early data years

Three models were also tested which started the model in the same year as the CPUE index, and varied the
level of initial depletion:

• 0120 : Model starts in 1988 with x0 = 0.5
• 0121 : Model starts in 1988 with x0 = 0.7
• 0122 : Model starts in 1988 with x0 = 0.9

3.6.10 Inclusion of effort deviates

Early model development explored a more complex formulation of fishing mortality Ft where effort deviates
were also used in addition to the catchability deviates to link effort to Ft:

Ft = qeff × exp(δq,t − σ2
qdev/2) × Et × exp(δe,t − σ2

edev/2)

This formulation of fishing mortality is closer to the full catch-errors with effort deviation approaches available
in MULTIFAN-CL (Fournier et al., 1998). Two models tested whether estimating deviations from the effort
time series improved model performance:

• 0124 : Estimated effort deviates with 2-year temporal resolution (n_step = 2)
• 0126 : Estimated effort deviates with 5-year temporal resolution (n_step = 5) for more constrained

estimation

3.6.11 Direct estimation of fishing mortality

Rather than estimating fishing mortality indirectly through catchability and effort, two models directly
estimated annual fishing mortality rates to see if the simpler formulation for fishing mortality could replicate
the results of the diagnostic case model, or if the formulation of fishing mortality significantly impacted model
estimates:

• 0127 : Direct F estimation with σF calibrated to match the variance in fishing mortality observed in
the diagnostic case model

• 0128 : Direct F estimation with σF set to 0.25 times the diagnostic case variance, providing more
constraint on fishing mortality variability in order to see how estimates of scale are impacted

3.6.12 Alternative RMax prior

The diagnostic case model estimates a fairly productive stock with an RMax that is considerably higher
than an analogous species in the Atlantic Ocean, white marlin (Kajikia albida). The most recent ICCAT
assessment (ICCAT, 2020), implemented using JABBA (Winker et al., 2018), estimated RMax at 0.163 for
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white marlin. Sensitivity models assuming this lower level of productivity were developed to see the impact it
would have on model estimates, particularly population scale.

• 0133 : Apply lower productivity white marlin Rmax prior
• 0134 : Apply lower productivity white marlin Rmax prior and apply a more conservative shape

parameter prior (centered on 2)

3.7 Model Implementation

The models were implemented using the No-U-Turn Sampler (NUTS) in Stan. Each model was run using
5 independent Markov chains with randomly generated starting values to ensure robust exploration of
the posterior parameter space. Each chain was sampled for 3,000 iterations, with the first 1,000 iterations
discarded as warmup to allow for algorithm adaptation. To reduce posterior sample autocorrelation and
storage requirements, every 10th samples was retained from the post-warmup iterations, yielding a final
sample size of 1,000 draws from the joint posterior distribution across all chains. The NUTS algorithm was
configured with strict adaptation parameters to ensure reliable convergence. The adaptation delta was set to
0.99 to reduce the step size and minimize divergent transitions, while the maximum tree depth was increased
to 12 to allow for longer trajectories during the dynamic sampling process.

Model convergence and performance were assessed using multiple diagnostic criteria recommended for Bayesian
stock assessment workflows (Monnahan, 2024). The potential scale reduction factor (R̂) was required to be
less than 1.01 for all parameters, indicating convergence across chains. Effective sample sizes were required to
exceed 500 to ensure adequate precision in posterior estimates. Additionally, posterior predictive checks were
conducted to evaluate model adequacy through comparison of observed versus predicted index and catch
values, while parameter identifiability was assessed through visual examination of posterior distributions and
correlation structures among estimated parameters (Gabry et al., 2019).

3.8 Model diagnostics

Model performance was comprehensively evaluated using multiple diagnostic criteria recommended for
Bayesian stock assessment workflows (Monnahan, 2024). The diagnostic framework included Stan model
convergence criteria, data fits, posterior predictive checks, retrospective analysis, and hindcast cross-validation.

3.8.1 Convergence diagnostics

Conventional Stan model convergence diagnostics and thresholds were employed to identify whether posterior
distributions were representative and unbiased (Monnahan, 2024). Models were considered to have ‘converged’
to a stable, unbiased posterior distribution if they satisfied the following criteria:

• Potential scale reduction factor (R̂) less than 1.01 for all leading model parameters, indicating
convergence across chains

• Bulk effective sample size (Neff ) greater than 500 for all leading model parameters, ensuring
adequate precision in posterior estimates

• No divergent transitions during the NUTS sampling process, which can indicate problematic
posterior geometry
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• Maximum tree depth not exceeded during sampling, ensuring adequate exploration of parameter
space

Additionally, trace plots and rank plots were examined to visually assess mixing and convergence behavior
across chains (Gabry et al., 2019).

3.8.2 Leave-one-out cross-validation diagnostics

Model predictive performance and influential observations were assessed using leave-one-out cross-validation
(LOO-CV) implemented through the loo package (Vehtari et al., 2017; Vehtari et al., 2024). LOO-CV provides
an estimate of the expected log pointwise predictive density (ELPD) while identifying problematic observations
that may unduly influence model predictions.

LOO-CV was also used as a factor to compare performance between models. Following the recommendations
of Sivula et al. (2020), models were considered to have meaningfully different performance when the ELPD
difference exceeded 4 units. For differences larger than 4 units, statistical significance was assessed by
comparing the ELPD difference to twice its standard error, with differences greater than 2× the standard
error considered statistically significant.

The effective number of parameters (p_loo) was examined as an additional diagnostic measure, with values
substantially larger than the nominal number of model parameters indicating potential model misspecification.
Catch and index observations were categorized as having low influence (Pareto-k ≤ 0.7), high influence (0.7
< Pareto-k ≤ 1.0), or very high influence (Pareto-k > 1.0). Observations with high or very-high influence
were investigated to identify potential outliers, data entry errors, or systematic model misspecification that
could compromise predictive performance.

3.8.3 Data fits

Model fits to the abundance index and catch time series were each quantified using normalized root-mean-
squared error (NRMSE):

RMSE =
√∑n

i=1(yi − ŷi)2

n

NRMSE = RMSE∑n
i=1 yi/n

where yi are the observed values and ŷi are the model predictions. The average NRMSE across all posterior
samples was calculated for each data component. Additionally, Probability Integral Transform (PIT) style
residuals were calculated for the fit to the index.

3.8.4 Posterior predictive checks

Posterior predictive checks were conducted to evaluate model adequacy by comparing observed data with
data simulated from the fitted model. For each posterior sample, synthetic datasets were generated using the
estimated parameters, and agreement between observed and predicted datasets was assessed visually.
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3.8.5 Retrospective analysis

Retrospective analysis was conducted for each model by sequentially peeling off a year from the terminal
end of the fitted index and re-running the model. Data were removed for up to five years, from 2022 back
to 2018. Estimates of x in the terminal year of each retrospective peel were compared to the corresponding
estimate of x from the full model run to better understand any potential biases or uncertainty in terminal
year estimates. The Mohn’s ρ statistic (Mohn, 1999) was calculated and presented. This statistic measures
the average relative difference between an estimated quantity from an assessment (e.g., depletion in final
year) with a reduced time-series of information and the same quantity estimated from an assessment using
the full time-series.

Additionally, following Kokkalis et al. (2024) the proportion of retrospective peels (or coverage) where the
relative exploitation rate (U/UMSY ) and relative depletion (D/DMSY ) were inside the credible intervals of
the full model run was calculated. This metric provides an additional perspective on retrospective consistency
by evaluating whether the uncertainty estimates from the full model appropriately capture the range of
estimates obtained when using reduced datasets.

3.8.6 Hindcast cross-validation

Hindcast cross-validation (Kell et al., 2021) was conducted for each index to determine model performance in
predicting the observed CPUE I one-step-ahead into the future relative to a naïve predictor. Briefly, the
‘model-free’ approach to hindcast cross-validation was used, and used the same set of five retrospective peels
described in Section 3.8.5.

The ‘model-free’ hindcast calculation is described using the model from the last peel BSPM2017 as an
example. This model fit to index data through 2017 but included catch through 2022. The model estimates of
predicted CPUE in 2018 based on BSPM2017 is the ‘model-free’ hindcast for 2018, Î2018. The naïve prediction
of CPUE in 2018 is simply the observed CPUE from 2017, I2017 = Ï2018. The absolute scaled error (ASE) of
the prediction is:

ASE2018 = |I2018−Î2018|
|I2018−Ï2018|

Repeating this calculation across all retrospective peels for years 2019-2022 and taking the average across
ASE values gives the mean ASE or MASE for the model. An MASE value less than one indicates that the
model has greater predictive skill than the naïve predictor.

3.8.7 Model-free hindcasts

Additional model-free hindcasts, similar to those described in Section 3.8.5, where the model was run for the
full period 1952-2022 but without the last y years of index data. Hindcasts excluding the last 5, 10, 15, and
20 years of index data were conducted in order to evaluate the models ability to recapture the dynamics of
the full model in the terminal year. Good hindcast performance over a long time horizon is an indication of a
well-determined production function, and can give an idea of the reliability of the predictions from the full
model.
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3.9 Forecasts

Simple, status quo catch-based stochastic projections over a 10-year window are provided for each model. For
each model, projected catch was taken as the average catch over the terminal 5 years (2018-2022). Process
error in the projection period was randomly resampled from the estimated process error in the main model
period.

4 Results

4.1 Diagnostic case

4.1.1 Model convergence and diagnostics

The diagnostic case model 0100 achieved satisfactory convergence based on standard Hamiltonian Monte
Carlo diagnostics (Table 4). R̂ values were below the 1.01 threshold and effective sample sizes exceeding the
recommended minimum of 500 (100 samples per chain) for all parameters. No divergent transitions were
observed across chains, and maximum tree depth was not exceeded during sampling, indicating successful
exploration of the posterior space. Additionally, LOO-CV identified only two observations with Pareto-k >
0.7 indicating the model structure and choice of likelihoods adequately matched the fitted data. Lastly, the
effective number of estimated parameters p_loo was well below both the number of observations and the
actual estimated parameter count indicating that model is likely to be reasonably well specified.

4.1.2 Model fit to data

4.1.2.1 Catch data fit

The diagnostic case model adequately captured the trend and magnitude of the observed catches (1952-2022)
with the obvious exceptions of the 1952 and 1954 observations (Figure 5). Use of a catch likelihood, student-t,
with heavier tails made the model more robust to these outlier observations, and accordingly estimated
larger and smaller predicted catches, respectively, for these two observations. However, use of the student-t
distribution along with an assumed 20% CV on the observation error did mean that catch observations
were not fit exactly though the observed catches did tend to fall within the posterior predicted distribution
(Figure 6). Given that SWPO striped marlin is a non-target species, some uncertainty in the predicted catches
is considered to be appropriate.

4.1.2.2 CPUE index fit

Diagnostic case model fit to the standardized DWFN CPUE index (1988-2022) was evaluated using NRMSE
and showed reasonable fits to the observed index given the high variability and observation error (Table 5).
The model also successfully captured the general declining trend in standardized CPUE from 1988-2022
(Figure 7). PIT residuals did not show persistent positive or negative patterns, however they did indicate
marginally better fit within the last decade of the index relative to the earlier portion(Figure 8). Posterior
predictive checks confirmed that models replicated key features of the observed CPUE data (Figure 9).
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4.1.3 Model validation

Overall retrospective bias was within the acceptable range proposed by (Hurtado-Ferro et al., 2015), however
it did indicate a slight underestimate to the population recovery indicated by the DWFN index (Table 5;
Figure 10). This is likely driven by the large observation in 2021 that is used by the full model to drag
estimates up from the lower values observed in 2015-2019. Estimates of fishing mortality (U/UMSY ) and
depletion (D/DMSY ) relative to MSY fell within the credible intervals of the full model run 100% of the
time (Table 5). For hindcast cross-validation, the diagnostic model substantially exceeded the performance of
the naïve predictor (Table 5; Figure 11). This supports the conclusion that models successfully identified and
estimated a production function for the stock.

4.1.4 Parameter estimates

Following the guidance from Kim & Neubauer (2025), posterior distributions of parameter estimates were
compared to the realized prior in addition to the naïve or input prior. The realized prior represents the effective
prior distribution that results from passing naïve parameter combinations through the model structure with
likelihoods turned off, revealing how model constraints and structural assumptions modify the input priors
before data-based updating occurs (Kim & Neubauer, 2025). In the current analysis, there was little difference
between the naïve and realized priors given the approach taken in developing the priors. Based on these
comparisons the diagnostic model showed substantial posterior learning across several key leading parameters
(Figure 12; Table 6), indicating that the data contained sufficient information to update parameter estimates
from their prior distributions.

The carrying capacity log(K) exhibited substantial posterior learning, with the combination of index and
catch data in the diagnostic case model strongly supporting lower population scales than suggested by either
the naïve or realized priors. Similarly, the intrinsic rate of increase RMax showed strong posterior updates,
with the data favoring lower productivity than the biological simulation framework initially suggested. Inverse
transform sampling to match the RMax posterior distribution to the input biological simulation framework
prior for RMax indicates that the lower productivity is characterized by pronounced shifts toward lower
steepness values h (Figure 13).

The median estimate of RMax from the diagnostic case, 0.396 (Table 6), is considerably higher than estimates
for an analogous species, white marlin (Kajikia albida), assessed using a JABBA surplus production model
(ICCAT, 2020; Winker et al., 2018) in the Atlantic Ocean where RMax = 0.163 (95% credible interval:
0.122-0.215). However, it is worth noting that the ICCAT assessment assumed a much more precise prior for
RMax, and that the 95% credible intervals of the diagnostic case model almost completely cover the ICCAT
posterior distribution. Notably, the Atlantic white marlin JABBA model showed remarkable consistency
with stock status and trend estimates from a fully integrated, length-structured model implemented in Stock
Synthesis (ICCAT, 2020).

Shape and initial depletion parameters did not demonstrate notable posterior updates (Figure 12). The
Pella-Tomlinson shape parameter n showed limited deviation from the prior, suggesting the data provided
weak information about production function curvature. Initial depletion x0 also remained close to the assumed
unfished prior, indicating little information in the data to suggest large-scale fishing pressure prior to 1952.

The catchability and temporal variability parameters showed large posterior updates (Figure 12). The base
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catchability coefficient qeff showed substantial learning, with strong negative correlations with log(K). This
demonstrates a trade-off between population scale and catchability in order to fit the observed catches. If a
more precise prior on qeff were to be developed, this would be expected to set population scale and dramatically
reduce uncertainty in model estimates. The autocorrelation parameter ρ and catchability variability σqdev

both showed posterior updates, with the data informing a highly correlated temporal structure of catchability
deviations.

Lastly, process error σP showed moderate posterior learning, while additional observation error σO,add

demonstrated substantial updates from the prior (Figure 12). This indicated that the model estimated
additional uncertainty beyond the input index observation error, rather than using process error, to reconcile
the observed CPUE variability. This results in a smoother year-on-year population trajectory. The degrees of
freedom parameter νcatch for the catch likelihood showed substantial updating (Figure 12), indicating the
model preferred a Student-t distribution with very heavy tails in order to adequately account for the catch
observations given the level of observation error.

4.1.5 Model-free hindcasts

Model-free hindcasting was conducted to evaluate the model’s ability to predict population dynamics when
fitted to progressively truncated index datasets. The diagnostic model was compared against retrospective
peels excluding the final 5, 10, 15, and 20 years of index data (terminating in 2017, 2012, 2007, and 2002,
respectively), with the model providing estimates through the full model period based on based only on the
estimated production function and predicted catch.

The model demonstrated remarkably consistent performance across most hindcast scenarios (Figure 14)
providing strong evidence of a well-determined production function. In general, the hindcast models successfully
captured the general increasing trend in the standardized index after 2015. Model predictions for the DWFN
CPUE index showed good coherence between the diagnostic model and all retrospective peels except the 15
year hindcast model, with overlapping 95% credible intervals throughout most of the time series. Estimates
from the 15 year hindcast model appear to be strongly influenced by the series of higher observations
(2003-2005) which cause it to underestimate the decline in the observed index.

Population dynamics estimates showed reasonable consistency across hindcast scenarios (Figure 15), with the
notable exception of the 15 year hindcast model mentioned in the previous paragraph. Depletion trajectories
remained largely stable, with all models estimating similar patterns of decline from unfished conditions to
minimum levels around the early 1990s, though predictions begin to diverge slightly in the recovery period
post 2015. Population scale estimates also showed good agreement, though with increasing uncertainty for
earlier time periods in longer hindcasts as expected. The stock status metrics (D/DMSY and F/FMSY )
showed fairly good consistency across most hindcast scenarios particularly for F/FMSY . Additionally, given
the The estimated trajectories for these key management metrics were nearly identical between the diagnostic
model and all retrospective peels, suggesting that management advice derived from this model would have
been stable regardless of when the assessment was conducted over the past two decades.

This consistency across multiple extended hindcast periods provides support that the underlying population
dynamics are well described, given the available data. This gives confidence that projections made from the
full model will likely capture the stock trajectory within the near to medium term, assuming stationarity in
future productivity and carrying capacity.
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4.2 One-off sensitivities

As described in Section 3.6, 38 different one-off sensitivities were conducted to either explore plausible
uncertainty in model assumptions and configuration, or to build intuition about the model dynamics and
gain confidence in the results.

4.2.1 Index

The first one-off sensitivity group explores alternative abundance indices compared to the diagnostic case
model that fits only to the DWFN index. This group includes models testing individual indices (0071-0075)
and combinations of indices (0129-0132). In general, model fit to individual indices (0071-0075) was acceptable
(Figure 16), though model predictions tended to over-predict the last 5 years of the New Zealand recreational
sportfish index ( 0072 ). However, observation errors for these observations were fairly large relative to earlier
observations meaning that the model was not overly constrained to fit them, and could instead follow the
trajectory implied by the production function. Notably, only the two longer indices (DWFN and New Zealand
recreational) showed sufficient contrast with the catches to meaningfully move the scale estimate from the
prior and models fitting either of those indices estimated similar population scales (Figure 17). The Australia
longline index ( 0071 ) showed some posterior update but still estimated a larger overall population scale,
the observer index with only data from French Polynesia ( 0075 ) also showed a noticeable posterior update
however had poor convergence diagnostics (Table 4).

For the models fitting to multiple simultaneous indices (0129-0132), estimates of model quantities were largely
consistent with the diagnostic case model in terms of scale and trend (Figure 18), even for models fitting to
the New Zealand index. This indicated that scale estimates from models fitting to shorter indices may not be
reliable. Additionally, fits to the shorter indices were not substantially degraded when also simultaneously
fitting to the longer indices.

4.2.2 Catch observation error σC

The diagnostic case model assumes a constant catch observation error of σC = 0.2. Three one-off models ( 0076 -
0078 ) explored alternative assumptions about catch uncertainty including time-varying error structures

and different constant error levels. In general parameter estimates were very consistent regardless of the
assumed catch observation error level and temporal pattern (Figure 19). The one exception was with the
estimation of νcatch, which showed a preference for a Student-t distribution with lighter tails (e.g., more
Normal distribution-like) when catch observation error was structured to decline overtime from 0.5 following
a power curve ( 0076 & 0078 ). This suggests that the earlier observations may warrant a higher level
of observation error. Regardless, estimated model quantities, including key management metrics D/DMSY

and F/FMSY ,were largely unchanged no matter what structure was used with the exceptions that models
assuming less catch uncertainty had predictably less estimated uncertainty, and models using a power curve
to structure the observation error estimated lower levels of initial nominal CPUE (Figure 20).

4.2.3 Early data

Several models explored sensitivity to problematic early data years, particularly 1952 and 1954 which
showed unusual catch or effort patterns. Five one-off models ( 0079 - 0083 ) explored alternative assumptions
about the catch and or effort in these years. Parameter estimates were very similar across all formulations
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(Figure 21). However, estimation of νcatch, showed a preference for a Student-t distribution with lighter tails
when either alternative catch or effort was assumed for the 1952 observation. This in combination with
the results from Section 4.2.2 suggests that the 1952 observation may be a reporting error and could be
modified or downweighted with larger observation error. Fortunately, estimated model quantities, including
key management metrics, do not appear sensitive to the treatment of the 1952 observation (Figure 20).

4.2.4 Scaling priors

The diagnostic case model estimates a low population scale relative to the prior. Two models ( 0093 &
0096 ) tested the impact of forcing the model toward higher population scale estimates through modified

priors on carrying capacity and catchability. This was more of an academic sensitivity analysis to see if
the model could be moved through the prior information from the low estimate. While the sensitivity was
successful in shifting the estimated scale higher (Figure 23), it showed a clear trade-off with the ability to fit
the index (Figure 24) and showed an incompatibility between the data and larger estimates of scale. This
provides additional evidence that the smaller estimates of population scale are driven by the data.

While not investigated in the current analysis, it would be interesting to see how sensitive estimates of
population scale are to just changes in the precision of the catchability prior as suggested in Section 4.1.4.

4.2.5 Catch observation model

A single model ( 0110 ) replaced the default Student-t likelihood for catch observations with a lognormal
error structure which is less statistically robust and more impacted by outlier observations. This tested
sensitivity to distributional assumptions about catch observation error. Parameter estimates, particularly
those related to population scale, showed some sensitivity to choice of catch observation model (Figure 25),
and this did translate into some differences in estimated management quantities (Figure 26). However, as
previous sensitivity analyses have identified (Section 4.2.2 & Section 4.2.3), some of these early observations
appear less reliable and should potentially be made less influential in the likelihood (e.g., use of a Student-t
distribution). This finding, combined with the 0110 model showing substantially more observations with
large Pareto-k values (Table 4), did not support further use of the lognormal error structure.

4.2.6 Temporal resolution of catchability deviates

The diagnostic case model estimates catchability deviates in single time steps (annual). Four models explored
different temporal resolutions with catchability deviates fixed across 2, 3, 5, and 10-year periods ( 0111 -
0114 ). Reducing the temporal resolution of the catchability deviates (increasing nstep) predictably degraded

fit to the catch as nstep increased (Table 5; Figure 27). It also changed estimates of σP and qeff (Figure 28)
which in turn impacted estimates of management quantities particularly depletion and D/DMSY (Figure 29),
again particularly for larger values of nstep. Reducing the temporal resolution of the catchability deviates
did improve model parsimony, and the model with nstep = 2 ( 0111 ) was the best performing according to
LOO-ELPD. However, the LOO-ELPD for this model was not statistically different to the diagnostic case
model (ELPD difference = 0.9074112; Table 4) and model estimates were nearly identical. In general, the
increase in process error estimation as nstep increased, the reduced ability to fit the catch were undesirable,
and the model equivalence according to LOO-ELPD supported maintaining the diagnostic case model with
nstep = 1.
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4.2.7 Catch reporting

Striped marlin are a commercially valuable non-target species, and systematic under-reporting of catches or
discarding could occur. Three models ( 0115 - 0117 ) explored potential systematic under-reporting scenarios
including constant and time-varying multipliers. As expected, increasing the magnitude of all the catches by
2× ( 0115 ) shifted the population scale of the population up by ~2 (Figure 30) though relative quantities
were unchanged (Figure 31). However, increasing either the terminal ( 0116 ) or initial ( 0117 ) catches by
2× resulted in an increase in population scale, change in the depletion trend, and change in the management
advice (Figure 31). The 0116 model represented a scenario where potential non-reported catch increased
over time, but resulted in a less depleted stock with a removals time series that increased. The 0117 model
represented a scenario where non-reported catch decreased over time producing a more depleted stock with a
decreasing removals time series.

Though there is no evidence at this stage that this level of systematic under-reporting of catches is occurring
for SWPO striped marlin, it is useful to be aware of the impacts that changes to our perception of population
removals can have on our understanding of stock status. Additionally, for future analyses that may consider
changes to the level of catch reporting, it may be useful to do so on a per hook basis to take into account the
impact of the change in the number of hooks fished over time on total population removals.

4.2.8 Process error σP

The diagnostic case model estimated non-zero process error in the early model period before the CPUE index
began. Process error was restricted σP ∼ 0 as a one-off sensitivity ( 0118 ) in order to evaluate if larger initial
process error deviates impacted scale estimates or other management quantities. Turning-off the process error
did degrade fit to the index slightly (Figure 32), but overall parameter estimates (Figure 33) and management
quantities (Figure 34) were largely insensitive to a lack of process error. This confirms that the early process
error deviates are not impacting the estimation of key management quantities, and also provides further
evidence of a well-determined production function.

4.2.9 Start year

Given potentially anomalous catch observations in 1952 and 1954, four models ( 0119 - 0122 ) explored
sensitivity to the assumed initial conditions. Models started in either 1955 or 1988 with varying levels of
initial depletion. In every case, model results (Figure 35) appeared to be fairly sensitive to the choice of
prior, however all models except perhaps model 0122 (1988 start with x0 = 0.9) still estimated substantially
lower population carrying capacity log(K) than the prior (Figure 36). However, these models all assumed
fairly restrictive priors on x0, and future analyses could evaluate sensitivity to less informative priors or
alternatively develop more specific priors for given years based on a prior pushforward analysis.

4.2.10 Inclusion of effort deviates

Early model development explored a more complex formulation of fishing mortality where effort deviates
were used in addition to catchability deviates. Two models ( 0124 - 0126 ) tested whether returning to a full
MULTIFAN-CL style catch-errors formulation and estimating effort deviates improved model performance.
Estimating effort deviates as expected, did produce an improved fit to the catch (Figure 37) however parameter
estimates (Figure 38) and model quantities (Figure 39) showed negligible differences from the diagnostic case
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model.

4.2.11 Direct estimation of fishing mortality

Rather than estimating fishing mortality indirectly through catchability and effort, two models ( 0127 - 0128 )
directly estimated annual fishing mortality rates. This tested whether the simpler formulation for fishing
mortality could replicate the results of the diagnostic case model, or if the highly parametrized structure of
the fishing mortality calculation determined model outcomes. Removing the relationship with effort, and
directly estimating fishing mortality allowed the catch to be fit exactly (Figure 40) though this resulted in high
levels of catch observations showing large Pareto-k values (Table 4) which is undesirable. Matching the prior
variability on fishing mortality σF to the level of variability in fishing mortality seen in the diagnostic case
model ( 0127 ) more or less replicated the estimates from the diagnostic case model (Figure 41). Assuming a
smaller, more restrictive prior on σF ( 0128 ) resulted in a large increase to population scale to accommodate
a time-series of fishing mortality with smaller variability (Figure 41). These results showed that model
outcomes were insensitive to how fishing mortality was parametrized, and reaffirmed the sensitivity of model
results, particularly population scale, to the priors placed on fishing mortality.

4.2.12 Alternative RMax prior

The diagnostic case model estimated a stock with higher productivity than an analogous species, Atlantic
white marlin. Two models ( 0133 - 0134 ) tested sensitivity to a more conservative productivity assumption
based on the white marlin RMax estimates from ICCAT (ICCAT, 2020). As hypothesized, forcing productivity
RMax to be lower did result in the model estimating a larger population scale (Figure 42). However, this did
not necessarily translate to differences in estimated relative management metrics (depletion, D/DMSY , or
F/FMSY ), particularly in recent years.

4.3 Model ensemble

Following extensive sensitivity analysis, and iterative rounds of model development, a four model ensemble is
proposed to be considered for the provision of management advice:

• 0100 : DWFN index & life history based shape prior
• 0102 : New Zealand index & life history based shape prior
• 0105 : DWFN index & alternative shape prior
• 0107 : New Zealand index & alternative shape prior

Both candidate indices were the only indices of sufficient length and contrast to inform estimates of population
scale. Additionally, the shape parameter is very difficult to estimate from data, and as such model estimates
are dependent on the choice of prior. While the baseline shape parameter prior (Table 2) may be sensibly
derived from striped marlin life history characteristics, this derivation is sensitive to underlying assumptions
and relationships (Fowler, 1988; Grant & Grant, 1992). In the absence of other information, a conservative
assumption for the shape parameter is to assume it is centered on n ∼ 2, with uncertainty from Table 2. This
reduces the production model to a Schaefer-type production model where DMSY = 0.5.

Despite use of a model ensemble to capture uncertainty in stock status and trend, there remains considerable
uncertainty not captured within the proposed BSPM ensemble. Important context to the interpretation of
ensemble results and conclusions can be found in Table 7.
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4.3.1 Ensemble diagnostics and fit

4.3.1.1 Convergence

All ensemble models achieved satisfactory convergence based on standard Hamiltonian Monte Carlo diagnostics
(Table 4). All models met convergence criteria with R̂ values well below the 1.01 threshold and effective
sample sizes exceeding the recommended minimum of 500 (100 samples per chain). No divergent transitions
were observed across chains, and maximum tree depth was not exceeded during sampling, indicating successful
exploration of the posterior space. The proportion of observations with Pareto-k > 0.7 was very low (<5%)
across all models and the effective number of estimated parameters p_loo was well below both the number of
observations and the actual estimated parameter count.

4.3.1.2 Data fit

Model fits to the catch data were equivalent between models and captured the trend and magnitude of the
catches adequately (Figure 43). For models fitting to the same index (e.g., 0100 & 0105 ), the alternative
assumption for shape n had no influence on the estimated fit. However, comparing relative fits between
models fitting to different indices, the models fitting to the DWFN index did a noticeably better job (lower
RMSE) capturing the trend than models fitting to the New Zealand index (Table 5;Figure 44). As mentioned
in Section 4.2.1, models fitting to the New Zealand index failed to capture the trend over the last five years.

4.3.1.3 Model validation

Overall retrospective bias was within the acceptable range proposed by (Hurtado-Ferro et al., 2015) for all
models, with the models fitting to the New Zealand index showing positive retrospective bias rather than
negative for models fitting to the DWFN index (Table 5). Furthermore, all quantities were within the 95%
credible interval of the full time-series model for all peels (Table 5; Figure 45).

For hindcast cross-validation, both models fitting to the DWFN index substantially exceeded the performance
of the naïve predictor (Table 5; Figure 46). Models fitting to the New Zealand recreational index showed poor
performance (MASE > 1), as the models were unable to follow the declining trend over the last five years.

4.3.2 Population dynamics and trends

The estimated depletion8 time series from the model ensemble shows a decline from the assumed unfished state
in 1952 to minimum levels around the mid-2010s (Figure 47). The decline was most pronounced during the
1950s and 1960s, followed by relatively stable depletion levels from the 1970s through the early 2000s which
fluctuated around ∼ 0.4 − 0.6. The stock has been estimated to be recovering from the mid-2010s. Credible
intervals around depletion estimates are relatively wide, reflecting inherent uncertainty in the population
scale.

The estimated population time series mirrors these depletion patterns. It is important to note that while the
uncertainty in absolute population size is substantial, as reflected in wide credible intervals, this uncertainty
is asymmetric. The model is fairly confident that the model can not be much smaller than what it currently

8Note that depletion for the surplus production model is a static depletion defined relative to total unfished numbers
Dt = Pt/P0; where Pt is the total population level in numbers at time t, and P0 = K the unfished population numbers or
carrying capacity. This is different from the dynamic depletion of spawning biomass SBt/SBt,F =0 that is typically reported
from integrated age-structured models such as MULTIFAN-CL or Stock Synthesis (Methot Jr. & Wetzel, 2013).
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is estimated to be due to the hard constraint of at least being large enough to support the 70 year time-series
of catches. As seen in the one-off sensitivities (Section 4.2.4 & Section 4.2.12), uncertainty to the high-side is
driven in part by the prior assumptions for log(K), qeff , and RMax, as well as by model structural choices with
regards to treatment of catch uncertainty (Section 4.2.5) and structure of fishing mortality (Section 4.2.10).

Process error estimates showed consistent temporal variability across ensemble models, with the largest
deviations occurring in the 1970s and 1980s. This indicates that removals alone could not completely explain
the observed changes in the standardized indices in these time periods, suggesting additional factors influenced
population dynamics or insufficient observation error was estimated.

Fishing mortality F estimates jump up initially in the mid-1950s with the expansion of industrial fishing into
broader areas of the south Pacific. Though F appears highly variable, with substantial uncertainty reflected
in wide credible intervals, it generally trends upwards to a peak (∼ 0.275) in the early 2000s. Since then,
F was generally predicted to decline in recent decades. The recent decline is consistent with the observed
recovery in population depletion during the same period.

The catchability deviations show declining trends from elevated levels in the mid-1950s, with the largest
declines occurring before 1970 and more gradual decline through the current year. This matches the pattern
seen in the estimated nominal CPUE (catch per 1000 hooks) estimates from the model ensemble, where the
estimated nominal CPUE is simply the predicted removals divided by the nominal effort. In the earliest years
of the fishery nominal CPUE approached 3 fish per 1000 hooks before declining to ∼ 0.45 fish per 1000 hooks
in 1970, and ∼ 0.05 fish per 1000 hooks at the end of the model period.

4.3.3 Stock status

The SWPO striped marlin stock lacks formal, agreed upon reference points. Accordingly, stock status is
summarized in terms of the following MSY and depletion based reference points (Table 8): total depletion
relative to total depletion at MSY (D/DMSY ), fishing mortality relative to fishing mortality at MSY
(F/FMSY ), and total depletion relative to generalized limit reference point of 20% depletion from the unfished
state (D/D0.2F =0). All ratios are calculated with respect to two periods: recent and latest. For depletion ratios,
Drecent refers to the average over 2019-2022 and Dlatest refers to 2022. For fishing mortality ratios, Frecent

refers to the average over 2018-2021 and Flatest refers to 2021. Uncertainty in stock status and management
reference points is presented in the paper using conventional, equal tailed 95% posterior credible intervals
(ETIs). An appendix (Section 12.1) is included which provides the corresponding highest density intervals
(HDIs), as these may more appropriately capture uncertainty in skewed distributions (A. M. Edwards &
Auger-Méthé, 2025).

On average, the stock is estimated to be in an overfished state according to both Drecent/DMSY (0.77 median;
0.33 – 2.3 95% credible interval) and Dlatest/DMSY (0.81 median; 0.32 – 2.36 95% credible interval), but is
not currently estimated to be undergoing overfishing according to Frecent/FMSY (0.77 median; 0.05 – 1.51
95% credible interval) or Flatest/FMSY (0.69 median; 0.05 – 1.51 95% credible interval).

Considering the full range of uncertainty, it is likely that the stock is currently below DMSY (74% for recent
period, 70% for latest year) and it is unlikely that the stock is currently undergoing overfishing (-21.9% for
recent period, -17.4% for latest year).

Relative to the generalized limit reference point of 20% depletion from the unfished state, the stock shows
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a very unlikely probability of being in a critically depleted state. The probability of the stock being below
D0.2F =0 is 9.2% for the recent period and 8.9% for the latest year, with median ratios of 1.84 (0.73 – 4.72
95% credible interval) and 1.91 (0.72 – 4.81 95% credible interval), respectively.

The stock status indicators suggest that while the median estimates indicate the stock is currently overfished
but not undergoing overfishing, there remains uncertainty around these conclusions (Figure 48). The relatively
wide credible intervals reflect substantial uncertainty in absolute population scale, however there is still only
a 22.92% joint probability that Drecent/DMSY < 1 and Frecent/FMSY > 1 so it is unlikely that the stock is
simultaneously overfished and undergoing overfishing. The very unlikely risk relative to the generalized limit
reference point provides additional confidence that the stock is not in a critically depleted state (Figure 49)
and, as described in Section 4.3.2, the population appears to be trending in a positive direction.

4.3.4 Future projections

The 10-year stochastic projections from the ensemble, setting future catch as the recent average catch over
the last 5 years (2018-2022), showed the stock expected to continue on the estimated recovery trajectory
(Figure 50). Given that the assessment period ends in 2022, projections to the current year 2025 indicate
median Dlatest/DMSY = 0.99 (0.24 – 2.42 95% credible interval) with only a 50.78% chance that the stock is
overfished according to the MSY based reference point. By next year, 2026, there is a less than 50% chance
that the stock is overfished. Looking out to the end of the projection period, 2032, the picture continues to
improve with median Dlatest/DMSY = 1.32 (0 – 2.6 95% credible interval) with only a 26.05% chance that
the stock is overfished.

Fishing mortality is also predicted to keep declining through 2032 with median Flatest/FMSY = 0.49 (0.04 –
34.53 95% credible interval) with only a 14.6% chance that overfishing is occurring.

Though circumstances are expected to improve on average, and overfished and overfishing risk levels are
expected to decrease throughout the projection period there is still a chance that the population collapses
(D2032 < 0.05) under recent average catch levels by the end of the 10-year projection period. This is estimated
to be very unlikely with only a 5.12% chance of occurring. However, risk of stock collapse would be expected
to increase if catches rose above recent average levels.

5 Discussion

5.1 General remarks

The BSPM ensemble approach, and sensitivity analyses, present a coherent picture of stock trajectory and
current status. The SWPO striped marlin stock was estimated to decline substantially in the 1950s from an
unfished condition with minimum levels being experienced within the last decade, and the stock showing
signs of recovery. Though median estimates suggest that the stock is overfished and undergoing overfishing at
the end of the model period (2022), the stock is expected to no longer be overfished or undergoing overfishing
by 2026 assuming recent catches have not increased.

The BSPM approach addresses key limitations encountered in previous integrated assessments while providing
robust stock status estimates. The primary advantage lies in condensing complex biological and fishery
uncertainties into a manageable parameter set. Integrated assessments can be influenced by size composition
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data, which are sensitive to assumptions about growth, mortality, selectivity, and reproduction parameters.
Additionally, there is the added burden of ensuring that the input size composition data, along with the
indices, are unbiased and representative of the stock dynamics. When these assumptions are uncertain or
mis-specified, population scale estimates informed by size composition data can be biased. Production models
can help circumvent this issue by aggregating these uncertainties into productivity parameters, allowing more
efficient exploration of plausible population dynamics while maintaining biological realism through informed
priors. Uncertainty in these processes is propagated both through the prior and through full Bayesian Markov
Chain Monte-Carlo sampling of the posterior distribution. Use of a model ensemble approach also captures
uncertainties in data or structural components of the model that can not be estimated.

However, BSPMs are an inherent simplification of the stock dynamics. All age-structure is collapsed, a single
well mixed population is assumed, and only a single fishery (with implicit knife-edged selectivity) operates.
Though previous simulation work (Winker et al., 2019) has shown that correctly specified BSPMs can provide
robust estimates of MSY based reference points, this is conditioned on the dynamics of the underlying
population not being too different from the assumed BSPM dynamics. If movement dynamics are complex,
selectivities are strongly dome-shaped, substantial mortality occurs before reproduction, and/or there is a
long lag between recruitment and reproduction this can all introduce bias into the BSPM estimates.

The origin of this analysis was rooted in a skepticism in the depletion and fishing mortality patterns estimated
from the integrated assessment model. The BSPM results paint a complimentary picture to the integrated
assessment, and demonstrates that estimates of initial depletion and population scale are strongly informed
by the magnitude of catches in contrast with the standardized index. Moreover, the predicted recovery is
based on a well determined production function as evidenced by the performance of the model-free hindcasts
(Section 4.1.5), and should give confidence that projections from this model can capture the stock dynamics.

The estimated trajectory of the stock, including patterns in estimated catchability and nominal CPUE make
sense in the context of both Japanese and global longline fishing development (Ahrens, 2010; Honma &
Kamimura, 1958). Post World War II MacArthur lines restricted Japanese fishing to the northern hemisphere
in the Pacific prior to 1952. Expansion in the south Pacific took place in 1952 in waters close to the equator.
Expansion by the Japanese south of 20◦S did not occur until November 1953 (Honma & Kamimura, 1958) at
which point striped marlin was targeted alongside albacore (Thunnus alalunga) initially due to high catch
rates but eventually to supply the developing Japanese fish ham and sausage industry (Joseph et al., 1974).
High catch rates to start the fishery make sense given the targeted nature of the fishery, but also due to
fishing on spawning aggregations (Honma & Kamimura, 1958), and early gear configurations (rope or hemp
line with few hooks per basket) which kept gear closer to the surface where striped marlin are present. As
Japanese (and eventually other DWFNs) longline fishing effort expanded throughout the south Pacific, away
from striped marlin hotspots and with more targeted fishing towards albacore and the tropical tunas (bigeye
Thunnus obesus and yellowfin Thunnus albacares) striped marlin catchability and nominal CPUE declined.
Furthermore, more modern longline gear configuration (monofilament main lines with large numbers of hooks
per basket) places more hooks at deeper depths, which may increase tropical tuna catchability but reduce
striped marlin catch rates.

This fisheries context can also provide more insight on the two catch observations (1952 & 1954) that were
investigated as being potentially problematic. The initial 1952 low catch observation may be legitimate as
effort was not deployed spatially in an area (north of 20◦S) where striped marlin are highly abundant (Honma
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& Kamimura, 1958). We can also see that the large catch observation in 1954 may also be legitimate:

• observed nominal CPUE in 1954 (∼ 4.22) is comparable to observations in 1953 (∼ 3.17) and 1955 (∼
3.94)

• fishing occurred in an area (15◦S − 30◦S) and time period (austral spring and summer) when striped
marlin form spawning aggregations (Honma & Kamimura, 1958; Kopf et al., 2012)

• the Japanese considered striped marlin to be a target species in the 1950s and 1960s (Honma &
Kamimura, 1958; Joseph et al., 1974)

Of a more technical nature, this assessment applies multiplicative fishing mortality to the population, and
estimates fishing mortality from a time-varying relationship with effort by fitting to the observed catch.
While such an approach is less conventional for surplus production models9, and more common in integrated
age-structured modelling approaches, it appears to yield important computational benefits particularly when
fitting models in a Bayesian context with HMC. Modelling fishing mortality as a multiplicative process ensures
that populations stay non-negative, and avoids the hard, implicit constraints that direct subtraction of the
catch places on the posterior sampling space. Though applying multiplicative fishing mortality improves
model convergence (e.g., 0 or small numbers of divergent transitions), it does mean that fishing mortality,
surplus production and process error happen simultaneously rather then sequentially as in the subtractive
case. This assumption may not be appropriate for some fisheries which operate in distinct seasons relative to
reproduction.

5.2 Challenges, limitations & key uncertainties

While the BSPM ensemble approach provides a robust framework for stock assessment, several important
limitations and uncertainties constrain the interpretation of these results and their applicability to management
decision-making.

Though not specific to the current SWPO striped marlin stock, assessments are only as good or informative
as the underlying data. In this case while the results appear robust, and the model appears to appropriately
capture the underlying population dynamics, this is all conditioned on the data being representative of the
stock. From the one-off sensitivities it was apparent that introducing alternative trend to the catch via
systematic under-reporting (Section 4.2.7) could produce different population trajectories and management
advice. Similarly, the population trend is driven by the index. The two primary indices used in the ensemble
(DWFN and New Zealand recreational) each have their own separate issues. The DWFN index, while providing
a long time series of information, is a composite multi-flag index with limited gear covariates. Changes
in fleet composition or fishing location within this index can be incorrectly interpreted by the model as
population-level changes. On the other hand the New Zealand recreational index includes more catchability
covariates is spatially restricted to index the striped marlin population vulnerable to the East Northland10

sportfish fishery. While historically this fishery is believed to have interacted with the spawning component of
the population during the austral summer as fish approached the southern end of their distribution, there
is evidence of increasing striped marlin encounters further south along the western side of New Zealand’s
South Island (Holdsworth, 2023). If the distribution of striped marlin has shifted or is shifting further south
following warmer waters as a result of climate change, then these data may no longer be representative and

9Most surplus production models subtract observed catch directly (Best & Punt, 2020; Kim & Neubauer, 2025; Millar &
Meyer, 2000)

10North Island of New Zealand
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the decline seen in terminal years of the New Zealand index (Figure 44) may not represent a true decline in
the stock.

While RMAX and log(K) showed meaningful posterior updates, the uncertainty reflected in their prior
distributions translated into the large uncertainty evident in model predictions. In the case of RMAX ,
uncertainty in growth, maturity, natural mortality, and steepness all contributed to the broad prior uncertainty.
Reductions in the uncertainty in any one of these biological processes would reduce uncertainty in the prior,
and could help reduce uncertainty in model estimated population scale (see Section 4.2.12). Population scale
log(K) estimates also showed particular sensitivity to prior assumptions and model configuration, as well as
a strong negative correlation with baseline catchability qeff . Reducing the uncertainty in catchability qeff

would presumably directly lower uncertainty in population scale.

In contrast to RMAX and log(K) which were estimable from the data, the production function shape parameter
n was not and posterior estimates did not deviate much from prior assumptions. Uncertainty in shape n
translates directly to uncertainty in DMSY and the position of MSY-based reference points. The ensemble
approach attempts to capture this uncertainty through alternative shape priors, but the true production
function shape remains a key unknown.

While the BSPM approach makes a number of simplifications to the stock population dynamics, assuming
a single well-mixed stock may be problematic given the broad spatial distribution and known seasonal
migrations (Honma & Kamimura, 1958). Of particular concern is recent genetic work (Martinez, 2021) that
identified mixing of SWPO striped marlin and central north Pacific Ocean striped marlin in the catch of
the U.S. Hawai’i based longline fishery. This is a fishery that operates exclusively in the north Pacific Ocean
around the main Hawaiian islands, away from the typical stock boundary assumed for SWPO striped marlin.
Additional genetic work is needed to more properly elucidate the patterns in spatial connectivity. However, at
a minimum, evidence of SWPO striped marlin in catch taken in the north Pacific Ocean indicates that the
catch levels assumed in the current assessment may be an underestimate of total removals, and that potentially
important fishing impacts from north Pacific Ocean fleets on SWPO striped marlin are unaccounted for.
Development of a conceptual model for SWPO striped marlin, perhaps in collaboration with the ISC Billfish
Working Group, that accounts for this stock structure hypothesis is critically needed so that this important
uncertainty can be properly addressed in the next stock assessment.

Though not a limitation unique to the BSPM approach, this assessment assumes stationary productivity
and carrying capacity over the 70-year assessment period, which may not reflect reality given environmental
changes in the Pacific Ocean over the same time period. Additionally, climate variability affecting prey
distribution, ocean temperature, and ecosystem productivity could influence striped marlin population
dynamics in ways not captured by the surplus production framework. The large process error deviations
estimated in some periods suggest environmental factors may be influencing population dynamics beyond
what can be explained by fishing removals alone. More sophisticated modeling approaches incorporating
environmental and/or ecosystem drivers are likely needed to appropriately capture the process, however
this will likely stretch the limits of what is possible given the data currently available. Absent other sources
of information coming online, development of robust management measures (e.g., through a management
strategy evaluation; MSE) will likely be more useful than a more sophisticated stock assessment model.

Specifically with regards to management, the substantial uncertainty in absolute population scale, while not
preventing relative status determination, constrains the precision of catch-based management advice. Though
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uncertainty in population scale is large, it is asymmetrical and the minimum stock size is likely to be well
defined which can be useful when developing potential management measures. Additionally, the stock status
projections, while suggesting continued recovery under recent catch levels, carry forward all the uncertainties
inherent in the assessment model. The projections assume continued stationarity in productivity, catchability,
and environmental conditions that may not hold over the 10-year projection period. Furthermore, the status
quo catch assumption may not reflect actual future fishing patterns. If management action is to be taken,
alternative future projection scenarios (including effort based projection scenarios) should be developed.

Despite these limitations, the BSPM approach provides valuable insights into stock trajectory and status
when viewed as part of a broader assessment framework. The consistency of results across sensitivity analyses
and the validation through retrospective and hindcast analyses suggest that the qualitative conclusions about
stock recovery are robust to many of the identified uncertainties. However, managers should consider these
limitations when translating assessment results into specific management actions, particularly those requiring
precise abundance estimates or long-term projections.

5.3 Future stock assessment modeling considerations

Future assessment efforts should progressively build toward full age-structure through a systematic approach:
delay-difference models, age-structured production models, and then fully integrated age-structured models.
This development should occur within a Bayesian framework to inform parameter estimates where prior
information exists or can be derived using prior pushforward approaches (Kim & Neubauer, 2025).

Developing Bayesian age-structured modeling approaches can provide more stable estimation of increased
parameters due to the use of priors, explicitly account for parameter uncertainty rather than making fixed
assumptions, potentially enable informed estimation of difficult-to-observe biological relationships (e.g.,
stock-recruit relationships), address BSPM limitations by explicitly considering age-structured processes
and fishery selectivity, and estimate leading parameters with likelihood components for indices and size
composition.

While simplified models offer advantages when data conflicts exist, oversimplification of age-structured
processes could result in biases. Future modeling must balance complexity with data quality and conflicts.
The transition should be guided by careful evaluation of whether increased model complexity is supported by
available data and whether it improves the reliability of management advice. A crucial part of the assessment
process is careful scrutiny of the representativeness of the available data, and matching the modeling approach
to the information content in the data available. While it is important to also match the modeling approach
to our best understanding of stock dynamics, ideally informed by a conceptual model (Minte-Vera et al.,
2024), this must be done in a manner that does not overextend the model beyond what can be reliably
estimated from the data given parameter uncertainties and structural assumptions.

Lastly, this assessment greatly benefited from collaboration with a broad group of interested parties and stock
assessment experts (see Section 6) where feedback was provided in an iterative manner throughout the model
development process. Leveraging this diverse pool of experience helped produce a stronger scientific product.

34



6 Acknowledgements

The authors appreciate feedback received on earlier versions of this analysis, and are thankful to the following
for their insights and thoughtful discussion which improved the assessment: K. Kim (SPC), N. Davies (Te
Takina Ltd.), S. Hoyle (Hoyle Consulting), R. Ahrens (PIFSC), and M. Nadon (PIFSC).

7 Declaration of generative AI use

A generative artificial intelligence (AI) assistant, Anthropic Claude Sonnet 4.0, was used to parse model code
in the preparation of an initial draft of this report.

8 References

Ahrens, R. N. M. (2010). A global analysis of apparent trends in abundance and recruitment of large tunas
and billfishes inferred from Japanese longline catch and effort data. https://doi.org/10.14288/1.0069329

Best, J. K., & Punt, A. E. (2020). Parameterizations for Bayesian state-space surplus production models.
Fisheries Research, 222, 105411. https://doi.org/10.1016/j.fishres.2019.105411

Betancourt, M. J., & Girolami, M. (2013). Hamiltonian Monte Carlo for Hierarchical Models. https://doi.
org/10.48550/ARXIV.1312.0906

Castillo-Jordan, C., Day, J., Teears, T., Davies, N., Hampton, J., McKechnie, S., Magnusson, A., Peatman,
T., Vidal, T., Williams, P., & Hamer, P. (2024). Stock Assessment of Striped Marlin in the Southwest
Pacific Ocean: 2024 (WCPFC-SC20-2024/SA-WP-03 (Ver. 2.01)). https://meetings.wcpfc.int/node/23120

Castillo-Jordan, C., Ducharme-Barth, N. D., Carvalho, F., & Hamer, P. (2025). Revised 2024 stock assessment
of striped marlin in the southwestern Pacific Ocean: Part 1- integrated assessment in Stock Synthesis
(WCPFC-SC21-2025/SA-WP-06).

Ducharme-Barth, N., Castillo-Jordan, C., Sculley, M., Ahrens, R., & Carvalho, J. (2025). Summary report from
the NOAA-SPC assessment model meeting on SWPO striped marlin (WCPFC-SC21-2025/SA-IP-XX).

Edwards, A. M., & Auger-Méthé, M. (2025). Using highest density intervals can reduce perceived uncertainty
in stock assessments. Fisheries Research, 288, 107326. https://doi.org/10.1016/j.fishres.2025.107326

Edwards, C. (2024). Bdm: Bayesian biomass dynamics model (R package version 0.0.0.9036).
Farley, J., Eveson, P., Krusic-Golub, K., & Kopf, K. (2021). Southwest Pacific Striped Marlin Population

Biology (Project 99) (WCPFC-SC-17/SA-IP-11). https://meetings.wcpfc.int/node/12569
Fournier, D. A., Hampton, J., & Sibert, J. R. (1998). MULTIFAN-CL: A length-based, age-structured model

for fisheries stock assessment, with application to South Pacific albacore, Thunnus alalunga. Canadian
Journal of Fisheries and Aquatic Sciences, 55 (9), 2105–2116. https://doi.org/10.1139/f98-100

Fowler, C. W. (1988). Population dynamics as related to rate of increase per generation. Evolutionary Ecology,
2 (3), 197–204. https://doi.org/10.1007/BF02214283

Gabry, J., & Mahr, T. (2024). Bayesplot: Plotting for Bayesian Models (R package version 1.11.1). htps://mc-
stan.org/bayesplot/

Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian
Workflow. Journal of the Royal Statistical Society Series A: Statistics in Society, 182 (2), 389–402.
https://doi.org/10.1111/rssa.12378

Grant, P. R., & Grant, B. R. (1992). Demography and the Genetically Effective sizes of Two Populations of

35

https://doi.org/10.14288/1.0069329
https://doi.org/10.1016/j.fishres.2019.105411
https://doi.org/10.48550/ARXIV.1312.0906
https://doi.org/10.48550/ARXIV.1312.0906
https://meetings.wcpfc.int/node/23120
https://doi.org/10.1016/j.fishres.2025.107326
https://meetings.wcpfc.int/node/12569
https://doi.org/10.1139/f98-100
https://doi.org/10.1007/BF02214283
htps://mc-stan.org/bayesplot/
htps://mc-stan.org/bayesplot/
https://doi.org/10.1111/rssa.12378


Darwin’s Finches. Ecology, 73 (3), 766–784. https://doi.org/10.2307/1940156
Gravel, S., Bigman, J. S., Pardo, S. A., Wong, S., & Dulvy, N. K. (2024). Metabolism, population growth,

and the fast-slow life history continuum of marine fishes. Fish and Fisheries, 25 (2), 349–361. https:
//doi.org/10.1111/faf.12811

Hamel, O. S., & Cope, J. M. (2022). Development and considerations for application of a longevity-based
prior for the natural mortality rate. Fisheries Research, 256, 106477. https://doi.org/10.1016/j.fishres.
2022.106477

Holdsworth, J. C. (2023). Striped marlin catch and CPUE in the New Zealand sport fishery, 2019-20 to
2021-22 (New Zealand Fisheries Assessment Report 2023/05).

Honma, M., & Kamimura, T. (1958). A Population Study on the so-called Makajiki (Striped Marlin) of both
Northern and Southern Hemispheres of the Pacific: II. Fishing Conditions in the Southern Hemisphere
(Report of Nankai Regional Fisheries Research Laboratory, No. 8; pp. 12–21).

Hordyk, A., Huynh, Q., & Carruthers, T. (2024). openMSE: Easily Install and Load the ’openMSE’ Packages
(R package version 1.0.1). https://openmse.com/

Hurtado-Ferro, F., Szuwalski, C. S., Valero, J. L., Anderson, S. C., Cunningham, C. J., Johnson, K. F.,
Licandeo, R., McGilliard, C. R., Monnahan, C. C., Muradian, M. L., Ono, K., Vert-Pre, K. A., Whitten,
A. R., & Punt, A. E. (2015). Looking in the rear-view mirror: Bias and retrospective patterns in
integrated, age-structured stock assessment models. ICES Journal of Marine Science, 72 (1), 99–110.
https://doi.org/10.1093/icesjms/fsu198

Hutchings, J. A., Myers, R. A., García, V. B., Lucifora, L. O., & Kuparinen, A. (2012). Life-history
correlates of extinction risk and recovery potential. Ecological Applications, 22 (4), 1061–1067. https:
//doi.org/10.1890/11-1313.1

ICCAT. (2020). Report of the 2019 ICCAT white marlin stock assessment meeting. Collect. Vol. Sci. Pap.
ICCAT, 76 (4), 97–181. https://www.iccat.int/Documents/CVSP/CV076_2019/colvol76.html#

ISC. (2024). Stock Assessment of Shortfin Mako Shark in the North Pacific Ocean through 2022 (WCPFC-
SC20-2024/SA-WP-14). https://meetings.wcpfc.int/node/22828

Joseph, J., Klawe, W. L., & Orange, C. J. (1974). A review of the longline fishery for billfishes in the eastern
Pacific Ocean (R. S. Shomura & F. Williams, Eds.; NOAA Technical Report NMFS SSRF-675; pp.
309–331).

Juárez, M. A., & Steel, M. F. J. (2010). Model-Based Clustering of Non-Gaussian Panel Data Based on
Skew-tDistributions. Journal of Business & Economic Statistics, 28 (1), 52–66. https://doi.org/10.1198/
jbes.2009.07145

Kapur, M. S., Ducharme-Barth, N., Oshima, M., & Carvalho, F. (2025). Good practices, trade-offs, and
precautions for model diagnostics in integrated stock assessments. Fisheries Research, 281, 107206.
https://doi.org/10.1016/j.fishres.2024.107206

Kell, L. T., Sharma, R., Kitakado, T., Winker, H., Mosqueira, I., Cardinale, M., & Fu, D. (2021). Validation
of stock assessment methods: Is it me or my model talking? ICES Journal of Marine Science, 78 (6),
2244–2255. https://doi.org/10.1093/icesjms/fsab104

Kim, K., & Neubauer, P. (2025). Examining potential biases through prior predictive checks: Prior mis-
specifications and their impact on Bayesian stock assessments. Fisheries Research, 288, 107405. https:
//doi.org/10.1016/j.fishres.2025.107405

Kokkalis, A., Berg, C. W., Kapur, M. S., Winker, H., Jacobsen, N. S., Taylor, M. H., Ichinokawa, M.,
Miyagawa, M., Medeiros-Leal, W., Nielsen, J. R., & Mildenberger, T. K. (2024). Good practices for surplus

36

https://doi.org/10.2307/1940156
https://doi.org/10.1111/faf.12811
https://doi.org/10.1111/faf.12811
https://doi.org/10.1016/j.fishres.2022.106477
https://doi.org/10.1016/j.fishres.2022.106477
https://openmse.com/
https://doi.org/10.1093/icesjms/fsu198
https://doi.org/10.1890/11-1313.1
https://doi.org/10.1890/11-1313.1
https://www.iccat.int/Documents/CVSP/CV076_2019/colvol76.html#
https://meetings.wcpfc.int/node/22828
https://doi.org/10.1198/jbes.2009.07145
https://doi.org/10.1198/jbes.2009.07145
https://doi.org/10.1016/j.fishres.2024.107206
https://doi.org/10.1093/icesjms/fsab104
https://doi.org/10.1016/j.fishres.2025.107405
https://doi.org/10.1016/j.fishres.2025.107405


production models. Fisheries Research, 275, 107010. https://doi.org/10.1016/j.fishres.2024.107010
Kopf, R. K., Davie, P. S., Bromhead, D. B., & Young, J. W. (2012). Reproductive biology and spatiotemporal

patterns of spawning in striped marlin Kajikia audax. Journal of Fish Biology, 81 (6), 1834–1858. https:
//doi.org/10.1111/j.1095-8649.2012.03394.x

Martinez, J. (2021). Stock Composition Of Striped Marlin (Kajikia Audax) In The Central North Pacific
Ocean Inferred By Analyses Of Genome-Wide Molecular Markers. https://doi.org/10.25773/WN5A-5R23

Merino, G., Urtizberea, A., Fu, D., Winker, H., Cardinale, M., Lauretta, M. V., Murua, H., Kitakado, T.,
Arrizabalaga, H., Scott, R., Pilling, G., Minte-Vera, C., Xu, H., Laborda, A., Erauskin-Extramiana, M.,
& Santiago, J. (2022). Investigating trends in process error as a diagnostic for integrated fisheries stock
assessments. Fisheries Research, 256, 106478. https://doi.org/10.1016/j.fishres.2022.106478

Methot Jr., R. D., & Wetzel, C. R. (2013). Stock synthesis: A biological and statistical framework for fish
stock assessment and fishery management. Fisheries Research, 142, 86–99. https://doi.org/10.1016/j.
fishres.2012.10.012

Millar, R. B., & Meyer, R. (2000). Non-Linear State Space Modelling of Fisheries Biomass Dynamics by Using
Metropolis-Hastings within-Gibbs Sampling. Journal of the Royal Statistical Society Series C: Applied
Statistics, 49 (3), 327–342. https://doi.org/10.1111/1467-9876.00195

Minte-Vera, C. V., Maunder, M. N., Aires-da-Silva, A., Xu, H., Valero, J. L., Teo, S. L. H., Barría, P., &
Ducharme-Barth, N. D. (2024). The use of conceptual models to structure stock assessments: A tool for
collaboration and for “modelling what to model.” Fisheries Research, 279, 107135. https://doi.org/10.
1016/j.fishres.2024.107135

Mohn, R. (1999). The retrospective problem in sequential population analysis: An investigation using cod
fishery and simulated data. ICES Journal of Marine Science, 56 (4), 473–488. https://doi.org/10.1006/
jmsc.1999.0481

Monnahan, C. C. (2024). Toward good practices for Bayesian data-rich fisheries stock assessments using a
modern statistical workflow. Fisheries Research, 275, 107024. https://doi.org/10.1016/j.fishres.2024.107024

Neubauer, P., Castillo-Jordan, C., Day, J., & Hamer, P. (2025). Exploring the potential for observer CPUE
for southwest Pacificswordfish (Xiphias gladius) and striped marlin (Kajikia audax) (WCPFC-SC21-
2025/SA-IP-13). https://meetings.wcpfc.int/node/26539

Neubauer, P., Kim, K., Large, K., & Brouwer, S. (2024). Stock Assessment of Silky Shark in the Western and
Central Pacific Ocean 2024 (WCPFC-SC20-2024/SA-WP-04-Rev2). https://meetings.wcpfc.int/node/
23088

Neubauer, P., Richard, Y., & Tremblay-Boyer, L. (2019). Alternative assessment methods for oceanic whitetip
shark (WCPFC-SC15-2019/SA-WP-13).

Pardo, S. A., Kindsvater, H. K., Reynolds, J. D., & Dulvy, N. K. (2016). Maximum intrinsic rate of population
increase in sharks, rays, and chimaeras: The importance of survival to maturity. Canadian Journal of
Fisheries and Aquatic Sciences, 73 (8), 1159–1163. https://doi.org/10.1139/cjfas-2016-0069

Sivula, T., Magnusson, M., Matamoros, A. A., & Vehtari, A. (2020). Uncertainty in Bayesian Leave-One-Out
Cross-Validation Based Model Comparison. arXiv. https://doi.org/10.48550/ARXIV.2008.10296

Stanley, R. D., McAllister, M., Starr, P., & Olsen, N. (2009). Stock assessment for bocaccio (Sebastes
paucispinis) in British Columbia waters (Canadian {Science} {Advisory} {Secretariat} Research Document
2009/055). Fisheries; Oceans Canada. https://www.dfo-mpo.gc.ca/csas-sccs/publications/resdocs-docrech/
2009/2009_055-eng.htm

Team, S. D. (2024a). RStan: The R interface to Stan (R package version 2.32.6). https://mc-stan.org/

37

https://doi.org/10.1016/j.fishres.2024.107010
https://doi.org/10.1111/j.1095-8649.2012.03394.x
https://doi.org/10.1111/j.1095-8649.2012.03394.x
https://doi.org/10.25773/WN5A-5R23
https://doi.org/10.1016/j.fishres.2022.106478
https://doi.org/10.1016/j.fishres.2012.10.012
https://doi.org/10.1016/j.fishres.2012.10.012
https://doi.org/10.1111/1467-9876.00195
https://doi.org/10.1016/j.fishres.2024.107135
https://doi.org/10.1016/j.fishres.2024.107135
https://doi.org/10.1006/jmsc.1999.0481
https://doi.org/10.1006/jmsc.1999.0481
https://doi.org/10.1016/j.fishres.2024.107024
https://meetings.wcpfc.int/node/26539
https://meetings.wcpfc.int/node/23088
https://meetings.wcpfc.int/node/23088
https://doi.org/10.1139/cjfas-2016-0069
https://doi.org/10.48550/ARXIV.2008.10296
https://www.dfo-mpo.gc.ca/csas-sccs/publications/resdocs-docrech/2009/2009_055-eng.htm
https://www.dfo-mpo.gc.ca/csas-sccs/publications/resdocs-docrech/2009/2009_055-eng.htm
https://mc-stan.org/


Team, S. D. (2024b). Stan Modeling Language Users Guide and Reference Manual, v 2.32.6.
Tremblay-Boyer, L., & Williams, A. (2024). Standardised cpue indices for the target species in the eastern

tuna and billfish fishery–1998 to 2023 (Technical Report Working Paper presented to the 41st meeting of
the Tropical Tuna Resource Assessment Group held 16-17 July 2024, Brisbane, CSIRO, Hobart).

Vehtari, A., Gabry, J., Magnusson, M., Yao, Y., Burkner, P., Paananen, T., & Gelman, A. (2024). Loo:
Efficient leave-one-out cross-validation and WAIC for Bayesian models (R package version 2.7.0). https:
//mc-stan.org/loo/

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical Bayesian model evaluation using leave-one-out cross-
validation and WAIC. Statistics and Computing, 27 (5), 1413–1432. https://doi.org/10.1007/s11222-016-
9696-4

Winker, H., Carvalho, F., & Kapur, M. (2018). JABBA: Just Another Bayesian Biomass Assessment. Fisheries
Research, 204, 275–288. https://doi.org/10.1016/j.fishres.2018.03.010

Winker, H., Mourato, B., & Chang, Y. (2019). Unifying parameterizations between age-structured and
surplus production models: An application to atlantic white marlin (Kajiki albidia) with simulation testing.
Collect. Vol. Sci. Pap. ICCAT, 76 (4), 219–234.

38

https://mc-stan.org/loo/
https://mc-stan.org/loo/
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1007/s11222-016-9696-4
https://doi.org/10.1016/j.fishres.2018.03.010


9 Tables

Table 1: Biological parameter distributions and sources used in simulation framework

Parameter Symbol Distribution Mean/Mode CV/Range Correlation Source/Notes

Length at age 1 L1 Lognormal 60 cm 0.2 Independent (Ducharme-Barth et
al., 2025)

Length at age 10 L2 Lognormal 210 cm 0.2 Independent (Ducharme-Barth et
al., 2025)

Growth coefficient k Beta(6.5, 3.5) ~0.65 - Independent (Ducharme-Barth et
al., 2025)

Length CV cvlen Uniform - [0.05, 0.25] - Growth variability
Maximum age AMax Lognormal 15 years 0.2 ρ = -0.3 with Mref (Farley et al., 2021)
Reference
mortality

Mref Lognormal 0.36 yr−1 0.44 ρ = -0.3 with AMax (Hamel & Cope, 2022)
(5.4/AMax)

Maturity slope amat Normal -20 0.2 - Logistic steepness
Length at 50%
maturity

L50 Lognormal 184 cm 0.2 - (Farley et al., 2021)

Weight coefficient aw Lognormal 5.4 × 10−7 0.05 ρ = -0.5 with bw (Castillo-Jordan et al.,
2024)

Weight exponent bw Normal 3.58 0.05 ρ = -0.5 with aw (Castillo-Jordan et al.,
2024) Constrained:
150-350 kg at 300 cm

Steepness h Beta(3, 1.5) ~0.73 - - Censored to [0.2, 1.0]
Sex ratio (prop.
female)

s Normal 0.5 0.05 - Constrained [0.01,
0.99]

Reproductive
cycle

- Fixed 1 year - - Annual spawning

Reference ages age1, age2 Fixed 0, 10 years - - Francis
parameterization

39



Table 2: Prior distributions for diagnostic model leading parameters.

Parameter Distribution Mean SD Description Key Correlations

Core Population
Parameters
K MV Lognormal log(1, 110, 533) 0.59 Carrying capacity (N) ρ(K,RMax) = -0.22; ρ(K, qeff ) =

-0.241
RMax MV Lognormal log(0.6206) 0.58 Max rate of increase ρ(RMax, n) = -0.881
n MV Lognormal log(1.16) 0.54 Pella-Tomlinson shape

parameter
x0 MV Lognormal log(1) 0.025 Initial depletion (Independent)
qeff MV Lognormal log(0.5019) 0.95 Initial catchability ρ(qeff , σqdev) = 0.559; ρ(qeff , ρ) =

0.243
ρ MV Transformed Normal tanh−1(0.981) 0.62 Autocorrelation in

catchability deviations
ρ(ρ, σqdev) = 0.148

σqdev MV Lognormal log(1.619) 0.3 Catchability variability

Process and
Observation Error
σP Lognormal log(0.0533) 0.27 Process error (Independent)
σO,add Half-Normal 0 0.2 Additional estimated

observation error
(Independent)

Catch Likelihood
νcatch Gamma Shape = 2 Rate =

0.1
Student-t degrees of
freedom for catch

(Independent)

Notes:

Distributions with MV indicate that the parameter is part of the 7-dimensional multivariate prior.
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Table 3: Model descriptions

Model Group Description

0100 Final ensemble Diagnostic case model: DWFN index & baseline priors
0102 Final ensemble New Zealand index & baseline priors
0105 Final ensemble DWFN index & alternative shape prior
0107 Final ensemble New Zealand index & alternative shape prior
0071 One-off: Index Australia index
0072 One-off: Index New Zealand index
0073 One-off: Index Observer (all) index
0074 One-off: Index Observer (New Caledonia, Fiji & Tonga) index
0075 One-off: Index Observer (French Polynesia) index
0129 One-off: Index DWFN & Australia index
0130 One-off: Index New Zealand & Australia index
0131 One-off: Index DWFN & Observer (New Caledonia, Fiji & Tonga) index
0132 One-off: Index New Zealand & Observer (New Caledonia, Fiji & Tonga) index
0076 One-off: sigma_c Time-varying sigma_c: Power curve from 0.5-0.2
0077 One-off: sigma_c Constant sigma_c: 0.1
0078 One-off: sigma_c Time-varying sigma_c: Power curve from 0.5-0.1
0079 One-off: Early data Alternative 1952 catch
0080 One-off: Early data Alternative 1952 effort
0081 One-off: Early data Alternative 1954 catch
0082 One-off: Early data Alternative 1952 & 1954 catch
0083 One-off: Early data Alternative 1952 effort & 1954 catch
0093 One-off: Scaling priors Force higher scale (logK & qeff)
0096 One-off: Scaling priors Force higher scale (logK & qeff), alternative shape prior
0110 One-off: Catch obs model Lognormal error structure
0111 One-off: qdev steps n_step = 2
0112 One-off: qdev steps n_step = 3
0113 One-off: qdev steps n_step = 5
0114 One-off: qdev steps n_step = 10
0115 One-off: Catch reporting 2x observed catch
0116 One-off: Catch reporting Linear increase to 2x observed catch
0117 One-off: Catch reporting Linear decrease from 2x observed catch
0118 One-off: Process error Process error restricted to 0
0119 One-off: Start year Start in 1955: x0 = 0.9
0120 One-off: Start year Start in 1988: x0 = 0.5
0121 One-off: Start year Start in 1988: x0 = 0.7
0122 One-off: Start year Start in 1988: x0 = 0.9
0124 One-off: Est. effort devs Estimate effort deviates & n_step = 2
0126 One-off: Est. effort devs Estimate effort deviates & n_step = 5
0127 One-off: Direct F estimation sigmaF to match diagnostic case
0128 One-off: Direct F estimation 0.25x diagnostic case sigmaF
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Table 3: Model descriptions

Model Group Description

0133 One-off: Rmax prior Apply lower productivity Rmax prior
0134 One-off: Rmax prior Apply lower productivity Rmax prior and alternative shape prior
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Table 4: Model diagnostics and fit statistics

Model n par n obs Max R̂ Min ESS Divergent Tree Depth BFMI Issues LOOIC
p

LOO
ELPD

LOO Prop Pareto k

0100 150 114 1.008 788 0 0 0 45.4 32.7 -22.7 0.982
0102 150 118 1.008 688 0 0 0 64.9 32.9 -32.4 0.983
0105 150 114 1.008 677 0 0 0 46.1 33.0 -23.0 0.982
0107 150 118 1.007 523 0 0 0 66.1 33.3 -33.1 0.966
0071 150 95 1.007 792 0 0 0 -1.6 35.7 0.8 0.937
0072 150 118 1.014 610 0 0 0 65.3 33.7 -32.7 0.983
0073 150 92 1.008 738 0 0 0 -0.7 27.5 0.4 1.000
0074 150 92 1.008 760 0 0 0 30.2 28.9 -15.1 0.978
0075 150 90 1.036 230 0 0 0 58.3 29.7 -29.2 0.989
0129 150 139 1.014 666 0 0 0 24.7 36.5 -12.3 0.971
0130 150 143 1.012 760 0 0 0 56.2 39.3 -28.1 0.986
0131 150 136 1.005 710 0 0 0 35.9 35.5 -17.9 0.985
0132 150 140 1.011 783 0 0 0 61.7 36.7 -30.8 0.979
0076 150 114 1.008 644 0 0 0 49.8 19.2 -24.9 0.991
0077 150 114 1.013 693 0 0 0 32.0 57.3 -16.0 0.991
0078 150 114 1.010 779 0 0 0 28.6 26.9 -14.3 0.991
0079 150 114 1.010 754 0 0 0 19.5 33.6 -9.7 0.939
0080 150 114 1.010 773 0 0 0 20.9 34.3 -10.5 0.930
0081 150 114 1.006 748 0 0 0 45.8 32.1 -22.9 0.982
0082 150 114 1.009 748 0 0 0 21.3 33.4 -10.7 0.974
0083 150 114 1.008 537 0 0 0 21.5 33.3 -10.7 0.956
0093 150 114 1.006 749 0 0 0 52.4 35.3 -26.2 0.982
0096 150 114 1.007 746 1 0 0 57.0 35.1 -28.5 0.974
0110 149 114 1.008 729 0 0 0 1457.1 49.6 -728.5 0.711
0111 115 114 1.009 747 0 0 0 43.6 30.3 -21.8 0.974
0112 104 114 1.007 764 0 0 0 55.1 28.3 -27.5 0.974
0113 94 114 1.007 815 0 0 0 43.6 26.9 -21.8 0.982
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Table 4: Model diagnostics and fit statistics

Model n par n obs Max R̂ Min ESS Divergent Tree Depth BFMI Issues LOOIC
p

LOO
ELPD

LOO Prop Pareto k

0114 87 114 1.007 745 0 0 0 53.8 27.9 -26.9 0.991
0115 150 114 1.010 764 0 0 0 44.8 32.2 -22.4 0.991
0116 150 114 1.010 730 0 0 0 45.8 32.6 -22.9 0.982
0117 150 114 1.011 688 0 0 0 42.3 31.4 -21.2 0.982
0118 150 114 1.009 581 0 0 0 52.0 29.3 -26.0 0.991
0119 147 111 1.007 701 0 0 0 5.3 7.5 -2.6 0.977
0120 114 69 1.007 771 1 0 0 3.9 5.8 -2.0 0.971
0121 114 69 1.008 612 0 0 0 5.1 6.5 -2.6 0.971
0122 114 69 1.008 737 0 0 0 6.3 6.2 -3.1 0.971
0124 185 114 1.007 658 0 0 0 65.2 53.4 -32.6 0.860
0126 164 114 1.006 771 0 0 0 61.0 48.6 -30.5 0.904
0127 149 114 1.006 700 0 0 0 60.8 60.2 -30.4 0.535
0128 149 114 1.011 702 0 0 0 62.8 57.1 -31.4 0.544
0133 150 114 1.007 742 0 0 0 45.5 31.7 -22.8 0.982
0134 150 114 1.015 762 0 0 0 44.7 31.5 -22.4 0.982

Notes:

• n par: Number of parameters in the model

• n obs: Number of observations used in model fitting

• Max R̂: Maximum potential scale reduction factor across all parameters (should be < 1.01)

• Min ESS: Minimum effective sample size across all parameters (should be > 500)

• Divergent: Number of divergent transitions during sampling (should be 0)

• Tree Depth: Whether maximum tree depth was exceeded during sampling
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• BFMI Issues: Whether low Bayesian Fraction of Missing Information was detected

• LOOIC: Leave-one-out information criterion (lower is better)

• p LOO: Effective number of parameters estimated by LOO (should be < n par & n obs)

• ELPD LOO: Expected log pointwise predictive density from LOO (higher is better)

• Prop Pareto k: Proportion of Pareto k values <= 0.7 (should be high for reliable LOO estimates)
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Table 5: Model performance and validation statistics

Model
Index

RMSE
Catch

RMSE Mohn’s ρ MASE Coverage D/DMSY Coverage U/UMSY

0100 0.257 0.250 -0.087 0.587 100% 100%
0102 0.317 0.251 0.069 2.577 100% 100%
0105 0.258 0.250 -0.099 0.566 100% 100%
0107 0.317 0.256 0.087 2.579 100% 100%
0071 0.086 0.246 NA NA NA% NA%
0072 0.316 0.250 NA NA NA% NA%
0073 0.064 0.245 NA NA NA% NA%
0074 0.188 0.244 NA NA NA% NA%
0075 0.390 0.251 NA NA NA% NA%
0129 0.189 0.248 NA NA NA% NA%
0130 0.231 0.247 NA NA NA% NA%
0131 0.230 0.251 NA NA NA% NA%
0132 0.271 0.249 NA NA NA% NA%
0076 0.261 0.335 NA NA NA% NA%
0077 0.253 0.210 NA NA NA% NA%
0078 0.256 0.307 NA NA NA% NA%
0079 0.256 0.222 NA NA NA% NA%
0080 0.256 0.223 NA NA NA% NA%
0081 0.259 0.240 NA NA NA% NA%
0082 0.256 0.221 NA NA NA% NA%
0083 0.256 0.221 NA NA NA% NA%
0093 0.275 0.247 NA NA NA% NA%
0096 0.298 0.249 NA NA NA% NA%
0110 0.250 0.201 NA NA NA% NA%
0111 0.255 0.256 NA NA NA% NA%
0112 0.260 0.297 NA NA NA% NA%
0113 0.249 0.273 NA NA NA% NA%
0114 0.239 0.316 NA NA NA% NA%
0115 0.256 0.254 NA NA NA% NA%
0116 0.258 0.228 NA NA NA% NA%
0117 0.251 0.282 NA NA NA% NA%
0118 0.281 0.258 NA NA NA% NA%
0119 0.255 0.218 NA NA NA% NA%
0120 0.272 0.170 NA NA NA% NA%
0121 0.272 0.170 NA NA NA% NA%
0122 0.279 0.171 NA NA NA% NA%
0124 0.249 0.234 NA NA NA% NA%
0126 0.245 0.238 NA NA NA% NA%
0127 0.247 0.221 NA NA NA% NA%

46



Table 5: Model performance and validation statistics

Model
Index

RMSE
Catch

RMSE Mohn’s ρ MASE Coverage D/DMSY Coverage U/UMSY

0128 0.268 0.221 NA NA NA% NA%
0133 0.260 0.252 NA NA NA% NA%
0134 0.259 0.250 NA NA NA% NA%

Notes:

• Index RMSE: Root mean squared error for fit to standardized CPUE index (lower is better)

• Catch RMSE: Root mean squared error for fit to catch data (lower is better)

• Mohn’s ρ: Retrospective bias statistic (values close to 0 indicate low bias)

• MASE: Mean Absolute Scaled Error from hindcast cross-validation (< 1 indicates model outperforms
naïve predictor)

• Coverage D/DMSY : Percentage of retrospective peels where relative depletion estimates fall within full
model credible intervals

• Coverage U/UMSY : Percentage of retrospective peels where relative exploitation rate estimates fall
within full model credible intervals
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Table 6: Posterior estimates (median and 95% credible intervals) of the leading model parameters for models in the final ensemble.

Model log(K) RMax n x0 qeff ρ σqdev σP σO,add νcatch σF

0100 12.786
(12.323,
14.046)

0.396
(0.155,
0.866)

1.353
(0.500,
3.544)

1.000
(0.948,
1.053)

2.227
(0.602,
8.505)

0.993
(0.980,
0.997)

1.495
(1.013,
2.211)

0.058
(0.034,
0.094)

0.084
(0.029,
0.154)

3.797
(2.119,
7.667)

—

0102 12.631
(12.142,
14.378)

0.543
(0.185,
1.168)

1.090
(0.446,
3.042)

1.000
(0.952,
1.051)

2.502
(0.513,
9.714)

0.993
(0.979,
0.997)

1.478
(1.016,
2.210)

0.069
(0.038,
0.115)

0.184
(0.100,
0.291)

3.664
(1.967,
7.697)

—

0105 12.751
(12.198,
14.209)

0.322
(0.121,
0.722)

2.913
(1.172,
8.168)

1.002
(0.950,
1.045)

2.356
(0.596,
8.655)

0.993
(0.979,
0.997)

1.547
(1.041,
2.191)

0.059
(0.036,
0.101)

0.083
(0.029,
0.160)

3.747
(2.000,
7.582)

—

0107 12.571
(12.015,
14.428)

0.438
(0.153,
1.008)

2.351
(0.899,
6.335)

1.000
(0.954,
1.052)

2.673
(0.565,
9.271)

0.993
(0.980,
0.997)

1.503
(1.006,
2.147)

0.067
(0.038,
0.112)

0.184
(0.103,
0.291)

3.746
(1.988,
7.349)

—
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Table 7: Key sources of uncertainty

Type Rationale Uncertainty Impact Confidence

Data
CPUE Best available long-term

indices (DWFN & New
Zealand recreational)

DWFN index is a composite,
multi-flag index with limited gear
covariates. New Zealand index is
spatially restricted

Changes in the fleet
composition and or
fishing location in the
DWFN index can be
interpreted by the
model as population
level changes. For the
New Zealand index, if
the stock distribution
has shifted this may
impact
representativeness

Medium

Catch Best available information Situationally targeted species so
catch reporting may be inconsistent

Reported catches are
highly influential to
estimated population
scale

High

Model
Bayesian surplus
production
model

Parsimonious and robust
model

Over simplifies population and
spatial dynamics

Unknown Medium

Spatial
assumptions
No spatial
structure

Little tagging data to
understand structure

Unclear Potentially important
not quantified impact
unknown

Low

49



Type Rationale Uncertainty Impact Confidence

Key
parameter
uncertainty
Productivity
(RMAX)

Estimated from informative
prior

Uncertainty in key biological
processes

Wide prior
contributes to high
uncertainty within
model runs

High

Population scale
(log(K) & qeff )

Estimated from informative
prior

Scale prior dependent on maximum
observed catch being representative
of MSY

Broad prior
contributes to high
uncertainty within
model runs

High

Shape n Estimated from informative
prior

Alternative priors used to capture
shape of the production function

Uncertainty in where
MSY occurs as a
fraction of the
unfished condition

Medium

Structural
uncertainties
Catch
observation
error

Fixed σC = 0.2 Choice of σC and observation model
impacts estimated removals

Removal estimates
may not exactly
match observations

Medium

Estimation
uncertainty
MCMC Full Bayesian estimation

integrating uncertainty over
key parameters

Estimated Basis for model
ensemble

High

Other sources
of uncertainty
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Type Rationale Uncertainty Impact Confidence

Stock structure Genetic sampling of catch in
the north Pacific indicates
presence of SWPO fish

Not considered Actual population
removals may be
under-counted
impacting scale and
stock status

Low
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Table 8: SWPO Striped Marlin stock status summary

Summary

Year of assessment: 2025 Depletion (Drecent) Likely (74%) to be below
DMSY

Stock is overfished

Last year of data: 2022 Fishing mortality
(Frecent)

Unlikely (23%) to be above
FMSY

Overfishing is not occurring

Projection F about as likely as not
(33-66%) to decline further
by 2027

The stock is unlikely
(<33%) to be undergoing
overfishing in the near term
under recent average catch
levels.

D likely (>66%) to decline
further by 2027

The stock is about as likely
as not (33-66%) to be
overfished in the near term
under recent average catch
levels.

Reference points Metric Median [2.5%-97.5% CI] Likelihood Recent trend /
projection

Depletion LRP (DMSY ) 0.48 [0.26 – 0.7]
Abundance LRP (PMSY ) 155,183 n [63,037 – 808,861]
Abundance LRP (0.2 × log(K)) 65,041 n [36,198 – 327,844]
Catch MSY 29,962 n [25,828 – 184,069]
Fishing mortality FMSY 0.23 [0.08 – 0.69]

Estimates Metric Median [2.5%-97.5% CI] Likelihood Recent trend /
projection

Depletion Dlatest 0.38 [0.14 – 0.96] Increasing
Depletion Drecent 0.37 [0.15 – 0.94] Increasing
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Summary

Abundance Platest 121,943 n [34,067 –
1,479,253]

Increasing

Abundance Precent 117,967 n [34,199 –
1,442,511]

Increasing

Catch Clatest 17,488 n [11,545 – 25,988] Stable, decreasing
Catch Crecent 20,570 n [13,357 – 28,058] Stable, decreasing
Fishing mortality Flatest 0.15 [0.01 – 0.47] Decreasing
Fishing mortality Frecent 0.17 [0.01 – 0.49] Decreasing

Status Metric Median [2.5%-97.5% CI] Likelihood Recent trend /
projection

Depletion Dlatest/DMSY 0.81 [0.32 – 2.36] Likely (>66%) to be below
DMSY

Depletion Drecent/DMSY 0.77 [0.33 – 2.3] Likely (>66%) to be below
DMSY

Fishing mortality Flatest/FMSY 0.69 [0.05 – 1.51] Unlikely (<33%) to be
above FMSY

Fishing mortality Frecent/FMSY 0.77 [0.05 – 1.51] Unlikely (<33%) to be
above FMSY

Projections Metric Median [2.5%-97.5% CI] Likelihood Recent trend /
projection

Depletion D2027
proj/DMSY 1.1 [0.13 – 2.47] About as Likely as Not

(33-66%) to be below
DMSY

Dproj increasing

Fishing mortality F 2027
proj /FMSY 0.6 [0.04 – 19.3] Unlikely (<33%) to be

above FMSY

Fproj decreasing

Notes: IPCC likelihood categories: >99% = Virtually Certain, >90% = Very Likely, >66% = Likely, 33-66% = About as Likely as Not, <33% =
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Unlikely, <10% = Very Unlikely, <1% = Exceptionally Unlikely. In the absence of formal reference points, overfished and overfishing designations are
based on MSY reference points. For depletion ratios, Drecent refers to the average over 2019-2022 and Dlatest refers to 2022. For fishing mortality ratios,
Frecent refers to the average over 2018-2021 and Flatest refers to 2021. Projections are based on recent average catch over the last 5 years: 2018-2022.

54



10 Figures
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Figure 1: Annual catch (numbers; individuals) of striped marlin and nominal longline effort (hooks fished;
thousands) in the Southwest Pacific Ocean (1952-2022).
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Figure 2: Standardized index (black points), and observation error (black bars) for alternative model indices.
The trend in the indices is shown in blue using a loess-smooth.
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Figure 3: Prior pushforward check showing simulated removals and population depletion trajectories under
different filtering scenarios (median: colored lines) with 95% quantile of trajectories (shaded polygon).
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Figure 4: Prior pushforward diagnostic pairs plot showing parameter correlations and marginal distributions
for different filtering scenarios. The plot compares initial priors (blue), catch-filtered priors (cyan), cpue-filtered
priors (lime green), and the final updated priors following fitting to the cpue-filtered distribution (orange)
across key model parameters (logK, r, shape, x0, log_qeff, atan_rho, sigma_qdev). Diagonal panels show
marginal density distributions with overlaid curves for each filtering scenario. Off-diagonal scatter plots
display pairwise parameter relationships colored by filtering type. Correlation coefficients in the upper triangle
quantify linear relationships between adjacent distributions, with statistical significance indicated by asterisks.
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Figure 5: Model fit to catch data showing observed catch (black points with 95% error bars) and model-
predicted catch (colored lines and shaded ribbons representing 95% credible intervals).
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Figure 6: Posterior predictive check for catch data using probability integral transform empirical cumulative
distribution function (PIT-ECDF). The solid blue line shows the empirical CDF of PIT values calculated
from observed catch data relative to posterior predictive distributions. Light blue dashed lines indicate 99%
simultaneous confidence bands under the assumption of correct model specification. The solid blue line should
be contained within the 99% simultaneous confidence bands.
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Figure 7: Model fit to the standardized index data showing observations (black points with 95% error bars)
and model-predictions (colored lines and shaded ribbons representing 95% credible intervals).
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Figure 8: Probability Integral Transform (PIT) residuals for catch data from the diagnostic model over time.
Orange points with vertical lines show PIT residual values for each year, where values should be uniformly
distributed between 0 and 1 under correct model specification. The ‘Runs test: Pass’ annotation indicates
that the runs test for temporal autocorrelation in the residuals passed at the 5% significance level, suggesting
no systematic patterns in the residuals over time.
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Figure 9: Posterior predictive check for index data using probability integral transform empirical cumulative
distribution function (PIT-ECDF). The solid blue line shows the empirical CDF of PIT values calculated
from observed catch data relative to posterior predictive distributions. Light blue dashed lines indicate 99%
simultaneous confidence bands under the assumption of correct model specification. The solid blue line should
be contained within the 99% simultaneous confidence bands.
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Figure 10: Retrospective analysis for the diagnostic case model ( 0100 ) with respect to time series of depletion
Dt, depletion relative to depletion at MSY Dt/DMSY , fishing mortality Ft, and fishing mortality relative to
the rate of fishing mortality that produces MSY Ft/FMSY . The base model with data included through 2022
(black line – median; dark shading – 50% credible interval; light shading – 95% credible interval) is shown
relative to the retrospective models. Colored lines correspond to the last year of index data and the colored
point indicates the estimate in the last year of the retrospective peel.
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Figure 11: Standardized indices of relative abundance used in the diagnostic case model ( 0100 ). Open circles
show observed values (standardized to mean of 1; black horizontal line) and the vertical bars indicate the
observation error (95% confidence interval). One year ahead ‘model-free’ hindcast predictions are shown by
the colored lines, where the color indicates the last year of index data seen by the model. The predicted value
is shown one year-ahead with the colored point.
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Figure 12: Prior-posterior comparison pairs plot for the diagnostic case model showing naïve prior (blue),
realized prior (green), and posterior (orange) distributions across leading model parameters. Diagonal panels
display marginal density distributions for each parameter. Off-diagonal scatter plots show pairwise parameter
relationships colored by distribution type. Upper triangle correlation coefficients quantify linear relationships
between distributions, with statistical significance indicated by asterisks. The comparison illustrates sequential
parameter refinement from initial biological/expert knowledge (naïve prior) through model structure filtering
(realized prior) to data-based learning (posterior).
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Figure 13: Distributions of biological parameters (maximum age max_age, natural mortality reference M_ref,
length at birth L1, asymptotic length L2, von Bertalanffy growth coefficient vbk, length at 50% maturity l50,
sex ratio at birth sex_ratio, coefficient of variation in length cv_len, weight-length relationship parameters
weight_a and weight_b, and steepness h) used in the rmax sub-sampling process. Original biological prior
distribution (blue shading), input prior distribution following the prior pushforward analysis (green shading),
and final sub-sampled distribution selected to match the posterior RMax distribution (orange shading).

67



Figure 14: Model-free hindcast performance for the DWFN CPUE index. The diagnostic model fitted to the
full dataset (orange line and shading) is compared against retrospective models excluding the final 5, 10,
15, and 20 years of index data. Colored lines show model predictions with 95% credible intervals (shading).
Observed index values are shown as black points with error bars. Colored points at the bottom indicate the
terminal year of each retrospective peel: 2017 (yellow), 2012 (green), 2007 (cyan), and 2002 (blue).
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Figure 15: Model-free hindcast performance for key population dynamics parameters. Time series show
posterior distributions (median and 95% credible intervals) for depletion (D), population (P), fishing mortality
(F), relative depletion (D/DMSY ), relative fishing mortality (F/FMSY ), removals, process error, nominal
CPUE, and catchability deviates. The diagnostic model (orange) is compared against retrospective models
terminating in 2017 (yellow), 2012 (green), 2007 (cyan), and 2002 (blue). Colored points indicate the terminal
year of each retrospective peel.
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Figure 16: One-off sensitivity group: Index .Model fit to standardized index data showing observations
(black points with 95% error bars) and model-predictions (colored lines and shaded ribbons representing 95%
credible intervals). The diagnostic model ( 0100 ) is shown in orange.
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Figure 17: One-off sensitivity group: Index .Prior and posterior parameter distributions showing the evo-
lution from prior (dotted line) to posterior (shaded) distributions for leading model parameters: carrying
capacity (logK), intrinsic growth rate (r), observation error (sigmao_add), process error (sigmap), shape
parameter, effective catchability (qeff), autocorrelation in catchability (rho), catchability deviation variability
(sigma_qdev), initial depletion (x0), and catch likelihood degrees of freedom (nu_catch). The diagnostic
model ( 0100 ) is shown in orange.
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Figure 18: One-off sensitivity group: Index . Posterior time series distributions for key derived quantities over
time (line = median, shading = 95% credible interval): depletion (D), absolute population size in numbers
(P), fishing mortality (F), stock status relative to MSY reference points (D/DMSY , F/FMSY ), total removals
in numbers, process error, nominal CPUE (numbers caught per 1000 hooks), and catchability deviates. The
diagnostic model ( 0100 ) is shown in orange.
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Figure 19: One-off sensitivity group: Catch observation error . Prior and posterior parameter distributions
showing the evolution from prior (dotted line) to posterior (shaded) distributions for leading model parameters:
carrying capacity (logK), intrinsic growth rate (r), observation error (sigmao_add), process error (sigmap),
shape parameter, effective catchability (qeff), autocorrelation in catchability (rho), catchability deviation
variability (sigma_qdev), initial depletion (x0), and catch likelihood degrees of freedom (nu_catch). The
diagnostic model ( 0100 ) is shown in orange.
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Figure 20: One-off sensitivity group: Catch observation error . Posterior time series distributions for
key derived quantities over time (line = median, shading = 95% credible interval): depletion (D), absolute
population size in numbers (P), fishing mortality (F), stock status relative to MSY reference points (D/DMSY ,
F/FMSY ), total removals in numbers, process error, nominal CPUE (numbers caught per 1000 hooks), and
catchability deviates. The diagnostic model ( 0100 ) is shown in orange.
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Figure 21: One-off sensitivity group: Early data . Prior and posterior parameter distributions showing the
evolution from prior (dotted line) to posterior (shaded) distributions for leading model parameters: carrying
capacity (logK), intrinsic growth rate (r), observation error (sigmao_add), process error (sigmap), shape
parameter, effective catchability (qeff), autocorrelation in catchability (rho), catchability deviation variability
(sigma_qdev), initial depletion (x0), and catch likelihood degrees of freedom (nu_catch). The diagnostic
model ( 0100 ) is shown in orange.
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Figure 22: One-off sensitivity group: Early data . Posterior time series distributions for key derived quantities
over time (line = median, shading = 95% credible interval): depletion (D), absolute population size in numbers
(P), fishing mortality (F), stock status relative to MSY reference points (D/DMSY , F/FMSY ), total removals
in numbers, process error, nominal CPUE (numbers caught per 1000 hooks), and catchability deviates. The
diagnostic model ( 0100 ) is shown in orange.
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Figure 23: One-off sensitivity group: Scaling priors . Prior and posterior parameter distributions showing
the evolution from prior (dotted line) to posterior (shaded) distributions for leading model parameters:
carrying capacity (logK), intrinsic growth rate (r), observation error (sigmao_add), process error (sigmap),
shape parameter, effective catchability (qeff), autocorrelation in catchability (rho), catchability deviation
variability (sigma_qdev), initial depletion (x0), and catch likelihood degrees of freedom (nu_catch). The
diagnostic model ( 0100 ) is shown in orange.
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Figure 24: One-off sensitivity group: Scaling priors . Model fit to standardized index data showing
observations (black points with 95% error bars) and model-predictions (colored lines and shaded ribbons
representing 95% credible intervals). The diagnostic model ( 0100 ) is shown in orange.
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Figure 25: One-off sensitivity group: Catch observation model . Prior and posterior parameter distributions
showing the evolution from prior (dotted line) to posterior (shaded) distributions for leading model parameters:
carrying capacity (logK), intrinsic growth rate (r), observation error (sigmao_add), process error (sigmap),
shape parameter, effective catchability (qeff), autocorrelation in catchability (rho), catchability deviation
variability (sigma_qdev), initial depletion (x0), and catch likelihood degrees of freedom (nu_catch). The
diagnostic model ( 0100 ) is shown in orange.
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Figure 26: One-off sensitivity group: Catch observation model . Posterior time series distributions for
key derived quantities over time (line = median, shading = 95% credible interval): depletion (D), absolute
population size in numbers (P), fishing mortality (F), stock status relative to MSY reference points (D/DMSY ,
F/FMSY ), total removals in numbers, process error, nominal CPUE (numbers caught per 1000 hooks), and
catchability deviates. The diagnostic model ( 0100 ) is shown in orange.
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Figure 27: One-off sensitivity group: Temporal resolution of catchability deviates . Model fit to
catch data showing observed catch (black points with 95% error bars) and model-predicted catch (colored
lines and shaded ribbons representing 95% credible intervals). The diagnostic model ( 0100 ) is shown in
orange.
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Figure 28: One-off sensitivity group: Temporal resolution of catchability deviates . Prior and poste-
rior parameter distributions showing the evolution from prior (dotted line) to posterior (shaded) distributions
for leading model parameters: carrying capacity (logK), intrinsic growth rate (r), observation error (sig-
mao_add), process error (sigmap), shape parameter, effective catchability (qeff), autocorrelation in catchability
(rho), catchability deviation variability (sigma_qdev), initial depletion (x0), and catch likelihood degrees of
freedom (nu_catch). The diagnostic model ( 0100 ) is shown in orange.
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Figure 29: One-off sensitivity group: Temporal resolution of catchability deviates . Posterior time
series distributions for key derived quantities over time (line = median, shading = 95% credible interval):
depletion (D), absolute population size in numbers (P), fishing mortality (F), stock status relative to MSY
reference points (D/DMSY , F/FMSY ), total removals in numbers, process error, nominal CPUE (numbers
caught per 1000 hooks), and catchability deviates. The diagnostic model ( 0100 ) is shown in orange.
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Figure 30: One-off sensitivity group: Catch reporting . Prior and posterior parameter distributions showing
the evolution from prior (dotted line) to posterior (shaded) distributions for leading model parameters:
carrying capacity (logK), intrinsic growth rate (r), observation error (sigmao_add), process error (sigmap),
shape parameter, effective catchability (qeff), autocorrelation in catchability (rho), catchability deviation
variability (sigma_qdev), initial depletion (x0), and catch likelihood degrees of freedom (nu_catch). The
diagnostic model ( 0100 ) is shown in orange.
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Figure 31: One-off sensitivity group: Catch reporting . Posterior time series distributions for key derived
quantities over time (line = median, shading = 95% credible interval): depletion (D), absolute population size
in numbers (P), fishing mortality (F), stock status relative to MSY reference points (D/DMSY , F/FMSY ),
total removals in numbers, process error, nominal CPUE (numbers caught per 1000 hooks), and catchability
deviates. The diagnostic model ( 0100 ) is shown in orange.
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Figure 32: One-off sensitivity group: Process error . Model fit to standardized index data showing observa-
tions (black points with 95% error bars) and model-predictions (colored lines and shaded ribbons representing
95% credible intervals). The diagnostic model ( 0100 ) is shown in orange.
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Figure 33: One-off sensitivity group: Process error . Prior and posterior parameter distributions showing
the evolution from prior (dotted line) to posterior (shaded) distributions for leading model parameters:
carrying capacity (logK), intrinsic growth rate (r), observation error (sigmao_add), process error (sigmap),
shape parameter, effective catchability (qeff), autocorrelation in catchability (rho), catchability deviation
variability (sigma_qdev), initial depletion (x0), and catch likelihood degrees of freedom (nu_catch). The
diagnostic model ( 0100 ) is shown in orange.

87



Figure 34: One-off sensitivity group: Process error . Posterior time series distributions for key derived
quantities over time (line = median, shading = 95% credible interval): depletion (D), absolute population size
in numbers (P), fishing mortality (F), stock status relative to MSY reference points (D/DMSY , F/FMSY ),
total removals in numbers, process error, nominal CPUE (numbers caught per 1000 hooks), and catchability
deviates. The diagnostic model ( 0100 ) is shown in orange.
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Figure 35: One-off sensitivity group: Start year . Posterior time series distributions for key derived quantities
over time (line = median, shading = 95% credible interval): depletion (D), absolute population size in numbers
(P), fishing mortality (F), stock status relative to MSY reference points (D/DMSY , F/FMSY ), total removals
in numbers, process error, nominal CPUE (numbers caught per 1000 hooks), and catchability deviates. The
diagnostic model ( 0100 ) is shown in orange.

89



Figure 36: One-off sensitivity group: Start year . Prior and posterior parameter distributions showing the
evolution from prior (dotted line) to posterior (shaded) distributions for leading model parameters: carrying
capacity (logK), intrinsic growth rate (r), observation error (sigmao_add), process error (sigmap), shape
parameter, effective catchability (qeff), autocorrelation in catchability (rho), catchability deviation variability
(sigma_qdev), initial depletion (x0), and catch likelihood degrees of freedom (nu_catch). The diagnostic
model ( 0100 ) is shown in orange.
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Figure 37: One-off sensitivity group: Inclusion of effort deviates . Model fit to catch data showing
observed catch (black points with 95% error bars) and model-predicted catch (colored lines and shaded
ribbons representing 95% credible intervals). The diagnostic model ( 0100 ) is shown in orange.
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Figure 38: One-off sensitivity group: Inclusion of effort deviates . Prior and posterior parameter
distributions showing the evolution from prior (dotted line) to posterior (shaded) distributions for leading
model parameters: carrying capacity (logK), intrinsic growth rate (r), observation error (sigmao_add), process
error (sigmap), shape parameter, effective catchability (qeff), autocorrelation in catchability (rho), catchability
deviation variability (sigma_qdev), initial depletion (x0), and catch likelihood degrees of freedom (nu_catch).
The diagnostic model ( 0100 ) is shown in orange.
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Figure 39: One-off sensitivity group: Inclusion of effort deviates . Posterior time series distributions
for key derived quantities over time (line = median, shading = 95% credible interval): depletion (D), absolute
population size in numbers (P), fishing mortality (F), stock status relative to MSY reference points (D/DMSY ,
F/FMSY ), total removals in numbers, process error, nominal CPUE (numbers caught per 1000 hooks), and
catchability deviates. The diagnostic model ( 0100 ) is shown in orange.
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Figure 40: One-off sensitivity group: Direct estimation of fishing mortality . Model fit to catch data
showing observed catch (black points with 95% error bars) and model-predicted catch (colored lines and
shaded ribbons representing 95% credible intervals). The diagnostic model ( 0100 ) is shown in orange.
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Figure 41: One-off sensitivity group: Direct estimation of fishing mortality . Posterior time series
distributions for key derived quantities over time (line = median, shading = 95% credible interval): depletion
(D), absolute population size in numbers (P), fishing mortality (F), stock status relative to MSY reference
points (D/DMSY , F/FMSY ), total removals in numbers, process error, nominal CPUE (numbers caught per
1000 hooks), and catchability deviates. The diagnostic model ( 0100 ) is shown in orange.
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Figure 42: One-off sensitivity group: Alternative RMax prior . Posterior time series distributions for
key derived quantities over time (line = median, shading = 95% credible interval): depletion (D), absolute
population size in numbers (P), fishing mortality (F), stock status relative to MSY reference points (D/DMSY ,
F/FMSY ), total removals in numbers, process error, nominal CPUE (numbers caught per 1000 hooks), and
catchability deviates. The diagnostic model ( 0100 ) is shown in orange.
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Figure 43: Model ensemble. Model fit to catch data showing observed catch (black points with 95% error
bars) and model-predicted catch (colored lines and shaded ribbons representing 95% credible intervals). The
diagnostic model ( 0100 ) is shown in orange.
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Figure 44: Model ensemble.. Model fit to standardized index data showing observations (black points with
95% error bars) and model-predictions (colored lines and shaded ribbons representing 95% credible intervals).
The diagnostic model ( 0100 ) is shown in orange.
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Figure 45: Retrospective analysis for the four ensemble models with respect to time series of depletion Dt,
depletion relative to depletion at MSY Dt/DMSY , fishing mortality Ft, and fishing mortality relative to the
rate of fishing mortality that produces MSY Ft/FMSY . The base model with data included through 2022
(black line – median; dark shading – 50% credible interval; light shading – 95% credible interval) is shown
relative to the retrospective models. Colored lines correspond to the last year of index data and the colored
point indicates the estimate in the last year of the retrospective peel.
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Figure 46: Standardized indices of relative abundance used in the model ensemble. Open circles show observed
values (standardized to mean of 1; black horizontal line) and the vertical bars indicate the observation error
(95% confidence interval). One year ahead ‘model-free’ hindcast predictions are shown by the colored lines,
where the color indicates the last year of index data seen by the model. The predicted value is shown one
year-ahead with the colored point.
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Figure 47: Model ensemble. Posterior time series distributions for key derived quantities over time (line =
median, shading = 95% credible interval): depletion (D), absolute population size in numbers (P), fishing
mortality (F), stock status relative to MSY reference points (D/DMSY , F/FMSY ), total removals in numbers,
process error, nominal CPUE (numbers caught per 1000 hooks), and catchability deviates. The model
ensemble is shown in orange.
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Figure 48: Model ensemble. Kobe plot showing the median posterior estimate of latest stock depletion
relative to depletion at MSY (Dlatest/DMSY ) and fishing mortality relative to MSY (Flatest/FMSY ). Points
represent model estimates colored by year (blue ∼ 2020, green ∼ 1985, orange ∼ 1950), with connecting line
showing the trajectory over time. The gray shaded contour is the bi-variate 95% credible distribution around
the terminal year estimate D2022/DMSY and F2021/FMSY .
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Figure 49: Model ensemble. Majuro plot showing the median posterior estimate of latest stock depletion
(Dlatest = Platest/P0) and fishing mortality relative to MSY (Flatest/FMSY ). Points represent model estimates
colored by year (blue ∼ 2020, green ∼ 1985, orange ∼ 1950), with connecting line showing the trajectory over
time. The gray shaded contour is the bi-variate 95% credible distribution around the terminal year estimate
D2022 and F2021/FMSY .
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Figure 50: Model ensemble. Posterior time series distributions for key derived quantities over time during
the forecast period 2023-2032 (line = median, shading = 90% credible interval): depletion (D), absolute
population size in numbers (P), fishing mortality (F), stock status relative to MSY reference points (D/DMSY ,
F/FMSY ), total removals in numbers, process error, nominal CPUE (numbers caught per 1000 hooks), and
catchability deviates. The model ensemble is shown in orange. A 90% credible interval is shown to restrict
the y-axis of the fishing mortality F panel which shows high values of F in the projection period as a very
small percentage of populations are estimated to go to zero under recent average catch levels.
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11 Technical Annex

Additional technical detail of population dynamics components used to solve the Euler-Lotka equation for
RMax.

11.1 Equilibrium Age-Structured Population Dynamics

11.1.1 Survival

Survival schedule was calculated assuming constant natural mortality:

la =


1 if a = 1

la−1 × exp(−Mref ) if 1 < a < AMax

lAMax−1
1−exp(−Mref ) if a = AMax (plus group)

11.1.2 Fecundity

Reproductive output incorporated biological constraints:

fa = ψa ×Wa × s

ρ

where: - ψa = proportion mature at age a - Wa = weight at age a (proxy for reproductive capacity) - s = sex
ratio (proportion female) - ρ = reproductive cycle (years between spawning events)

Maturity-at-age was derived from length-based logistic maturity:

ψL = exp(amat + bmat × L)
1 + exp(amat + bmat × L)

where bmat = −amat/L50, then integrated over the length-at-age distribution to obtain ψa.

Length-at-age followed the Francis parameterization:

La = L1 + (L2 − L1) × 1 − exp(−k(a− age1))
1 − exp(−k(age2 − age1))

with length variability modeled using probability density functions linking length bins to ages.

Weight-at-age used the allometric relationship:

Wa = aw × Lbw
a

11.1.3 Stock-Recruitment Relationship

The slope at the origin of the stock-recruitment curve was:

α = 4h
(1 − h)ϕ0
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The calculation incorporated steepness (h) through the Beverton-Holt stock-recruitment relationship.
Spawners-per-recruit in the unfished state was:

ϕ0 =
AMax∑
a=1

lafa

This α parameter links the intrinsic rate of increase to recruitment compensation, ensuring that RMax

estimates reflect realistic population productivity under the assumed stock-recruitment dynamics.

Successful simulations (those yielding RMax > 0 and RMax < 1.5) were filtered to create a plausible prior
distribution. The resulting distribution was fitted to a lognormal prior for use in the BSPM.
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12 Appendix

12.1 Highest Density Intervals vs. Equal-Tailed Intervals

Highest density intervals (HDIs) provide an alternative to conventional equal-tailed intervals (ETIs) for
characterizing uncertainty in Bayesian stock assessments. While both represent credible intervals containing a
specified probability mass (e.g., 95%), they differ fundamentally in how this probability is distributed.

Equal-Tailed Intervals (ETIs) place equal probability (2.5%) in each tail of the distribution, resulting in the
familiar percentile-based intervals (2.5th to 97.5th percentiles for 95% intervals). In contrast, Highest Density
Intervals (HDIs) contain the 95% most probable values, defined as the shortest possible interval containing
the specified probability mass. Critically, all values within an HDI are more credible (have higher probability
density) than any values outside it, whereas ETIs can exclude highly probable values while including less
probable ones. This is more clearly demonstrated in the following figure (Figure 51), where the ETI and HDI
are presented for Drecent/DMSY . As seen in panel A of Figure 51, the lower tail of the ETI inappropriately
excludes high probability observations. In panel B of Figure 51, we see that all low probability observations
are appropriately excluded. This shrinks the range of the credible interval, and shifts it left to exclude lower
probability values in the right tail.

HDIs offer several advantages over ETIs: they are always the shortest possible credible interval (reducing
perceived uncertainty), provide more intuitive interpretation by including only the most probable values, and
are better suited for the right-skewed distributions common in stock assessments. However, HDIs may require
explanation to stakeholders familiar with conventional intervals, and unlike ETIs, change under nonlinear
transformations of the parameter.

As applied to stock assessments, HDIs typically result in narrower uncertainty intervals and can shift interval
bounds toward lower values in right-skewed distributions (A. M. Edwards & Auger-Méthé, 2025). This can
affect perceptions of stock status, particularly when intervals approach management reference points. The
following table (Table 9) presents the median, ETI and HDI of all key stock status and management reference
points for consideration by the WCPFC Scientific Committee.
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Table 9: Comparison of equal-tailed intervals (ETI) and highest density intervals (HDI) for the posterior
distributions of key stock status and management reference points.

Category Metric Median 95% ETI 95% HDI

Reference points
Depletion LRP (DMSY ) 0.48 [0.26 – 0.7] [0.26 – 0.7]
Abundance LRP (PMSY ) 155,183 n [63,037 – 808,861] [37,772 – 556,497]
Abundance LRP

(0.2 × log(K))
65,041 n [36,198 – 327,844] [28,895 – 221,199]

Catch MSY 29,962 n [25,828 – 184,069] [23,040 – 103,619]
Fishing mortality FMSY 0.23 [0.08 – 0.69] [0.04 – 0.58]

Estimates
Depletion Dlatest 0.38 [0.14 – 0.96] [0.1 – 0.9]
Depletion Drecent 0.37 [0.15 – 0.94] [0.11 – 0.89]
Abundance Platest 121,943 n [34,067 – 1,479,253] [8,612 – 925,445]
Abundance Precent 117,967 n [34,199 – 1,442,511] [13,983 – 911,307]
Catch Clatest 17,488 n [11,545 – 25,988] [10,947 – 25,108]
Catch Crecent 20,460 n [16,891 – 24,770] [16,962 – 24,792]
Fishing mortality Flatest 0.15 [0.01 – 0.47] [0 – 0.4]
Fishing mortality Frecent 0.17 [0.01 – 0.49] [0 – 0.42]

Status
Depletion Dlatest/DMSY 0.81 [0.32 – 2.36] [0.24 – 2.02]
Depletion Drecent/DMSY 0.77 [0.33 – 2.3] [0.24 – 1.95]
Fishing mortality Flatest/FMSY 0.69 [0.05 – 1.51] [0.01 – 1.35]
Fishing mortality Frecent/FMSY 0.77 [0.05 – 1.51] [0.02 – 1.34]
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Figure 51: Comparison of equal-tailed intervals (ETI) and highest density intervals (HDI) for the posterior
distribution of recent depletion relative to MSY (Drecent/DMSY ). Panel A shows the 95% ETI with equal
probability (2.5%) in each tail. Panel B shows the 95% HDI, which contains the most probable values and is
bounded by the horizontal threshold line (gray) where all values above have higher probability density than
values below.
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