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Effects of gear characteristics on the presence of bigeye tuna (Thunnus 

obesus) in the catches of the purse-seine fishery of the eastern Pacific 

Ocean 

Cleridy E. Lennert-Cody, Jason J. Roberts, and Richard J. Stephenson 

Overfishing of bigeye tuna in the eastern Pacific Ocean has motivated a search for 

pratical means of reducing bigeye catch. We develop a classification algorithm for the 

presence/absence of bigeye in purse-seine sets on floating objects, the dominant mode of 

purse-seining for bigeye, using the tree-based method random forests to explore the 

effects of gear characteristics. Although the location of the set was the strongest 

determinant of the presence of bigeye catch with these data, in some areas, bigyeye were 

more likely to be caught on floating objects with greater underwater depths and with 

deeper purse-seine nets. Misclassified sets were found to be concentrated within certain 

vessels, suggesting that the existence of  additional ‘vessel effects’ on the presence of 

bigeye which may be amenable to further study. Results indicate that fishermen can avoid 

catching bigeye in some areas by changing the depth of the material hanging from the 

floating object and the actual fishing depth of the net, or by moving to other fishing areas. 

However, we believe that the complex nature of gear and environmental interactions, and 

the impact of gear restrictions on the catches of tuna species other than bigeye, argue 
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against the feasibility of fishery-wide gear restrictions. 
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Introduction 

Despite recent efforts to improve the status of bigeye tuna (Thunnus obesus) in the 

eastern Pacific Ocean (EPO), the most recent stock assessment (Maunder and Hoyle, 

2007) indicates that fishing mortality remains too high to be sustainable. Management of 

the bigeye tuna population in the EPO is complicated (Maunder and Harley, 2006). 

Bigeye tuna is caught predominantly by longline and purse-seine gears, with 

approximately half the catch of bigeye occurring in purse-seine sets made on floating 

objects (IATTC, 2006a). However, the dominant tuna catch in these floating object sets is 

skipjack tuna (Katsuwonus pelamis), and the skipjack population in the EPO is estimated 

to be healthy. Thus, one of the management goals has been to find means of reducing 

catches of bigeye tuna in the purse-seine fishery on floating objects while minimizing 
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losses of skipjack catch. Implementation of seasonal closures since 2000 affecting both 

purse-seine and longline fisheries have not provided an adequate reduction in bigeye tuna 

fishing mortality. Given that operationally-feasible time-area closures are unlikely to 

result in a sustainable bigeye fishery (Harley and Suter, 2007), other options, including 

gear modifications, are currently being explored (Maunder, 2006). 

Floating object sets that capture bigeye tuna appear to be concentrated within vessels. 

All three tuna species, bigeye, skipjack and yellowfin (Thunnus albacares), that are 

targeted by the purse-seine fishery in the EPO, are caught in floating object sets. Based 

on data collected by Inter-American Tropical Tuna Commission (IATTC) observers 

during 2001-2005 (see Data section), approximately 54% of floating object sets by large 

vessels (> 363 mt fish-carrying capactiy) yielded catches of bigeye tuna, compared to 

81% for yellowfin tuna and 93% for skipjack tuna. Yet total catches of bigeye tuna on 

floating objects are greater than those of yellowfin tuna on floating objects. Of the 158 

vessels represented by these data, 28% did not catch any bigeye tuna. Floating object 

sets, regardless of the catch, tended to be concentrated within vessels. However, even 

accounting for this, the relationship between numbers of sets on floating objects and 

numbers of sets on floating objects that caught bigeye, by vessel, is not linear (Figure 1). 

This is contrary to what would be expected if sets per vessel that caught bigeye tuna were 

proportional to total sets. Although the specific vessels making the most sets on bigeye 

tuna changes from year to year, one possible explanation for this pattern is that each year 

some vessels increase their chances of catching bigeye tuna by where and when they fish, 

the gear that they use, and/or combinations of these options. 

It has been suggested that some gear characteristics affected tuna catches during the 
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1993-1998 period of this fishery (Lennert-Cody and Hall, 2000). However, this was a 

time when the fishery on floating objects was in transition from a fishery on flotsam (e.g., 

tree limbs) in nearshore areas to a largely fish-aggregating device (FAD)-associated 

fishery further offshore. Although partial confounding of gear and environmental factors 

is to be expected with fishery-dependent data, particularly in the EPO where there exist 

strong environmental gradients (e.g., Kessler, 2006), the need to find operationally-

feasible means of reducing fishing mortality of bigeye tuna in the current FAD-

dominated fishery, the availability of more comprehensive environmental data (e.g., 

ocean color), and the availability of improved descriptive statistical techniques for large 

data sets (e.g., Berk, 2006) suggests that gear effects warrant further study. Because 

vertical stratification of tuna species around floating objects has been noted by fishermen 

and fisheries observers, and identified through research (Schaefer and Fuller, 2002), with 

bigeye deeper in the water column than skipjack, the current analysis focuses on aspects 

of the fishinging gear that might interact with vertical structure of the object-associated 

community, thereby affecting catch composition. 

In this manuscript we present an analysis of the presence/absence of bigeye tuna catch 

in purse-seine sets on floating objects for the 2001-2005 period. Given the results of the 

most recent stock assessments for bigeye tuna (Maunder and Harley, 2006; Maunder and 

Hoyle, 2007), and the fact that almost half of floating object sets caught no bigeye, we 

focus on understanding processes that led to any amount of bigeye catch. The tree-based 

method random forests (Breiman, 2001) was used to build a classification algorithm for 

sets with and without bigeye tuna catch, placing more emphasis on correctly predicting 

the presence of catch. With this analysis, we attempt to determine: 1) how well the 
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presence of bigeye catch can be described by characteristics of the environment, and the 

fishing operation and gear; 2) whether there is spatial structure in any gear effects; and, 3) 

the extent to which there may exist additional ‘vessel effects’ on the presence of bigeye 

catch beyond the explanatory ability of the predictors included in this analysis. 

 

Data 

Data used in this analysis are from purse-seine sets on floating objects collected by 

IATTC observers aboard large vessels (> 363 mt fish-carrying capacity) between 2001 

and 2005. The IATTC sampled over 67% of all fishing trips of large vessels over this 

five-year period (e.g., IATTC, 2006b), amounting to over 75% IATTC observer coverage 

of floating object sets of large vessels. The IATTC onboard observer program is 

described in Bayliff (2001). Data were limited to sets that caught some amount of at least 

one of the three target species to avoid observations for which the fish escaped capture. 

Repeated sets on the same floating object, where they could be identified, were excluded 

(> 85% of sets were deemed ‘first’ sets). Data collected prior to 2001 were not included 

in this analysis to avoid potential trends in biases in tuna species identification. In 

particular, in 2000 the IATTC implemented a system for tracking tuna catch as part of the 

AIDCP ‘dolphin safe’ certification. As part of this process, the observer may discuss 

catch composition with the vessel’s fishing captain. In addition, in 2000 the IATTC 

passed a resolution encouraging vessels to retain all tuna catch (IATTC, 2000). This 

resolution has been renewed annually, but the degree of compliance is unclear (IATTC, 

unpublished data). Because tunas found in association with floating objects can be of 

small size, and hence less marketable, strict compliance with the resolution might affect a 
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vessel’s decision as to whether to initiate a set. After data processing, a total of 10,421 

floating object sets was available for analysis. 

Over 85% of the floating objects set upon during this five-year period were estimated 

to have been FADs (IATTC, 2006a). FADs may be constructed of a variety of materials, 

but the most typical construction is a raft (often of bamboo) with old purse-seine netting 

hanging underneath. FADs often carry some form of locating device (e.g., radio 

transmitter, satellite transmitter). 

To describe variability in the occurrence of bigeye tuna catch, 22 predictors were 

considered in this analysis (see Table 1 for details). These predictors can be divided 

roughly into three groups: those describing aspects of fishing operations and gear, those 

describing the environment, and miscellaneous predictors. There were eight predictors 

included to describe aspects of the fishing operations and gear, five of which relate 

directly to the fishing depth of the purse-seine net or the underwater depth of the floating 

object. The actual in-water depth of both will vary depending on a number of factors, 

including winds and currents. Moreover, the fishing depth of the net is determined not 

only by its hanging depth, but also the rate at which it descends. For a given set of 

environmental conditions, the descent rate of the net is a function of mesh size, dolphin 

safety panel use, the ‘hang-in’ (number of meshes per unit length along the cork line), 

and the weight of the purse cable and chain. Data were available on the hanging depth of 

the net, its mesh size, presence of a safety panel, and the duration of the period over 

which the net descends to its fishing depth (Green, 1969). Data were also available on the 

maximum underwater depth of the floating object. Environmental predictors included 

relate to measures of upper-ocean circulation (e.g., major currents, eddies), stratification 
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and productivity. With the exception of sea surface temperature, environmental predictors 

represent climatologies estimated at set locations and dates. Location and date of the set 

were also included as proxies for local environmental conditions not captured by the 

other predictors. The two miscellaneous predictors were a proxy for the non-tuna 

community size at the object, and a proxy for the local floating object density.  

As would be anticipated, given the opportunistic nature of the data collection process, 

the inshore-offshore orientation of the fishery (Figure 2), and the gradients in the 

oceanographic environment (Kessler, 2006), several of these predictors are partially 

correlated (Table 2). For example, correlation between environmental predictors and 

predictors such as percent fouling likely result because floating objects will have a 

tendency to drift offshore in many areas of the EPO. The oceanography and bathymetry 

of the EPO result in correlations between latitude and longitude, and many environmental 

predictors such as sea surface temperature, chlorophyll-a density, and mixed layer depth. 

In addition, some gear and operational predictors are inherently correlated. For example, 

larger vessels (greater fish-carrying capacity) can carry larger nets which may have 

greater hanging depths than smaller nets. Larger vessels can fish further offshore due to 

their greater fish- and fuel-carrying capacities. Examples of the spatial dependence of 

several gear predictors are shown in Figure 3. 

The classification of each set as to the presence/absence of bigeye tuna catch was 

based on the catch weights. Both catch weights (loaded weights plus discards) and loaded 

weights are estimated by observers. We use catch weights because they may more closely 

reflect the ecological relationship between the object-associated community and the 

environment and fishing gear. 
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Methods of analysis 

With this analysis, we want to determine: how well the presence of bigeye tuna catch can 

be described by characteristics of the environment, fishing operations and gear; whether 

there is spatial structure in any gear effects; and, whether there may exist additional 

‘vessel effects’. Towards this end, the ensemble method ‘random forests’ (Breiman, 

2001; Berk, 2006) was used to build a classification algorithm for the presence/absence 

of bigeye tuna catch. The random forest method has been demonstrated to build better 

classification algorithms than other methods (Breiman, 2001).  In addition, the estimates 

of misclassification errors provided by the random forest method are true forecasting 

errors, and the relative costs of the two types of mistakes that can be made (predicting 

bigeye catch when none occurred – ‘false positive’; predicting no bigeye catch when in 

fact there was catch – ‘false negative’) can be easily specified. Our overall approach is 

similar to that of Lennert-Cody and Berk (2007). 

Random forests is a tree-based algorithm that builds on the classical Classification and 

Regression Tree approach (CART; Breiman et al., 1984). It can be described in three 

conceptual steps. First, a large number of CART-like trees (a ‘forest’) are constructed, 

each on a different randomly selected sample from the original data. Observations not 

included in a particular random sample are referred to as ‘out-of-bag’ or ‘OOB.’ Second, 

each tree in the forest is built in a manner that is similar to a CART tree, but with two 

important differences: the candidate predictors that are available to define each node in 

the tree are a randomly selected subset of all predictors, drawn anew for each node; and, 

the resulting tree is not pruned. Finally, the predicted class of an observation by the forest 
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is determined by majority vote among the individual trees for which the observation was 

OOB. (The predicted class of an observation from an individual tree in the forest is the 

dominant class on the relevant terminal node.) Details of the random forest algorithm can 

be found in Breiman (2001) and Berk (2006). 

We use the R statistical computing (R Core Development Team, 2005) package 

randomForest (Liaw and Wiener, 2002) to build a random forest classification algorithm 

for these data. The data set was randomly divided (by year) into two parts: a training data 

set with 5,210 sets (2,827 sets with bigeye, 2,383 without) and a test data set with 5,211 

sets (2,844 sets with bigeye, 2,367 without). All classification algorithms were built on 

the training data set. The test data set was used to explore ‘vessel effects’ as described 

below. In the context of the current problem, it seems reasonable to place equal, if not 

added, emphasis on correctly predicting the presence of bigeye tuna catch when it 

occurred. Thus, we consider two different relative costs: equal relative costs of false 

negatives and false positives, and the relative cost of false negatives three times that of 

false positives. The different relative costs were achieved by building forests on data sets 

with different proportions of presence and absence observations (sampsize option in the 

randomForest package). Each classification algorithm was based on 5,000 trees. 

Within the combinations of environmental conditions, locations, and fishing dates in 

the data set, we summarize the effects of gear characteristics on the presence of bigeye 

catch in several ways. The relative importance of each predictor was computed as the 

average percent decrease in prediction accuracy on the OOB data when the predictor’s 

values were scrambled (Liaw and Wiener, 2002; Berk, 2006). In addition, the relationship 

of each of the most influential gear predictors to the occurrence of bigeye catch were 
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summarized by plotting the logit of the proportion if trees in the forest that voted for the 

presence of bigeye tuna versus the predictor (a form of ‘partial dependence;’ e.g., Hastie 

et al., 2001). This provides an estimate of the effect of a particular predictor on the 

‘probability’ that a set was classified as having caught bigeye tuna, taking into account 

the average effects of the other predictors. To look for spatial structure in these 

relationships, these partial depedence plots were also constructed within each of 40 

rectangular areas (10° longitude by 2.5° latitude, between 90-140°W and 12.5°S-7.5°N). 

The size of the rectangular areas and the overall region were selected according to the 

large-scale circulation patterns of the EPO (Kessler, 2006) and the spatial distribution of 

the floating object fishery (Figure 2).  

To explore ‘vessel effects,’ beyond what can be described by the available predictors, 

we compared observed and reported set classifications of the test data set. We focus on 

false negatives, bigeye tuna caught but none predicted, because this type of error may 

indicate alternative fishing strategies that were successful with respect to bigeye tuna. 

Because there are different numbers of sets per vessel in the data set (Figure 1), we 

compare the number of misclassifications of sets that caught bigeye to that which would 

be predicted from a binomial distribution. The binomial parameter was taken to be the 

false negative rate.  In other words, for each vessel we computed the probability that out 

of n sets that caught bigeye tuna there would have been r or more sets for which no 

bigeye tuna were predicted. We refer to these probabilities as ‘per-vessel’ probabilities. 

There is no convincing way to assess the extent that observations within vessels are 

independent, and thus we use the per-vessel probabilities as a relative measure of ‘vessel 

effects;’ the smaller the probability, the more unusual the data of that vessel with respect 
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to the data of other vessels. 

 

Results 

The random forest classifier was reasonably successful at predicting the occurrence of 

sets with bigeye tuna catch (Table 3). Misclassification errors at equal relative costs for 

false negatives and false positives were 15% for sets that caught bigeye tuna and 18% for 

sets that did not (Table 3a). When emphasis was placed on the correct classification of 

sets with bigeye tuna (relative costs of false negatives three times that of false positives), 

the false negative rate decreased from 15% to 8%, while the false positive rate increased 

from 18% to 29% (Table 3b). (Achieving a false negative error rate of less than 8% 

would require higher relative costs, which may not be acceptable.) When location and 

date predictors were not included in the classifier, but the re quirement of three to one 

relative costs was maintained, the false negative rate increased by 2%, while the false 

positive rate increased by about 6% (Table 3c). 

Predictor importance shows indication of strengths among some gear and 

environmental predictors, even though the location of the set appeared to be the most 

influential in determining whether a set caught bigeye (Figure 4). Of the gear and 

environmental predictors included in this analysis, object depth, chlorophyll-a density, 

bathymetry, mixed layer depth, and sea surface temperature appeared to be the most 

useful for predicting the presence of bigeye tuna catch with this data set. The relative 

dominance of gear and environmental predictors remained largely the same when 

location and date predictors were not included in the classification algorithm, except that 

object depth became slightly less important while net depth became slightly more 
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important (Figure 4). The overall weak levels of variable importance would be 

anticipated given the correlations between predictors (Table 2); when a specific predictor 

is not selected to define a node of a given tree, some of its predictive ability may be 

captured by other predictors with which it is correlated. 

The marginal effects of object depth and net depth, the two most important gear 

predictors that directly relate to the in-water depth of the gear (Figure 4), are shown in 

Figure 5 for the classification algorithm with three to one relative costs (Table 3b). 

Overall, sets were more likely to be classified as having caught bigeye tuna the greater 

the object depth and the greater the net depth. However, the marginal effects decreased 

somewhat on the deepest objects and with the deepest nets. Within the region of 90°-

140°W and 12.5°S-7.5°N, the greatest marginal effects of object depth were found 

between 100°-130°W along the equator and in the southern area of the fishery, and 

offshore north of the equator between 2.5°-5.0°N (Figure 6). Object depth appeared to 

have little effect on whether a set was classified as having caught bigeye tuna in the 

inshore areas and in the northern most areas. Similar but less pronounced spatial structure 

is evident in the marginal effect of net depth (Figure 7). Also evident in Figures 6-7 is the 

influence of set location. For example, marginal effects in the inshore areas are clearly 

less than further offshore, regardless of latitude and gear. 

In the test data set, there were 105 vessels over the five-year period that made at least 

one set catching bigeye tuna. The frequency distribution of per-vessel probabilities 

computed for these vessels using a binomial parameter of 0.08 (Table 3b) is shown in 

Figure 8. Per-vessel probabilities at or close to 1.0 correspond to vessels with relatively 

few sets for which bigeye tuna was caught but none was predicted. These are vessels for 
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which the relationships captured by the random forest classifier adequately describe the 

occurrence of bigeye. Per-vessel probabilities close to 0.0 correspond to vessels with a 

larger number of false negatives, relative to the number of sets in which these vessels 

caught bigeye tuna. The random forest classifier failed to capture some of the important 

aspects of the data of these vessels with the available predictors. Within this group, the 

data of those vessels making the most sets on bigeye tuna might prove useful for 

exploring the possibility of other fishing strategies. 

 

Discussion 

In this manuscript we have developed a classification algorithm for the presence/absence 

of bigeye tuna catch in floating object sets to explore the effects of gear characteristics on 

the occurrence of bigeye catch. The presence of bigeye tuna catch could be reasonably 

predicted from information on the set location, the environment, and the fishing operation 

and gear. Among the gear characteristics studied that directly relate to the in-water depth 

of the floating object and the purse-seine net, the maximum depth of the object below the 

surface and the hanging depth of the net had the greatest effect on whether bigeye tuna 

were caught, with catches more likely on deeper objects and with deeper nets. These gear 

effects were most pronounced near the equator and in the southern area of the fishery. 

Nonetheless, the location of the set (latitude, longitude) was the strongest determinant 

with this data set for the presence of bigeye tuna. False negatives (bigeye tuna caught but 

none predicted) were found to be concentrated to some extent within certain vessels 

suggesting that these vessels may also catch bigeye tuna in ways different from most of 

the fleet, i.e., in ways poorly described by the predictors included in this analysis. This 
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represents a form of a ‘vessel effect’ that could be amenable to further study. 

Although results of this analysis are consistent with fishermen’s experience that 

deeper objects and deeper nets may be more likely to lead to catch of bigeye tuna in some 

areas, the details indicate that gear effects are complex. For example, comparison of 

Figures 5-7 suggests that some of the decrease in marginal effects on the deepest objects 

and with the deepest nets likely reflects spatial structure in gear effects. However,  

particularly for net depth, an additional possibility is that this decrease may be indicative 

of a different fishing strategy used by some larger vessels. Larger vessels (greater fish-

carrying capacity), which will tend to have deeper nets (Table 2), will also have greater 

fishing range, and can carry a greater number of FADs. Instead of waiting for the optimal 

conditions to make a set so as to maximize catch on a particular FAD, these vessels may 

set on objects as they are encountered, a strategy made economically viable by the 

number of the FADs that can be placed and the period of time for which the vessels can 

remain at sea. In addition, many of the environmental predictors (including latitude and 

longitude) were correlated with gear characteristics, making it impossible to estimate gear 

effects independent of environmental conditions. 

The results presented in this manuscript suggest that the presence of bigeye tuna catch 

in floating object sets exhibits characteristics consistent with some level of fishermen 

control. The importance of location as a predictor indicates that the presence of bigeye 

tuna in the catch is not a spatially random event (Figure 4). In addition, similarilites 

between the spatial distribution of object depth (Figure 3) and that of its marginal effect 

on the presence of bigeye catch (Figure 6), suggest some degree of planning on the part 

of fishermen. Thus, results of this study indicate that fishermen have several options 
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available to them to try to avoid catching bigeye tuna, including changing the depth of the 

material hanging below the floating object and the fishing depth of the purse-seine net in 

certain areas of the fishery, and changing their overall fishing location. 

Given the current status of bigeye tuna populations (Maunder and Harley, 2006; 

Maunder and Hoyle, 2007) and the operational infeasibility of spatial-temporal closures 

(Harley and Suter, 2007), gear restrictions might seem a reasonable option for reducing 

fishing mortality of bigeye tuna. However, gear restrictions would affect all vessels and 

all areas of the fishery, perhaps reducing catches of other tuna species, such as skipjack. 

Previous studies (Lennert-Cody and Hall, 2000) found some indication that catch per set 

of skipjack tuna increased with the hanging depth of the net. Fishery-wide restrictions on 

hanging depth might reduce catches of skipjack across a broad segment of the fishery, a 

seemingly unnecessary outcome given the focused nature of the fishery for bigeye. Many 

factors combine to determine the actual fishing depth of a net in a given set of 

environmental conditions. For this, and other reasons (Branch et al. 2006), restrictions on 

the set-up of fishing gear would seem ill-advised. On the other hand, gear research 

directed towards improving acoustic techniques for the characterization of object-

associated communities (e.g., Shaefer and Fuller, 2005; Doray et al. 2006) would seem 

beneficial. The ability to accurately assess the compostion of object-associated tuna 

schools in areas where bigeye catch is likely would clearly improve imformation 

available to fishermen for making choices. 

One benefit of the approach used in this analysis is that it identifies ‘unusual’ sets 

(fishing trips) of specific vessels through accumulation of misclassifications that could be 

subject to further analysis. Results of this approach could also be used to create 
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categories of vessels for the purpose of estimating conventional vessel effects (or skipper 

effects; e.g., Ruttan and Tyedmers, 2007), for example, by defining categories of vessels 

(or skippers) based on the magnitude of per-vessel probabilities. 
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TABLE 1. Predictors used to describe the presence/absence of bigeye tuna catches.  
Predictor  Additional details and range of values (minimum, 

median, maximum) 
Gear and operational predictors 
Vessel fish-carrying capacity (‘vessel 
capacity’) 

Metric tons. (397; 1,089; 2,833) 

Hanging depth of the purse-seine (‘net 
depth’) 

Counted in strips and converted to meters (1 strip ≈ 11 m). 
Actual fishing depth of net not measured. (132; 219; 329) 

Size of the mesh in the net (‘mesh size’) Stretch measurement in inches. (3.5; 4.25; 12.0) 
Dolphin safety panel Presence/absence. The safety panel has a stretch mesh size 

of 1.25 in. 
Maximum depth of floating object below 
water’s surface (‘object depth’) 

Estimated in meters by the observer. Actual depth of object 
below surface not measured. (0.01; 18.1; 130) 

Duration of encirclement and pursing 
(‘encirclement’) 

Time (decimal hours) between the departure of the net skiff 
from the seiner and point at which the bottom of the net has 
been pursed. (0.27; 0.52; 2.43) 

Percent of the object covered with 
fouling organisms (‘percent fouling’) 

Used as a proxy for time the object spent in the water (i.e., 
soak time), although the relationship between fouling and 
actual soak time may be compromised by the fact that 
vessels may set upon/use objects belonging to other 
vessels, and it is not possible to track individual objects 
across vessel trips. (0; 40; 100) 

Start time of the set (‘set time’) Local time (decimal hours) of the release of the net skiff 
from the purse-seine vessel. This predictor was included 
because bigeye tuna have been shown to exhibit diel 
variability in their depth distribution when associated with 
floating objects (Schaefer and Fuller, 2002).  (4.75; 6.68; 
19.0) 

Environmental predictors 
Sea surface temperature (‘SST’) Measured in-situ by the observer in °C. (13.0; 26.1; 31.4) 
Probability of a sea surface temperature 
front (‘SST front’) 

Estimated at set locations using the NOAA National 
Oceanographic Data Center 4 km Advanced Very High 
Resolution Radiometer (AVHRR) SST data (Kilpatrick et 
al., 2001; Casey and Evans, 2006). The location of SST 
fronts were identified in the daytime AVHRR images from 
1985-2005 by the presence of bimodal distributions in local 
SST (Cayula and Cornillon, 1992; Roberts, 2005). For each 
month, the proportion of images that a pixel contained a 
front and was cloud free is the estimate of the probability 
of a front. (0; 0.008; 0.07) 

Mixed layer depth (‘MLD’) Meters. Monthly average by 1° area. The MLD was 
defined as depth at which the temperature falls to 0.5°C 
below the surface temperature (data from the World Ocean 
Database 1998; estimates courtesy of Pacific Fisheries 
Environmental Laboratory, N.M.F.S., Pacific Grove, 
California, as outlined in Monterey and Levitus (1997)). 
(0.7; 35.1; 414.0) 

Depth of the sea floor below the surface 
(‘bathymetry’) 

Meters. Sampled from the “S2004” 1-minute global 
bathymetry data base (Smith, 2004) at the set location. See 
also Marks and Smith (2006). (-6,265; -3,935; -114) 
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Predictor  Additional details and range of values (minimum, 
median, maximum) 

Strong currents Presence/absence (estimated subjectively by the observer). 
Sea surface height anomaly (‘SSH’) Centimeters. Sampled at the set location and date from the 

Aviso 1/3° weekly Delayed Time Mean Sea Level 
Anomaly “Reference” data (DT-MSLA Ref) (CLS 2006), 
which estimated the height difference from the 1993-1999 
mean surface (Rio and Hernandez, 2004). The altimeter 
products were produced by SSALTO/DUACS and 
distributed by Aviso, with support from CNES. (-21.25; 
0.94; 34.12) 

Slope of the sea surface height anomaly 
(‘SSH slope’) 

Unitless (see SSH above for more details). (3.8x10-7; 
2.3x10-5;1.5x10-4) 

Chlorophyll-a density (‘chlorophyll’) mg/m3. Sampled at the set location and date from monthly 
climatologies of chlorophyll density estimated by NASA 
Goddard Space Flight Center from 1998-2005 SeaWiFS 
ocean color measurements (Feldman and McClain 2006; 
McClain et al. 2004). (0.06; 0.17; 2.63) 

Latitude (and latitude2) Decimal degrees. 
Longitude (and longitude2, 
longitude·latitude) 

Decimal degrees (negative). ‘longitude·latitude’ indicates 
the product of longitude and latitude. Higher-order terms 
were included to help capture spatial structure. 

Month Categorical (1-12). 
Miscellaneous predictors 
Year Categorical (2001-2005). 
Proxy for floating object density (‘object 
density’) 

The number of unique object numbers within a 5° area 
around the set location and one month prior to the set date. 
Ideally, the number of unique objects in a given area and 
time window would be computed. However, this was not 
possible because the data do not allow objects to be tracked 
across vessel trips, nor do the data identify objects shared 
with /stolen by other vessels. (0; 29; 584) 

Proxy for size of the non-tuna object-
associated community (‘non-tuna 
bycatch’) 

Natural logarithm of the observer’s count of the number of 
animals (other than tuna) that were brought onto the 
vessel’s deck dead. (0; 4.29; 11.06) 
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TABLE 2. Spearman’s rank correlation coefficient between continuous predictors described in Table 1. 

 Vessel 
capacity 

Net 
depth 

Mesh 
size 

Object 
depth 

Encircle
-ment 

Fouling Set time Latitude Longitude SST SST 
fronts 

MLD Bathy-
metry 

SSH SSH 
slope 

Chloro-
phyll 

Non-tuna 
bycatch 

Vessel 
capacity 

                 

Net depth 0.53                 
Mesh size 0.42 0.47                
Object depth -0.02 0.09 0.01               
Encirclement 0.31 0.20 0.23 -0.08              
Fouling 0.19 0.18 0.12 0.12 0.01             
Set time -0.06 -0.11 -0.01 -0.12 -0.05 -0.11            
Latitude 0.10 -0.03 0.05 -0.06 0.10 -0.11 -0.02           
Longitude -0.44 -0.33 -0.19 -0.18 -0.14 -0.25 0.20 -0.39          
SST 0.22 0.12 0.14 -0.11 0.14 -0.01 0.02 0.45 -0.21         
SST fronts -0.06 -0.06 -0.03 -0.02 -0.04 -0.08 0.04 -0.07 0.03 -0.24        
MLD 0.28 0.27 0.13 0.23 0.06 0.29 -0.21 0.09 -0.68 0.04 -0.14       
Bathymetry -0.31 -0.22 -0.14 0.01 -0.08 -0.13 0.02 0.29 0.23 -0.11 -0.03 -0.16      
SSH 0.11 0.07 0.06 0.06 0.01 0.08 -0.07 0.16 -0.25 0.18 <|.01| 0.25 -0.13     
SSH slope 0.08 <|.01| 0.01 -0.05 0.05 -0.03 0.04 0.25 -0.10 0.19 -0.02 <|.01| -0.07 0.02    
Chlorophyll -0.33 -0.30 -0.16 -0.19 -0.07 -0.32 0.16 0.05 0.63 -0.06 0.20 -0.65 0.18 -0.06 -0.05   
Non-tuna 
bycatch 

0.04 -0.01 -0.01 0.04 -0.01 <|.01| <|.01| 0.41 -0.15 0.15 -0.07 0.12 0.14 0.13 0.08 0.02  

Object 
density 

-0.23 -0.15 -0.11 -0.02 -0.11 -0.18 0.11 -0.28 0.59 -0.15 0.04 -0.37 0.04 -0.09 -0.08 0.43 -0.06 

 



 

TABLE 3. Confusion tables for: (a) the classification algorithm with approximately equal relative costs 
of false negatives and false positives (436/438 = 0.995); (b) the classification algorithm with the relative 
costs of false negatives set at approximately three times that of false positives (228/685 = 0.333); and (c) 
the classification algorithm without location and date predictors at approximately three to one relative cost 
of false negatives to false positives. The initial classification algorithm fit to the data (i.e., without setting 
the relative costs of the two types of errors) yielded misclassification errors of approximately 11% for sets 
that caught bigeye and 22% for sets that did not. 

 

Predicted class  Observed 
class 0 (no bigeye) 1 (bigeye) 

Misclassification 
error 

0 (no bigeye) 1945 438 0.184 (a) 
1 (bigeye) 436 2391 0.154 

     
0 (no bigeye) 1698 685 0.287 (b) 
1 (bigeye) 228 2599 0.081 

     
0 (no bigeye) 1539 844 0.354 (c) 
1 (bigeye) 281 2546 0.099 
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FIGURE 1. Number of purse-seine sets on floating objects versus number of purse-seine sets on floating 
objects that caught bigeye tuna, by vessel. The dashed line is the overall proportion of sets that caught 
bigeye tuna (0.54) multiplied by the number of sets on floating objects per vessel. The solid gray curve is 
a locally-weighted regression smooth of the data points. 
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FIGURE 2. Number of sets on floating objects by 1° area, 2001-2005. The darker the area, the more sets 
(lightest gray: 1-2; medium gray: 3-4; dark gray: 5-9; black: ≥ 10). 
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FIGURE 3. Average floating object depth (top) and net depth (bottom) by 1° area. The darker the square, 
the deeper the object/net. The following are the grayscale ranges for the two predictors. Object depth: ≤ 
13.5m (lightest gray); 13.5-18m (medium gray); 18-20.5m (dark gray); >20.5m (black). Net depth: ≤ 
208m (lightest gray); 208-223m (medium gray); 223-241m (dark gray); > 241m (black). 
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FIGURE 4. Predictor importance (average percent decrease in prediction accuracy when variable values 
were scrambled; based on the OOB data) for the classification algorithms with approximately three to one 
relative costs, with (left) and without (right) location and date predictors (Tables 3b-c). ‘Lat x Lon’ 
indicates the predictor constructed by taking the product of latitude and longitude. 
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FIGURE 5. Marginal effect of object depth (left) and net depth (right) on the ‘probability’ that a set was 
classified as having caught bigeye tuna. The marginal effect is proportional to the average (over 
observations with a given object depth/net depth) of the logit of the proporiton of trees in the forest voting 
for the presence of bigeye tuna (i.e., the log of the fraction of trees voting for presence of bigeye). The 
‘rug’ at the bottom of each graph shows the deciles of the values of object depth/net depth (if decile 
values are the same, hash marks will lay on top of one and other, resulting in fewer than nine hash marks). 
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FIGURE 6. Marginal effect of object depth on the ‘probability’ that a set was classified as having caught 
bigeye tuna, by area, bewteen 90°-140°W and 12.5°S-7.5°N. Thick black lines indicate those areas with 
greater than averge increase in the marginal effect (increase in the marginal effect was computed by 
rectangular area as the maximum value of the marginal effect minus the minimum value). Marginal effect 
defined in Figure 5. 
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FIGURE 7. Marginal effect of net depth on the ‘probability’ that a set was classified as having caught 
bigeye tuna, by area, bewteen 90°-140°W and 12.5°S-7.5°N. Thick black lines indicate those areas with 
greater than averge increase in the marginal effect (increase in the marginal effect was computed by 
rectangular area as the maximum value of the marginal effect minus the minimum value). Marginal effect 
defined in Figure 5. 
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FIGURE 8. Frequency distribution of per-vessel probabilities (in terms of percentage of vessels). Values 
close to 1.0 indicate vessels with relatively few sets for which bigeye tuna was caught but none was 
predicted. Values close to 0.0 indicate vessels with a larger number of false negatives, relative to the 
number of sets in which these vessels caught bigeye tuna. 
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