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1 Executive Summary

1.1 Scope of work

This paper describes the updated reference model for the spatiotemporal dynamics of
Pacific skipjack tuna, resulting from the integration of catch, length, tagging, and early-
life history data for skipjack into the SEAPODYM model to inform its parameters.

1.2 Key Outcomes

This updated reference model for Pacific skipjack tuna relies on improved ocean forcing
fields, enhanced spatial resolution, revised model structure, and newly available scientific
data. It currently represents the most robust quantitative model for simulating the species’
spatiotemporal dynamics.

Model validation shows improved predictive skill across all data types — catch, length
frequency, tagging, and early-life history data — with statistical metrics outperforming
those of the previous INTERIM model. Total biomass estimates in the Western and
Central Pacific Ocean (WCPO) are partially consistent with the 2022 MFCL assessment,
estimating higher biomass in regions characterized by warmest ocean, which the MLE
approach identifies as the most suitable environment for skipjack.

The model analysis underscores the critical influence of interannual and decadal en-
vironmental variability on stock dynamics. Recruitment is primarily driven by ocean
productivity in the western tropical Pacific, while zonal displacements of skipjack, as
indicated by tagging and catch data, reflect the combined effects of ocean currents and
active fish movement.

1.3 Report details

This report presents a detailed technical summary of the completed work, including up-
dated parameter estimates and relevant model diagnostics. A comprehensive optimization
using the full likelihood function was conducted to reduce potential biases from model
parameters and forcing variables, and to obtain a maximum likelihood estimate (MLE)
solution characterized by biologically realistic parameters. The resulting reference model
demonstrates validity across independent datasets, offering robust predictions of stock dy-
namics with spatiotemporal structure that supports fishing pressure and well reproduces
observed variability in the local catch rates.

An alternative parameterization — including a fixed Lorenzen natural mortality rate,
as used in the current stock assessment model — was also estimated and compared to the
reference model. Additionally, regional connectivity and the influence of ENSO-related
variability on skipjack movement and recruitment were examined.

1.4 Main results

1. Informed by multiple sets of fisheries and scientific data over 1994-2012, a reference
model provides valid predictions with estimated parameters on a 1◦ x 30 days
resolution for the 1960-2022 period using JRA55-NEMO-PISCES hindcast with
atmospheric reanalysis as forcing (Table 1).
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2. In comparison to the previous reference model estimated with fisheries data and
tagging data, the new solution exhibits more variable temporal dynamics linked
to the inter-annual and inter-decadal variability of tuna environment (Figure 1).
Predicted spatiotemporal dynamics of skipjack biomass density explains the high
catches in the equatorial Pacific and observed zonal movements between warm pool
and central Pacific related to ENSO variability (see Figures 28-29).

3. The total skipjack biomass in the WCPFC statistical area is estimated to be 7.1 mil-
lion metric tons (Mt), based on the five-year average from 2018 to 2022 (Figure 1).
The corresponding Pacific-wide biomass, including the Indo-Pacific region (100◦E-
70◦W, 20◦S-45◦N) is 9 Mt, hence the EPO region contributing approximately 1.9
Mt. The fishing impact is evaluated for 2020 due to incomplete geo-referenced
catches in 2021-2022 (see Figure 2). The stock reduction from virgin biomass is
26.5% for the WCPFC stock, 15.6% in the EPO region and 24% Pacific-wide.
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Figure 1: Total size of skipjack stock in the WCPFC statistical area (summed over stock
assessment regions 1-8) predicted by SEAPODYM with the MLE parameters. The grey
line shows the virgin (without fishing) biomass and the black lines show the biomass of
exploited stock. Both curves are shown with monthly step.

4. Integration of early-life history data into the model and data likelihood improved
observability of adult stock distribution, hence contributing to the estimation of
movement rates. The fit metrics evaluated for independent catch and local catch
rates, size frequencies samples, tagging and larval data are generally good and show
improvement compared to the previous reference model (Figures 10-15).

5. This model produced a biomass distribution with a core area associated to the
warm waters of the warm pool and central Pacific with splitting near the equator.
In the eastern Pacific the highest densities of skipjack are predicted along the coasts
of Central and South Americas, mainly in the zones of coastal upwelling and lo-
cal productivity hotspots. e.g., Galapagos and NECC convergence zone. Seasonally,
skipjack is predicted to migrate to the productive waters of Kuroshio Extension
and Peruvian upwelling although these movements are still biased because of mis-
representation of ocean dynamics with 1◦ resolution (see Figure 19).
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6. Although SEAPODYM estimates bigger stock of skipjack in the WCPO than
MULTIFAN-CL (Castillo Jordán et al., 2022), the estimates from two models are in
agreement in terms of overall trends and recruitment levels for the period 1994–2019.
The models diverge for earlier years: MULTIFAN-CL predicts an increasing trend
in both recruitment and total biomass, whereas SEAPODYM indicates a decline
in both estimates during that period (see Figures 24–25). The declining trend in
SEAPODYM is primarily driven by the positive phase of the Inter-decadal Pacific
Oscillation (IPO), which was characterized by reduced ocean productivity in the
western Pacific Ocean. In contrast, the trend captured by MULTIFAN-CL is likely
influenced by Japanese pole-and-line CPUE indices (Hamer et al., 2024; Nishimoto
et al., 2024).

7. In terms of connectivity between assessment regions (see Figure 23), it was found
that in the WCPO, the biomass is moving actively through the equatorial regions
6, 7 and 8 and only exchanges adult biomass with assessment region 4. The regions
north of 10◦N are interconnected and the net movement appears to be clockwise.
Indo-Pacific region (assessment region 5) is found to be a biomass sink for adult
skipjack, and a donor of skipjack larvae to adjacent Pacific regions.

8. The reference model indicates an eastward shift in the total skipjack biomass within
WCPO, potentially linked to climate change (Figure 29). This finding will be further
investigated using an ensemble of Earth System Model forcings.

1.5 Remaining Actions

9. Climate change simulations with reference model need to be completed with climate
model outputs corrected from existing environmental forcings to provide an envelop
of future projections.

10. Current reference model will also be re-estimated under the ERA5-NEMO-PISCES
and JRA55-NEMO-PISCES with the latest PISCES parametrizations.

1.6 Acknowledgments

We thank Julien Temple-Boyer from Mercator Ocean International for data preprocessing
and providing the micronekton fields. The continued development and application of
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Programme (OFP) of the Secretariat of the Pacific Community. Project 62 is currently
supported by a Climate Change and tuna project coordinated by the Oceanic Fisheries
Programme at SPC and FAO ABNJ2 Tuna Project funded by the Global Environmental
Fund. The Inter American Tropical Tuna Commission has provided access to non-public
domain data for the purposes of progressing the work programme of the WCPFC-SC.
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2 Introduction

SEAPODYM is a model developed for investigating spatial tuna population dynamics,
under the influence of both fishing and environmental effects. The underlying continuous
equations of SEAPODYM are classical advection-diffusion-reaction equations with ageing
term, describing the population dynamics in time, age and two-dimensional space. The
population dynamics (spawning, movement, mortality) are constrained by environmental
data (temperature, currents, primary production and dissolved oxygen concentration) and
simulated distribution of mid-trophic (micronektonic tuna forage) functional groups. The
model uses length and weight relationships obtained from independent studies. Different
life stages are considered: larvae, juveniles and (immature and mature) adults. After juve-
nile phase, fish become autonomous, i.e., they have their own movement (linked to their
size and habitat) in addition to be transported by oceanic currents. Fish are considered
immature until pre-defined age at first maturity and mature after this age, i.e., contribut-
ing to the spawning biomass and with their displacements controlled by a seasonal switch
between feeding and spawning habitat, effective outside of the equatorial region where
changes in the gradient of day length is marked enough and above a threshold value. The
last age class is a “plus class” where all oldest individuals are accumulated. The model
includes a representation of fisheries and predicts total catch and size frequency of catch
by fleet when fishing data (catch and effort) are available. The numerical model predicts
the density of tuna population for each, generally monthly, age class. In addition to the
full population model, SEAPODYM includes a model for tagged sub-population, which
shares the same habitat and movement parameters. The observation models for catch,
length frequency of catch, larval density, and tag recapture densities are predicting the
observed quantities and a Maximum Likelihood Estimation approach is used to estimate
model parameters.

The quantitative modelling of tuna population dynamics with SEAPODYM has been
continuously improving, including development of reference models that integrate fisheries
catch and length data for Pacific Ocean populations yellowfin and South Pacific albacore,
and including also conventional tagging data for populations of skipjack and bigeye tunas
(Senina et al., 2019, 2020, 2021). Besides complete geo-referenced fisheries datasets for a
given species, the ‘new-generation’ of SEAPODYM reference models include integration of
tagging and early-life history data in the likelihood estimation approach, implementation
of robust statistical methods for global sensitivity analysis and cost function profiling,
enhanced algorithm of the fisheries data use within likelihood function and complete
validation on independent data sets. This led to better estimates of both stock size and
stock spatial structure.

This Information Paper presents the new reference model of Pacific skipjack tuna
population (Katsuwonus pelamis), which primarily inhabits the tropical Pacific Ocean.
The previous reference model constrained by fisheries and tagging data was presented
in Senina et al. (2019). This study relies on the data from various tagging experiments
conducted by SPC, FRA and IATTC between 1979 and 2022. The integration of tagging
data allowed better estimation of habitat indices parameters and movement rates, and the
integration of larval data constrained the spatial distribution and seasonality of skipjack
larvae and allowed better observing the adult spawning stock. The estimation of all model
parameters was performed in the optimization experiments for the whole Pacific Ocean
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and 22-years long (1991-2012) period representing the most complete data coverage. The
fishing data and fisheries definition have been carefully revised before running this new
model configuration.

Here we report the main results from updated reference model and demonstrate how
integrating scientific data (tagging, laboratory studies, field larval sampling) influences
the model parameters and allows improving model consistency with the data. We present
the results of the optimization study performed with the full-likelihood, CLTE, model.
Finally we evaluate the fit and validate the CLTE model using catch, length, tagging
and larval data. To do so, we use only independent data. The results of this study are
discussed, highlighting both the improvement and deficiencies and suggesting the next
steps aimed at improving the new reference model.

The aim of the current study was to update the previous quantitative reference model
for Pacific-wide skipjack tuna population (Senina et al., 2019) using better environmental
forcings, higher 1-degree resolution, all available geo-referenced fisheries data, historical
conventional tagging data, and scientific data on early-life history of skipjack to enable
less biased and higher resolution climate projections.

3 Data

3.1 Environmental data

The forcing configuration of the current SEAPODYM application is summarized in
Table 1. Forcing variables were generated by the coupled ocean-biogeochemical model
NEMO-PISCES forced by the atmospheric reanalysis JRA-55. The Japanese 55-year Re-
analysis (JRA-55) is a comprehensive atmospheric reanalysis dataset developed by the
Japan Meteorological Agency (JMA), covering the period from 1958 to February 2024.
NEMO-PISCES refers to the coupling of the NEMO (Nucleus for European Modelling
of the Ocean) physical ocean model with PISCES (Pelagic Interactions Scheme for Car-
bon and Ecosystem Studies), a biogeochemical model developed to simulate the oceanic
carbon cycle and lower trophic-level ecosystem dynamics. NEMO provided the physical
environment — ocean currents and temperature — while PISCES supplied primary pro-
duction data and estimates of the euphotic layer depth. Together, the NEMO-PISCES
system forced by an atmospheric reanalyses enables realistic simulations of ocean vari-
ables in hindcast mode. This hindcast simulation, hereafter JRA55, was prepared by
the French Institute of Research for the Development over 1958-2022. It has horizon-
tal resolution of 1◦ in the temperate zones with a refined resolution of 1/3◦ in the
equatorial band (ORCA1 grid). The JRA55 model outputs have been interpolated to
a regular grids of 1◦, the domain boundaries were defined by the land mask, which
is built from both global bathymetry data (ETOPO1, https://www.ngdc.noaa.gov,
doi:10.7289/V5C8276M) and physical data availability in the coastal grid cells. Finally,
the mid-trophic level (micronekton) biomass fields were simulated on a regular grid and
monthly time step by the SEAPODYM-LMTL model. The interpolated ocean forcings
and the outputs of the micronekton model were prepared by Mercator Ocean Interna-
tional (https://www.mercator-ocean.eu).
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3.2 Skipjack tuna fisheries

The industrial fishing fleets targeting skipjack tuna comprise mainly two fishing gears -
purse seine and pole-and-line (see e.g., Pacific Community, 2022) with the majority of
catches coming from purse-seine fleets in WCPO. There are also a few accidental long-line
catches of skipjack. Total annual catches by gear being used in the current SEAPODYM
model are shown in Figure 2. It is important to have the complete geo-referenced dataset
that corresponds to the total landings in terms of total annual removal from the stock
in order to correctly take into account the mortality due to fishing. Some discrepancies
exist between WCPO purse-seine catch data (Figure 2), but these missing records are
not available in a geo-referenced format. Their absence represents an underestimation of
total fishing mortality, but likely does not have significant impact on the estimation of
model parameters.

Skipjack tuna geo-referenced fishing data are provided by SPC and IATTC (Figure 3).
Each fishery in SEAPODYM is defined by a single selectivity function and a catchabil-
ity coefficient that may be allowed to increase/decrease linearly with time. Once the
fisherman-driven causes of changes in catchability, such as changes of target species or
the fishing strategy are removed from the fisheries, we assume that the remaining variabil-
ity in catchability is driven by the spatial distribution associated with the environmental
variability and fish movements, which are explicitly described by the model. Therefore
it is critical to have a definition of homogeneous fisheries in terms of constant in space
and time catchability and selectivity coefficients (Forestier et al., 2025). The definition of
fisheries for Pacific skipjack tuna, which is assumed to satisfy to such criterion is provided
in Table 2.

Size frequency data have variable resolutions ranging from 1◦ x 1◦ to 10◦ x 20◦.
Temporal data coverage is shown in Figure 4. In the EPO the size data are provided for
purse-seine fleets over IATTC sampling regions (see e.g. IATTC, 2010), however available
data set spans until year 2012 and the update was not received for this study for technical
reasons. This limited the time period for parameter estimation with fishing data. Note
also, that catches by Japanese fisheries north of 35◦N were excluded from the datasets
due to existing biases in the ocean forcings (southern shift of Kuroshio currents extension
in 1◦ resolution) and potentially in the vertical structure of SEAPODYM, which prevent
the model from predicting high skipjack densities at these latitudes.

3.3 Conventional tagging data

The conventional tagging campaigns in the Pacific Ocean were conducted extensively
since 1960s by major regional fisheries organizations such as WCPFC/SPC and IATTC,
and Japanese Fisheries Research Agency (FRA). In particular, SPC has conducted several
large tagging experiments, releasing several hundred thousand tagged fish since the 1980’s
in the western and central Pacific region. Since 2008 alone, SPC has deployed 199,075
conventional tags on skipjack tuna in theWCPO (see Figure 5). IATTC and the FRA have
been also very active in tuna tagging, in the eastern and north-west Pacific, respectively.
FRA have been aiming at capturing movement of skipjack between the tropical zone
and Kuroshio current extension. In combination, these data provide key information on
movement and mortality of the stocks at a Pacific-basin scale and for exploring skipjack
movements and mixing across different oceanic regions (Scutt Phillips et al., 2022).
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Tagged skipjack tuna are recaptured by fisheries after time at liberty between a several
days to several years. For example, since late seventies, a quarter of all recaptures stayed
less than 30 days at liberty, with maximum about 4 years in WCPO and 3 years in EPO
(Figure 5). The rate of recapture for skipjack tuna in the tropical WCPO typically varies
between 10-25%, but can reach as much as 50% in the closed habitats such as Bismarck
Sea. In the EPO, the recapture rate is smaller, about 7-12%. Observed lengths of skipjack
cover the largest portion of juvenile and adult population in the WCPO, and mainly adult
tuna in the EPO, with significantly higher (compared to WCPO) contribution of larger
tuna of 60-70 cm caught by the purse-seine gear in this region (Figure 5).

Conventional tagging data are integrated into the optimization method in SEAPODYM
to inform habitat and movement parameters. Only recapture-conditioned data are used
in the model (see the Method section). Besides, a sub-set of tagging data is used to in-
form model parameters, while the remaining data are reserved for validating the MLE
solutions. The important reason to choosing the control subset is the reduction of the
computational cost, that depends on the number of the tag groups whose movement
must be numerically resolved. The temporal coverage and distribution — in terms of
mean length and time at liberty — of the tagging data subset selected for optimizations
are illustrated in the Figure 5.

3.4 Early-life history data

Two types of early-life history data were used in the current reference model development.
First, we used the results of an experimental study conducted in Japan at the Kagoshima
City Aquarium with skipjack tuna reared in captivity and observed by researchers during
natural spawning and immediate egg development under precisely controlled thermal con-
ditions (Fujioka et al., 2024). Optimal temperature range for hatching success was found
to be between 23°C and 31°C, with hatching rates exceeding 50% across this range. High-
est hatching rates occurred around 27–29°C. At extreme temperatures (21°C and 33°C),
no eggs survived. Hatching duration decreased with rising temperature, from about 37
hours at 22°C to about 16 hours at 32°C. A shorter hatching time at higher temperatures
reduces exposure to predators, offering an ecological advantage. The relationship between
temperature and hatching success established in this study can be seen in Figure 6. The
upper temperature limit for viable hatching is newly extended to 31°C, which is higher
than previously reported in earlier studies using artificial fertilization. These findings were
directly incorporated into the skipjack model of early larvae (see Model section).

Another source of early life history data comes from larval sampling surveys conducted
using plankton nets by Fisheries Agency of Japan Far Seas Fisheries Research Laboratory
from 1956 to 1981 (Nishikawa et al., 1985; Davis and Nishikawa, 1989), which provided
estimates of larval catch-per-unit-effort (CPUE) at 1° spatial resolution. While these
surveys offer insights into local larval densities, the available datasets are published or
digitized in aggregated, categorical formats, which limits their direct utility for parame-
terizing models (Bonnin and Senina, 2024). As an alternative, derived products — such
as spawning habitat indices estimated from the original survey data using geostatistical
models (Ijima and Yusup, pers. comm.) or outputs from boosted regression tree models
— can be incorporated into the model likelihood. In the present study, we relied on the
latter approach (see Figure 6).
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4 Model

4.1 SEAPODYM.v5

Since the development of the previous reference model, the SEAPODYM code has un-
dergone several improvements and major changes, significantly impacting the workflow
and enhancing the MLE solution for skipjack. The current reference model uses an up-
dated version of SEAPODYM (v5.1). The main code changes and model improvements
are outlined below.

• A cleaner and better structured public codebase on GitHub (https://github.com/
PacificCommunity/seapodym-codebase.git), which compiles into five different
binaries seapodym for simulation runs, seapodym clte for simulation and estimation,
seapodym densities with estimation model for unexploited stocks, seapodym habitats
for habitat models with parameter estimation, and seapodym fluxes to compute
regional connectivity in the population dynamics model with or without fishing.

• Integration of early-life history data including eggs hatching success as a result of
laboratory studies, larval density from broad scale larval surveys, and spawning
seasonality from adult gonad sampling studies.

• More flexible set-up of tagging data to inform movement parameters, including
minimal density threshold for the inclusion of tag recapture groups and selection of
tags by time at liberty.

• Changes in the model structure such as new observation model for early larvae
observed in larval net sampling, alternative models for reproduction, accessibility
to vertical layers, diffusion and mortality, and normalization of parametric prey
function of spawning habitat to enable unbiased reproduction rate estimation.

• Changes in parameter estimation implementation including i) a decrease the RAM
needs by 55%, ii) Taylor derivative test, iii) arbitrary number of forage groups in
the estimation model, iv) estimation of catchability trend parameter, and v) stock
likelihood term as a penalty function.

4.2 Model structure

The model PDE equations and the functional links between species habitats and environ-
mental drivers are fully described in SEAPODYM Reference Manual (2022). Given that
tropical skipjack tuna is known to be an opportunistic spawner and does not undertake
long-distance spawning migrations, seasonal spawning migrations were disabled in the
model. As a result, the modelled skipjack spawns whenever feeding habitat conditions
are also favorable for spawning.

Six different life stages are considered in current modelling: eggs (result of adults’
spawning), early larvae (0-7 days old), larvae (7 days to 1 month old), small juveniles
(1-3 months old), juveniles (older than 3 months but not yet reached age of 50% maturity,
which is set to 11 months), and adults, including only a mature part of the population
(> 11 months old corresponding to fork length > 43.7cm). Note, in terms of movement
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modelling, only two stages are differentiated based on their vertical and horizontal move-
ment behaviours: larvae and small juveniles drift with epipelagic layer currents while
their survival depends on spawning and juvenile habitat conditions respectively; juve-
niles and adults move passively with currents within their preferred vertical layers and
move actively along feeding habitat gradients.

The fisheries mortality was computed using both methods: using fishing effort ac-
cording to Gordon-Schaefer model, or using catch removal method (Senina et al., 2019;
SEAPODYM Reference Manual, 2022), applied to the fisheries according to their data
quality and target species properties (Table 2).

The early larvae model is the new observation model that was introduced in SEAPODYM.v5
to enable direct comparison of model predictions with the larval survey observations.
Specifically, this model component was designed to predict the density of larvae within
the size range typically captured by plankton nets used in Japanese surveys (Nishikawa
et al., 1985), where the average size of larvae was around 4 mm and larvae larger than
7 mm are rare (Davis and Nishikawa, 1989; Strasburg, 1960). Taking into account the
typical size of newly hatched larvae (2-3 mm) (Matsumoto and Walters, 1958) and their
rapid growth during the early development, for example, yellowfin larvae exceed 12 mm
just after five days of feeding in tanks (Scholey et al., 2012), the larvae observed in these
surveys are likely only a few days old, having just completed the first two developmental
phases: the egg and yolk-sac phases. So, the method consists in splitting the first month of
life into two distinct periods, each modelling separately with different habitat preferences
and hence different mortality rates. At time zero, the density of eggs is described using the
Beverton-Holt function as a result of spawning by adults. During the first time period,
the dynamics of eggs and early larvae are modelled using advection-diffusion-reaction
equation (ADRE) with passive transport by currents and mortality rate dependent solely
on water temperature. Because the duration of the first two larval development phases is
temperature-dependent, we set a maximum duration of seven days to fully capture devel-
opment up to the sizes observed in surveys. After the first week all larvae have entered the
autonomous phase of development and become dependent on food, hence larval dynamics
are simulated using the default model configuration, that is, with ADRE incorporating
passive drift and a mortality rate driven by the spawning habitat, which accounts for
temperature, prey availability, and predator presence. This phase is modelled over the
remainder of the 30-day time step, i.e., the following 23 days.

Also, since the early larvae model covers two distinct development phases, two tem-
perature functions are considered: one for egg phase that is fitted to the relationship
between hatching success and temperature established in experimental study by Fujioka
et al. (2024), and another for yolk-sac larval phase from the spawning habitat model.
Preliminary tests adding a prey-dependent function based on phytoplankton to account
for the onset of the feeding phase during the first week of development showed to have
no impact on the results, so the simpler model was retained for now. The final formula
for early mortality rate used in the model of early larvae is the following:

M0 = 0.5 + 3.38
(
1− f1 · ((1 + 0.24T0−21.83)−1 + (1 + 0.1932.6−T0)−1 − 1)

)
(1)

where T0 denotes SST, f1(T0;T0
∗, σ0) is the thermal preference function of the SEAPODYM

spawning habitat, and a constant 0.5 is a reasonable, but still arbitrary value of early mor-
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tality, which does not depend on environment. Since we do not have the larval abundance
data, and because this parameter is by definition highly correlated with reproduction co-
efficient, its effect on the overall result is negligible. The results of the calibration of egg
survival and of the early-life survival given by Eq. 1 are shown in Figure 6 (grey and blue
lines).

4.3 Static model parameters

The estimates of length-at-age, weight-at-age and maturity-at-age relationships were
taken from the 2016 MULTIFAN-CL assessment report (McKechnie et al., 2016) and
interpolated to the model age structure (Figure 7). One more model parameter, the max-
imal predation mortality at age 0, is systematically set to constant in the optimization
experiments due to high correlation with the reproduction rate R of the Beverton-Holt
function. In addition, all parameters of Eq. 1 were fixed, even the function f1 parameters,
which were fixed to values obtained while fitting spawning habitat only to the BRTM
outputs using seapodym habitats application.

4.4 Numerical configuration

The model PDE equations (SEAPODYM Reference Manual, 2022) were numerically
solved with a monthly time step and two spatial resolutions, on a 1◦ and 2◦ regular
grids covering the spatial domain of the Pacific Ocean Ω = {x ∈ (100◦E, 70◦W ), y ∈
(59◦S, 61◦N)}. Neumann boundary conditions were used in all runs. Besides, the buffer
zone was specified in the Indo-Pacific region to limit the reproduction and biomass ex-
change with this region in order to avoid biomass accumulation due to closed boundary
at 100◦E. The final predictions with estimated parameters were then done on the In-
dian and Pacific oceans domain, without the buffer zone, Ω = {x ∈ (30◦E, 70◦W ), y ∈
(59◦S, 61◦N)}.

The age between 0 and amax = 3 years is discretized into monthly age classes and 2
more years are modelled as a single A+ class, thus resulting for skipjack in 37 age classes
covering five years of life span.

During the first set of optimisation runs the estimated state of the INTERIM model
(Senina et al., 2019) was used as the initial conditions. Furthermore, the predictions of
the first four years of simulation were not included into the likelihood to reduce the effect
of the initial conditions on the MLE solution.

5 Methods

5.1 Integration of conventional tagging data

The method of integrating recapture-conditioned tagging data is described in Senina et
al. (2019) and SEAPODYM Reference Manual (2022). The measurement model for tag
recaptures describes the observed density of tagged individuals only. Thus, re-defining
the state variable of the advection-diffusion-reaction model used in SEAPODYM, as the
density of tagged fish at observed ages, varying in time at spatial location, we can design
the tag estimation model. Since the objective of integrating tags is to inform movement
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and habitat parameters, we use only recapture-conditioned tags. Thus the state variable
represents the density of a group of tagged fish, which were released at different times
and locations, and all recaptured at the same time at different locations. The solution of
such PDE equation at the known time of recapture of a given group of tags is the density
of recaptures, which is then compared to observed density of recaptures. Solving these
PDEs for each group in four dimensions and with the same movement parameters as the
full population model, and optimizing the tagging data likelihood together with other
likelihoods, we estimate habitat and movement parameters. Obviously, an assumption
has to be made is that the movement of tagged fish obeys the same physical principles
as of untagged population and is led by the same environmental drivers that control the
movement of all fish in the population.

An important advantage of this approach is that it accounts precisely for the time
at liberty of all tags, which is otherwise impossible as the modelled quantity cannot be
traced in the Eulerian model. Second, using only recapture-conditioned observation allows
removing uncertainty related to the use of reporting rates and fishing effort to predict
the tag recapture. However, there are still some caveats to consider while integrating
individual movement data into a Eulerian model, which is not designed to predict the
displacement of individual fish. One needs to have enough individual data to make an
assumption on validity of a Eulerian model, which is suitable to describe movement
of a large number of individuals. It is therefore important to select the time period
with massive release-recapture data, providing hundreds of tag recaptures for each model
time step. Also, to account for an uncertainty associated with the recapture position,
and to transform the individual data to fish density, a bivariate Gaussian kernel for two
independent variables (longitudinal and latitudinal coordinates) is applied to the observed
recapture records. Also, in the observation model, the tags are aggregated into coarser
spatiotemporal strata, here 2 degree spatial resolution and 3 months temporally. Finally,
the tags which were recaptured in less than 10 days were excluded from likelihood because
of the monthly stepping of the numerical model. It corresponds to removal of 15% records
from the observational dataset.

In the current model configuration, we used 46 tag groups comprising a total of 12,974
tags, the majority of which were released and recaptured in the equatorial Pacific during
the 2009–2011 tagging campaign. An additional 254 tags were released earlier by the
Japanese Fisheries Research Institute between 1994 and 1999 to study skipjack feeding
migrations toward the Kuroshio Extension (Figure 5). Although limited in number, these
tags were assumed to be representative of typical migration routes in the region, which
are influenced by external forces such as the Kuroshio currents. The remaining tagging
data, covering the period from 1979 to 2022 and comprising 19,688 tags, were reserved
for model validation.

5.2 Integration of early-life history data

The methods of integrating the early-life history data is fully described in Bonnin and
Senina (2024). The seasonally averaged data are integrated into the data likelihoods. For
categorical data, such as digitized larval densities (Buenafe et al., 2022), the categor-
ical equivalents of Poisson, Zero-Inflated Poisson, Negative Binomial and Zero-Inflated
Negative Binomial likelihood functions were implemented and tested using the identical
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twin experiments approach. In twin experiments, the model outputs are fitted to the
pseudo-observations, which are sampled from model solutions given the spatiotemporal
distributions of observed datasets. This technique provides valuable insights into observ-
ability of model parameters and performance of optimization method. It was shown that
with categorical data, optimal spawning habitat parameters could not be re-estimated,
irrespective of data quantity and spatial distribution. Hence the categorical nature of
larval CPUE data (Nishikawa et al., 1985) poses a limitation for its use in parameter es-
timation. In contrast, using continuous data, such as derived from the categorical inputs
through boosted regression tree models (BRTMs) developed by Buenafe et al. (2025), has
proven to be a successful approach.

To predict habitat suitability, which are the outputs of BRTMs, early larvae densities
were computed by early larvae ADR model (as described in section 4.2) over the first
week of species life. These densities were then averaged into seasonal distributions and
multiplied by a linear scaling parameter, which was included as an additional variable
parameter in the MLE approach. This mapping assumes that the BRTM outputs scale
linearly with the observed larval CPUE, representing a simplification. In further develop-
ments, and in the absence of continuous larval data, we plan to explore alternative non-
linear relationships between aggregated larval densities and habitat suitability indices. In
particular, we aim to investigate how this simplification may affect the estimation of the
density-dependence parameter in the Beverton-Holt function.

5.3 Maximum likelihood estimation

The MLE approach used in SEAPODYM is fully detailed in SEAPODYM Reference
Manual (2022). In this reference model, the log-negative likelihood function, denoted as
L¯ = −ln(L) to be minimized consists of four terms L¯ = L¯

C + L¯
LF + L¯

T + L¯
E + β,

where the likelihood terms describing the contribution of each dataset are defined dif-
ferently. As in the previous skipjack application (Senina et al., 2019), the catch data
likelihood LC

(
θ|Cobs

)
was chosen to follow Poisson distribution for all fisheries with

Gordon-Schaefer catch prediction method (depending on the fishing effort), and the nor-
mal distribution for all fisheries with catch removal method. The length-frequency of
catch likelihoods LLF

(
θ|Qobs

)
, with Qobs being the relative observed length frequency,

were set to follow robustified normal likelihood for all fisheries (Hampton and Fournier,
2001). The tag recapture density likelihood, LT

(
θ|Robs

)
, and the BRTM outputs for

larval suitability index, LE

(
θ|IbrtmEL

)
, were chosen to follow normal distribution. Finally,

additional stock quadratic penalty function does not allow the mean stock biomass over
region (120E, 70W, 20S, 45N) to exceed 8.5Mt.

5.4 Optimisation runs

The selection of the time period for parameter estimation was guided by data availability.
The lower bound was set to the early 1990s to coincide with the expansion of purse-seine
fisheries and the availability of reliable catch, length and massive tagging data (see Figs. 2,
4 and 5). The upper bound was set to 2012 due to the availability of length frequency
data in the Eastern Pacific Ocean (EPO). The first four years of model predictions were
excluded from the catch and length likelihood calculations. As a result, in the optimization
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runs, the model span over 1991-2012, and the data likelihoods were evaluated for the
following years: catch and length frequency likelihoods over 1995-2012, tag recapture
likelihoods over 1994-2012, and early larvae likelihood using the seasonal averages over
1995-2000.

As in the previous skipjack model, the purse-seine catches were computed without
fishing effort in all optimization experiments. The Japanese pole-and-line fishery P23 was
assumed to have constant catchability and selectivity during the optimization period.
Note also that some fisheries (Table 2) were not used in parameter estimation due to
being outside of the time interval for maximum likelihood estimation (P21, P22), or a
valid spatial domain (O9 in the buffer zone, effort and catches north of 35◦N due to ocean
current bias). Two small fisheries, S13 and P14, were also added for validation only.

Extensive optimization study was carried out to explore the MLE sensitivity to fish-
eries structures, model structure setup and choice of variable parameters and their initial
and boundary values. In addition, the new type of early-life observational data, were first
used with the spawning habitat model to investigate whether the SEAPODYM spawning
habitat index describes the habitat suitability modelled with BRTMs from categorical
larval CPUE (Buenafe et al., 2025). The majority of optimization runs were performed
at a spatial-temporal resolution of 2◦ x 30 days, using degraded ocean forcing fields. This
reduced-resolution setup preserves the essential ocean dynamics while significantly re-
ducing computational cost. The configuration comprising model structure, observational
dataset structure, and a selection of variable parameters that yielded the best maximum
likelihood estimate was subsequently used for final optimizations at higher resolution (1◦

x 30 days), i.e., with the original, full-resolution ocean forcing.

5.5 Model validation

To conclude whether the obtained solution of the optimisation problem provides the
best parametrisation given the model structure, the ocean forcing and the observational
datasets, each optimisation run has to be analysed and validated. First, the quality of
the fit to the data being used in the minimization, is evaluated. This is done with help of
statistical metrics, which are selected depending on the type of the data: i) the R-squared
goodness of fit, measuring how much the model is a better predictor to the data than the
mean of the data; ii) the squared Pearson correlation coefficient, measuring the proportion
of the variation in data described (explained) by the model iii) the root-mean-squared-
error (RMSE) and the normalized mean-squared-error (NMSE); iv) residual variance
and temporal bias; v) relative error; vi) model to data variance ratio. Fit to the size
frequencies is evaluated with two metrics, normalized root-mean-squared-error (NRMSE)
and standardized bias, the first indicating how well the shape of the frequency distribution
is reproduced and the second one indicating how far off the model’s predicted mean is in
terms of the variability of the observed data.

Second, the parameter estimates are examined and confronted with the existing knowl-
edge on the modelled species. Some important biological characteristics, such as thermal
preferences, spawning sites and seasonality, and the species life span are reported in sci-
entific literature. Finally, the model is systematically validated using independent sets
of fisheries and tagging data, i.e., the data not used in the likelihood calculations. The
same statistical metrics are computed for these independent datasets and compared to
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the original fit metrics obtained with MLE data. For larval data, since it is represented
by seasonal means, model fits can be assessed across different time periods and validated
using the period that corresponds to the observations (Nishikawa et al., 1985). This
validation is carried out by calculating correlation coefficients for seasonal variations in
regional larval densities and by comparing the larval counts within ranges of environmen-
tal variables: sea surface temperature (SST), primary production, dissolved oxygen and
epipelagic micronekton.

6 Results

Model parameters described in this section were estimated from catch, length, conven-
tional tagging, and climatological early-life history data (Buenafe et al., 2025). Observing
the modelled processes through all model dimensions in the optimizations, allowed esti-
mation of main dynamic parameters, driving recruitment, mortality, habitat indices and
movement rates. They were first estimated with the SEAPODYM model numerically
resolved on a 2◦ x 30 days, then re-estimated with the same overall configuration, by
changing only a spatial resolution of the model to 1◦ and selecting the best solution from
jitter runs.

6.1 Optimal parameters

This section describes the maximum likelihood estimates of model parameters related
to the population dynamics and their role in the key dynamic processes: reproduction,
survival, and movement. All SEAPODYM parameters defining the reference model of
skipjack tuna, both fixed and estimated, are provided in Table 3. This table includes also
the MLEs obtained with fixed Lorenzen mortality.

6.1.1 Spawning habitat and reproduction

Incorporating recent findings on thermal conditions for eggs survival into the model
changed how skipjack larvae survival is described. In the current model, the spawning
habitat no longer influences the distributions of larvae at age zero. Instead, the effect of
temperature on eggs survival is fixed, based on the experimental results from by Fujioka
et al. (2024) (See Figure 6), and the spawning habitat index now only affects the mortal-
ity of larvae during the active feeding phase. In both configurations, the spawning habitat
parameters and functional relationships with environmental variables are estimated to be
similar (Figure 8). The thermal Gaussian function of the spawning habitat is estimated to
have very large standard deviation and the mean centred at high temperatures, which do
not occur in the open ocean. This implies that larval mortality increases with decreasing
sea surface temperature, without a temperature interval where mortality is minimal (i.e.,
reduced to the fixed predation mortality rate). Both models show a strong dependence of
larval survival on prey availability (represented by primary production linearly converted
to phytoplankton wet weight). Despite quite different values of αP , this parameter mainly
affects the steepness of the non-linear response curve. The relationship with predator den-
sity (micronekton) is estimated to be a decreasing function, with an optimal window at
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very low predator densities, around 0.1 g/m2 in the reference model (see Figure 8, panel
Reproduction).

In the model with Lorenzen mortality, the estimated reproduction rate is two orders of
magnitude higher than in the reference model. This is a compensatory effect of the much
higher early life stages and juvenile mortality imposed by the Lorenzen function, which is
inversely related to growth (Figure 8, panel Mortality). As a result, this model produced
unrealistically high densities of larvae and small juveniles required to sustain stock levels
under current fishing pressure (Figure 8, panel Reproduction and Figure 22). Both models
estimate a stock-recruitment relationship characterized by a non-linear functional shape.

6.1.2 Natural mortality rates

Uncertainty remains in the estimation of natural mortality rates at age due to their cor-
relations with reproduction and fisheries parameters, mainly selectivities. In the reference
model, the selectivities for the largest sizes were calibrated and fixed, while the slopes of
predation and senescence mortality functions were estimated. As a results, age-specific
mortality rates were estimated to vary between 0.8 yr−1 and 3 yr−1 interval, with the
lowest mortality occurring at around 5 months of age and increasing to 3.2 yr−1 at the
age of 4 years. In optimizations using Lorenzen mortality (with fixed parameters), the
selectivities were instead estimated. The Lorenzen function implies high mortality rates
for early life stages, with values of 6.1 yr−1 for larvae and 3.1 yr−1 for 3-months old
juveniles, progressively decreasing with age to 1.1 yr−1 in older fish. With such mortality
rates, population abundance declines rapidly with age, with only 5% of recruits surviving
to 21 months of age (compared to 26 months in the reference model). However, older
individuals have higher chances of survival in the Lorenzen model compared to the ref-
erence model. These differences in mortality-at-age functions lead to markedly different
estimates of recruit abundance, which is significantly higher in the model with Loren-
zen mortality. Nevertheless, estimates of adult and total abundance remain very similar
between two models, indicating robustness in their estimation (Figure 22).

6.1.3 Feeding habitats and movement

The estimated directed movement rates are lower than those in the previous reference
model. However, because the diffusivity in this model is more than twice smaller, the
overall movement pattern remains advective, i.e., characterized by the predominance
of directed over random (diffusion) movements. Note, Figure 8 illustrates the density
speeds resulting from the combined effects of passive drift (due to ocean currents) and
active swimming behaviour of tunas. The decline in movement speed with age reflects
the reduced influence of currents on older (and thus larger) individuals. The effect of
passive movement on juveniles and adults can be illustrated by a simulation with directed
movement set to zero. As shown in Figure 30, which presents the predicted distributions of
skipjack tuna under passive movement only, the model fails to reproduce the distribution
that explains observed high catches in the western tropical Pacific (see Figures 3 and 20).
Consequently, all likelihood components deteriorate markedly when active movement is
excluded. Other implications of movement estimation are presented and discussed in
section 6.3.3 below.
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Regarding thermal preferences that influence the accessibility of prey biomass to
skipjack tuna, the reference model estimates a preferred temperature range from ap-
proximately 29◦C for the youngest individuals to 25◦C for the oldest. In contrast, the
Lorenzen-ref model yields a narrower range of 27.5–29◦C, suggesting a contraction of
suitable habitat to the warmest waters. This narrower thermal window introduces a bias
in the diffusion rate estimates, artificially facilitating skipjack movement into cooler re-
gions. As a result, the likelihood terms for the EPO fisheries are notably degraded in the
Lorenzen-ref model compared to the reference model.

6.1.4 Catchabilities and selectivities

The estimated and fixed values of fisheries parameters are presented in Table 4. Catcha-
bilities were estimated for the fisheries with effort-based catch prediction model (Table 2).
During the parameter estimation period, only the longline fishery was allowed to have
linearly changing catchability. All pole-and-line fisheries were assumed to have constant
catchability between 1991 and 2012. These assumptions seem to be justified given the
findings by Nishimoto et al. (2024) on technological developments in Japanese fisheries.
As a result, residual error for all pole-and-line fisheries during this period shows no tem-
poral bias. In contrast, to achieve a good fit for pole-and-line fisheries during earlier
period, the catchabilities for P3, P21, P22, and P15 had to be allowed to increase over
time, which indicates that they were continuously development prior to 1991. Moreover,
Japanese fisheries had to be split into two fisheries because their catchabilities and rate of
increase differed, with the fastest rate estimated during 1982-1989 (see Figure 9), which
is consistent with independent modelling study (Nishimoto et al., 2024).

Since the mortality-at-age was fixed in the model with Lorenzen mortality, the se-
lectivities at Linf for major fisheries were estimated. These estimates yielded notably
different values across fisheries, except for fishery S5, the FAD-associated purse-seine
fishery, which primarily catches young skipjack aged 9-18 months, a range where mortal-
ity rates are similar between two mortality functions. However, estimating selectivities
did not allow optimizations to improve the fit to length frequency data by fishery. On the
contrary, the fit worsened for all purse-seine fisheries under the Lorenzen mortality model,
with the most notable deterioration of the LF likelihood for the free school purse-seine
fisheries S7.

6.2 Validation

The statistical metrics of model validation with independent catch, length frequency, tag
recapture and early-life history data are shown in Figures 10-15.

The fit to the catch data by fishery and for the total catch by region (Figure 10 were
evaluated on the MLE dataset including 13 fisheries, and on the entire dataset including
18 fisheries (Table 2). The fit to catch data does not deteriorate when independent data
from 1979 to 1994 and from 2013 to 2022 are added to validation. Thus, for the MLE
data only, the explained variance, the variance ratio and the normalized mean square
error are 0.84, 0.71, 0.41 respectively, and for the 1979-2022 with added 5 fisheries, they
yield 0.82, 0.73 and 0.43.

For the length frequency data, all large-scale fisheries pass the NRMSE and standard-
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ized bias thresholds (see Figure 11). The only exceptions are two small fisheries, S13 and
P14 (see description in Table 2), operating seasonally in the south-west Pacific catching
skipjack as by-catch species and providing scarce information on size frequencies.

Model predictions based on the estimated movement and habitat parameters were val-
idated using independent tagging data not included in the likelihood estimation. Compar-
isons between observed and predicted recapture distributions, along with corresponding
one-dimensional profiles and RNMSE metrics, were done by tagging campaign and by re-
gion: the tropical western and central Pacific Ocean (Figure 12), the sub-tropical western
and central Pacific Ocean (Figure 13), and the eastern Pacific Ocean (Figure 14). The
best fit was observed in the tropical WCPO during the large-scale tagging campaigns of
2007–2015 (note, the MLE tag groups, as shown in Figure ??, are not included in these
plots). For earlier tagging periods (1979–1993 and 1994-2005), the fit is less accurate,
though the metrics are still comparable to that obtained for the MLE groups of tags,
with NRMSE(lon)=0.73 and NRMSE(lat)=0.27 in the tropical WCPO.

In modelling the feeding migration of skipjack toward the Kuroshio Extension, the
zonal movements were reasonably well captured — even with a limited number of tags —
while meridional movements remained poorly reproduced. An exception is the 1988–1999
tagging period, during which skipjack were released and recaptured while migrating; in
this case, intermediate displacements between the tropical zone and the Kuroshio Exten-
sion were reasonably well reproduced as shown by the latitudinal profile in Figure 13.
However, in general, the model does not predict skipjack reaching the northernmost ex-
tent of their observed feeding grounds.

In the EPO, where the model did not have tagging data to learn about the movement
and habitats, it nevertheless captures the movement patterns observed during the 2006
and 2019–2022 tagging campaigns. However, a zonal bias is evident, with the model
displacing some tags farther east than observed or farther west for the 1979-1981 tags,
which were released closer to the Central America’s coasts.

Validation of skipjack larval distributions at early developmental stages is presented
in Figures 15 and 16. In general, incorporating early-life history data into the model
and estimating model parameters using all data likelihoods improved observability of
adult stock distribution, hence contributed to better estimation of movement rates. This
was revealed by the improved statistical scores for tagging data and better convergence to
valid MLEs compared to the model without the early-life data likelihood. An independent
evaluation of the model’s predictive skill for this type of data was conducted using: 1)
the NRMSE metric for larval distributions at four environmental variables, and 2) linear
correlations between normalized seasonal densities, evaluated for the years 1960-1981,
closely matching the observational dataset timeframe (1956-1981). All NRMSE values
indicated very good agreement between observed and predicted frequencies. Seasonal
patterns were well reproduced across most regions, except in the tropical area north of
the equator and west of 180◦E, where coefficients of correlation are relatively low (0.23
and 0.45). In this region, the model does not predict a seasonal decline in larval densities
during July-September months. Note that from the preliminary estimation of early-life
parameters using the spawning habitat model, these correlations were much lower (0.07
and -0.11), and overall performance across regions was poorer compared to the outputs
of the dynamic model. This suggests that the density of adult skipjack population is a
key variable that determines the seasonality of larval density distributions.
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6.3 Predicted spatiotemporal dynamics

Skipjack population structure predicted with estimated model parameters (Figure 17)
and the total stock biomass (Figure 18) are similar to the previous reference model
(Senina et al., 2019). However, compared to the previous reference model, estimated using
fisheries and tagging data, the new solution reveals more variable temporal dynamics,
reflecting the influence of interannual and decadal variability in the tuna environment
(see Figure 1 and 18). The model predicts a general decline in population biomass —
both exploited and unfished (virgin) stock — during the first 35 years of simulation
(Figure 18). This period includes the well-documented 1977 climate regime shift, which
is reflected by the peak in total WCPO biomass in the following year. Subsequently,
during the positive phase of the Interdecadal Pacific Oscillation (IPO), characterized by
warmer sea surface temperatures (SSTs) in the central and eastern tropical Pacific, and
resembling a prolonged El Niño-like conditions, skipjack biomass continued to decline
until the end of 1994. From 1995 onward, the stock experienced several strong ENSO
events (1997–2001, 2009–2012, 2015–2016, 2020–2022) and a shift toward longer-lasting
La Niña conditions associated with a negative IPO phase. These cooler, more productive
conditions supported higher recruitment and helped sustain skipjack biomass despite
substantial fishing pressure. Notably, the F0 simulation (no fishing) shows that under
these conditions, the biomass would have increased further in the absence of exploitation.

Spatial distributions of skipjack biomass density show highest concentrations of skip-
jack in the warm waters of the western equatorial Pacific, explaining the high catches
there (see Figures 19 and 20). The main western stock, although well connected, seems to
be split in two sub-stocks by the equatorial countercurrent, with the southern sub-stock
having higher biomass densities locally. The EPO stock is much more spread across the
region. Here the highest densities of skipjack are predicted along the coasts of Central and
South Americas, mainly in the zones of coastal upwelling and local productivity hotspots.
e.g., Galapagos and NECC convergence zone. Seasonally, skipjack is predicted to migrate
to the productive waters of Kuroshio Extension and Peruvian upwelling although these
movements are still biased because of misrepresentation of ocean dynamics with 1◦ res-
olution (see Figure 19). It should be noted also that the spatial distributions are highly
dynamic and differ from one year to another driven by environmental inter-annual vari-
ability. Marked seasonality is estimated for skipjack recruits, in particular in the EPO
(Figure 20).

Due to differences in reproduction, habitat and movement parameters, the model with
Lorenzen mortality estimates more western and tropical skipjack stock (Figure 21), with
reduced sub-tropical and EPO biomass. However the total stock over the Pacific Ocean
domain remains nearly the same (Figure 22).

In terms of movement, the connectivity between assessment regions (see regional struc-
ture in Figure 24) was evaluated for both models, but since the movement probabilities
are qualitatively similar, we focus here on the results from the reference model only (Fig-
ure 23). It was found that in the WCPO, the biomass moves actively through the equato-
rial regions 6, 7 and 8, with adult biomass exchange occurring primarily with assessment
region 4. The regions north of 10◦N are interconnected, with net movement following a
clockwise pattern. The Indo-Pacific region (assessment region 5) acts a a biomass sink for
adult skipjack biomass, contributing to other regions only through larval drift from its
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north-east quadrant (130◦E-140◦E, 0◦-10◦N) to adjacent regions. In contrast, it receives
juvenile and adult biomass from assessment region 3.

6.3.1 Stock estimation and comparisons with MULTIFAN-CL

The total skipjack biomass in the WCPFC statistical area is estimated to be 7.1 million
metric tons (Mt), based on the five-year average from 2018 to 2022 (Figure 1). The
corresponding Pacific-wide biomass, including the Indo-Pacific region (100◦E-70◦W, 20◦S-
45◦N) is 9 Mt, hence the EPO region contributing approximately 1.9 Mt.

SEAPODYM estimates bigger stock of skipjack in the WCPO than MULTIFAN-CL
(Castillo Jordán et al., 2022). The estimates from two models are consistent in terms of
overall trends and recruitment levels for the period 1994–2019. Also, despite some regional
differences, total biomass estimates align closely when considering only the eastern regions
(2, 4, 7 and 8). Therefore, the overestimation of biomass in SEAPODYM, compared to
the stock assessment model, originates primarily from regions characterized by warmest
ocean or warm current systems (Kuroshio current), which the MLE approach identifies
as the most suitable environment for skipjack (Figure 25).

However, the models diverge for earlier years from 1972 to 1993: MULTIFAN-CL pre-
dicts an increasing trend in both recruitment and total biomass, whereas SEAPODYM
indicates a decline in both estimates during that period (see Figures 24–25). The declin-
ing trend in SEAPODYM is primarily driven by the positive phase of the Interdecadal
Pacific Oscillation (IPO), which was characterized by reduced ocean productivity in the
western Pacific Ocean. In contrast, the trend captured by MULTIFAN-CL is influenced
by Japanese pole-and-line CPUE indices (Hamer et al., 2024). Notably, a recent study
(Nishimoto et al., 2024) suggests that the catchability of the pole-and-line fishery may
have increased by as much as four-fold between the early 1970s and the 1990s, which
could have biased historical abundance trends inferred from those fisheries’ CPUEs.

6.3.2 Fisheries impact

The fishing impact is evaluated for 2020 due to incomplete geo-referenced catches in
2021-2022 (see Figure 2). The impact by fishing is assessed as FI = 1 − BF (t)/BF=0(t)
or as a depletion ratio across ages BF (a)/BF=0(a) (Figure 26). SEAPODYM estimates
the stock reduction from virgin biomass by 26.5% for the WCPFC stock, 15.6% for the
EPO region, resulting in 24% biomass reduction over the entire Pacific Ocean. Locally,
50% biomass reduction are estimated in the WCPO and 40% biomass reduction in the
EPO (Figure 27). Note that these figures are likely underestimated due to the exclusion
of catches from Japanese fisheries north of 35◦N and the lack of catches not included in
the geo-referenced datasets.

6.3.3 Impacts of environmental variability on movement and recruitment

Environmental variability influences both recruitment and movement of skipjack tuna. As
previously reported by Lehodey et al. (1997), El Niño events cause an eastward expansion
of warm surface waters in the equatorial Pacific, leading to the shift of skipjack tuna
distribution eastward in response to changing habitat conditions. This pattern is clearly
reflected in the Hovmöller diagrams of total skipjack biomass between 140◦E and 120◦W
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(Figure 28) predicted by the current reference model. To quantify these shifts, barycentres
of total equatorial biomass, as well as those of the northern and southern sub-stocks, were
computed. They show that the biomass distributions can shift by more than 20◦ in one
year. Moreover, Figures 28 and 29 illustrate that skipjack in the Northern Hemisphere
tend to move farther eastward into the central Pacific compared to those in the Southern
Hemisphere. Additionally, the southern stock appears constrained by the 29◦C isotherm,
a limitation not observed for the northern sub-stock.

To better understand the underlying mechanisms, observed zonal displacements were
further investigated to determine the role of ocean currents in driving the skipjack
biomass. As proposed by Barrier et al. (2023), ocean currents are a primary driver of
ENSO-induced zonal movements of skipjack tuna. To isolate their effect, additional sim-
ulations were conducted in which all model parameters were fixed at their maximum
likelihood estimates, except for movement, which was limited to passive advection. As
shown in Figure 30, the resulting skipjack distributions differ notably from the reference
model: the southern sub-stock becomes more dispersed, while the northern sub-stock
shifts farther north and stretches longitudinally across the Pacific. While these additional
simulations confirmed that ocean currents contribute to eastward displacements, the full
pattern of skipjack redistribution emerges from the interplay of physical processes (cur-
rents) and fish behaviour (active swimming and habitat selection).

The reference model reveals a persistent eastward shift in total skipjack biomass within
the WCPO from 1960 to 2022, likely reflecting the influence of climate change (Figure 29).
One of the indications that the model captures a long-term climate signal across the his-
torical period, is that this shift occurs more rapidly in the northern sub-stock, which
is consistent with observed faster rates of warming in the Northern Hemisphere relative
to the Southern Hemisphere (see e.g., Stouffer et al., 2004). This result will be further
explored using simulations forced by an ensemble of Earth System Models. Importantly,
despite observed zonal shifts, the model does not predict a significant meridional expan-
sion of the skipjack biomass.
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7 Tables

Table 1: Forcing variables used in current SEAPODYM model. Note that table shows
original resolutions, all variables were then interpolated to spatial and temporal resolu-
tions 2◦ x 30 days and 1◦ x 30 days.

Variable Description Resolution Time period
NEMO

T , u, v,
SST, MLD

Physical variables simulated by NEMO
ocean general circulation model forced by
atmospheric JRA55 reanalysis

ORCA1,
daily 1958 - 2022

PISCES
P , Z, O2 Primary production, euphotic depth and

dissolved oxygen variables simulated by
the PISCES model coupled with NEMO
OGCM

ORCA1,
daily 1958 - 2022

LMTL
F Six micronekton groups simulated by the

LMTL model with the NEMO-PISCES
forcing and parametrization described in
QUID (2024)

1◦, 30 days, 1958 - 2022
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Table 2: Skipjack fisheries structure. NWCPO stands for North-West and Central Pacific,
TPO - for Tropical Pacific Ocean, SWPO - for South-West Pacific Ocean. C-model column
provides information on the catch observation (prediction) model, where CR refers to
catch removal method and effort refers to more classical Gordon-Schaefer method based
on fishing effort.

ID Gear Region Flag-
Fleet

School ∆x ·∆y Time period C-model

P1 PL NWCPO JP-OS None 1x1 1972-2022 Effort
P2 PL NWCPO JP-DW None 1x1 1972-2003 Effort
P21 PL WCPO JP-DW None 1x1 1972-1981 Effort
P22 PL WCPO JP-DW None 1x1 1982-1989 Effort
P23 PL WCPO JP-DW None 1x1 1990-2022 Effort
P3 PL TPO All None 1x1 1970-2022 Effort
S4 PS NWCPO JP All 1x1 1970-2023 CR
S5 PS WCPO All Log, dFAD,

aFAD
1x1 1968-2023 CR

S6 PS WCPO PH,ID All 1x1 1951-2023 CR
S7 PS WCPO All Free schools

and animals
1x1 1967-2023 CR

L8 LL PO All None 5x5 1950-2023 Effort
O9 Mix WCPO All None 1x1 1950-2022 CR
S10 PS EPO All Log, dFAD,

aFAD
1x1 1959-2023 CR

S11 PS EPO All Dolphins 1x1 1959-2020 CR
S12 PS EPO All Free schools 1x1 1958-2023 CR
S13 PS SWPO All All 1x1 1975-2021 CR
P14 PL SWPO AU, NZ,

JP-DW
None 1x1 1974-2022 Effort

P15 PL EPO KR,
MX, US

None 1x1 1978-2005 Effort
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Table 3: SEAPODYM parameters. Parameters marked by asterisks were fixed in opti-
mization experiment. Parameter with [ or ] were estimated (and subsequently fixed if
asterisk is added) at their lower or upper boundary correspondingly. The dash indicates
that the parameter is not effective and could not be estimated.

θ Description REF Lorenzen

Spawning habitat and reproduction
σ0 standard deviation in thermal Gaussian function of spawn-

ing habitat, ◦C
10]* 10]*

T ⋆
0 mean in thermal Gaussian function of spawning habitat, ◦C 35.96 35.43

αP prey encounter rate in Holling (type III) function, day−1 7.19 1.71
αF mean of log-normal predator-dependent function, g/m2 2.5]* 2.5]*
βF shape parameter of log-normal predator-dependent function 2.17 2.8
R reproduction rate in Beverton-Holt function, mo−1 1.29 236.26
b slope parameter in Beverton-Holt function, nb/km2 0.41 0.49

Natural mortality
m̄p predation mortality rate age age 0, mo−1 0.35* 0.3*
βp slope coefficient in predation mortality 0.75] 0.29*
m̄s senescence mortality rate at age 0, mo−1 0.02]* 0.211*
βs slope coefficient in senescence mortality 0.67 -0.22*
ϵ0 variability of larval mortality rate with spawning habitat

index MH ∈ (M,M(1 + ϵ))
14.36 12.37

ϵ variability of juvenile and adult mortality rate with feeding
habitat index MH ∈ (M,M(1 + ϵ))

[0* [0*

Feeding habitats
T0 optimal temperature (if Gaussian function), or temperature

range for the first young cohort, ◦C
30.86 30.86

TK optimal temperature (if Gaussian function), or temperature
range for the oldest adult cohort, ◦C

24.65 27.5

γ slope coefficient in the function of oxygen) 1e-04] 1e-04]

Ô threshold value of dissolved oxygen, ml/l 4.13 4.0
eF1 contribution of epipelagic forage to the habitat 1.0 1.12
eF1 contribution of mesopelagic forage to the habitat 3.5 3.29
eF1 contribution of migrant mesopelagic forage to the habitat [0* [0*
eF1 contribution of bathypelagic forage to the habitat [0* [0*
eF1 contribution of migrant bathypelagic forage to the habitat [0* [0*
eF1 contribution of highly migrant bathypelagic forage to the

habitat
4.16 3.7

Movement
Vm maximal sustainable speed of tuna in body length, BL/sec 0.407 0.35
aV slope coefficient in allometric function for maximal speed [0.3* [0.3*
σ multiplier for the maximal diffusion rate 0.4342 0.52
c coefficient of diffusion variability with habitat index [0* 0.1
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Table 4: Fisheries parameters. Catchabilities are given for validity period of corresponding
fishery (Table 2). Selectivities of all fisheries except L8 are asymmetric Gaussian functions,
and Selectivity at Linf is the value at maximal length. Parameters marked by asterisks,
[ or ] were fixed or estimated at their lower or upper boundary respectively.

θ Description REF Lorenzen

Fishery P1
q1 Catchability 0.0067 0.0059
s1 Standard deviation of Gaussian selectivity (cm) 8.5* 8.5*

l̂1 Size at maximal selectivity (cm) 47.71 47.63
sinf,1 Selectivity at Linf 0.4* 0.56

Fishery P2
q2 Catchability 0.0087 0.004
s2 Standard deviation of Gaussian selectivity (cm) 5.46* 5.46*

l̂2 Size at maximal selectivity (cm) 45* 45*
sinf,2 Selectivity at Linf 0.1* 1]

Fishery P21
q3 Catchability 0.0013 - 0.0028 0.0013 - 0.0027
s3 Standard deviation of Gaussian selectivity (cm) 15* 15*

l̂3 Size at maximal selectivity (cm) 57* 57*
sinf,3 Selectivity at Linf 0.3*

Fishery P22
q4 Catchability 0.0034 - 0.0065 0.0051 - 0.0095
s4 Standard deviation of Gaussian selectivity (cm) 16* 16*

l̂4 Size at maximal selectivity (cm) 55* 55*
sinf,4 Selectivity at Linf 0.4* 0.4*

Fishery P23
q5 Catchability 0.0076 0.0109
s5 Standard deviation of Gaussian selectivity (cm) 15* 15*

l̂5 Size at maximal selectivity (cm) 59.55 60.8
sinf,5 Selectivity at Linf 0.7* 0.18

Fishery P3
q6 Catchability 5.2e-04 - 6.7e-04 0.0024
s6 Standard deviation of Gaussian selectivity (cm) 10* 10*

l̂6 Size at maximal selectivity (cm) 52.72 52.83
sinf,6 Selectivity at Linf 0.1* 0.14

Fishery S4
s7 Standard deviation of Gaussian selectivity (cm) 5.5* 8.8

l̂7 Size at maximal selectivity (cm) 49.5* 52.5*
sinf,7 Selectivity at Linf 0.25* 0.58*

Fishery S5
s8 Standard deviation of Gaussian selectivity (cm) 12.5* 12.75

l̂8 Size at maximal selectivity (cm) 52.79 53.82
sinf,8 Selectivity at Linf 0.3* 0.35

Fishery S6
s9 Standard deviation of Gaussian selectivity (cm) 15* 15*

l̂9 Size at maximal selectivity (cm) 49* 49*
sinf,9 Selectivity at Linf 0* 0*

29



Fishery S7
s10 Standard deviation of Gaussian selectivity (cm) 12.5* 21.87

l̂10 Size at maximal selectivity (cm) 61.47 70.48
sinf,10 Selectivity at Linf 0.4* [0

Fishery L8
q11 Catchability 1e-04 - 3e-04 4e-5 - 1e-4
s11 Slope of selectivity function 0.18* 0.19*

l̂11 Size at 50% selectivity (cm) 76* 64*
Fishery O9

s12 Standard deviation of Gaussian selectivity (cm) 11* 11*

l̂12 Size at maximal selectivity (cm) 40* 40*
sinf,12 Selectivity at Linf 0.2* 0.2*

Fishery S10
s13 Standard deviation of Gaussian selectivity (cm) 7.5* 7.5*

l̂13 Size at maximal selectivity (cm) 43.66 44.71
sinf,13 Selectivity at Linf 0.9* 0.6*

Fishery S11
s14 Standard deviation of Gaussian selectivity (cm) 15* 14.63

l̂14 Size at maximal selectivity (cm) 59.5 60.1
sinf,14 Selectivity at Linf 0.8* [0.1

Fishery S12
s15 Standard deviation of Gaussian selectivity (cm) 10* 17.33

l̂15 Size at maximal selectivity (cm) 53.22 63.48
sinf,15 Selectivity at Linf 0.85* 0.18

Fishery S13
s16 Standard deviation of Gaussian selectivity (cm) 10* 10*

l̂16 Size at maximal selectivity (cm) 49.85* 49.85*
sinf,16 Selectivity at Linf 0.2* 0.2*

Fishery P14
q17 Catchability 0.016* 0.016*
s17 Standard deviation of Gaussian selectivity (cm) 6.5* 6.5*

l̂17 Size at maximal selectivity (cm) 48.5* 48.5*
sinf,17 Selectivity at Linf 0.3*

Fishery P15
q18 Catchability 0.012 - 0.016 0.02
s18 Standard deviation of Gaussian selectivity (cm) 15* 15*

l̂18 Size at maximal selectivity (cm) 60* 60*
sinf,18 Selectivity at Linf 0.5* 0.5*
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Figure 2: Total annual skipjack catch aggregated from geo-referenced catch (Pacific-wide)
used in SEAPODYM analyses. Solid line corresponds to total landings of skipjack (SPC
Yearbook, 2019). Dashed vertical lines indicate the data being used in MLE.
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Figure 4: Skipjack length frequency data coverage. The time series on the top panel shows
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36



a) WCPO

20

40

60

80

History of releases

Date of release

T
im

e 
at

 li
be

rt
y 

(m
on

th
s)

MLE tags

1979−01 1987−01 1995−01 2003−01 2011−01

Time at liberty

Time at liberty (months)

1

10

100

1000

10000

N
um

be
r 

of
 ta

gs

12 24 36 48 60 72 84

Length

length (cm)

0

500

1000

1500

2000

2500

N
um

be
r 

of
 ta

gs

at release
at recapture
at release, MLE
at recapture, MLE

10 20 30 40 50 60 70 80

b) EPO

10

20

30

40

History of releases

Date of release

T
im

e 
at

 li
be

rt
y 

(m
on

th
s)

1979−01 1988−01 1997−01 2006−01 2014−12

Time at liberty

Time at liberty (months)

1

5

10

50

100

500

1000

N
um

be
r 

of
 ta

gs

12 24 36

Length

length (cm)

0

50

100

150

200

250

N
um

be
r 

of
 ta

gs

at release
at recapture

10 20 30 40 50 60 70 80

Figure 5: WCPO and EPO tagging data: history of tag releases with the time at liberty
shown to each record; time at liberty histogram; and length of tagged fish at release and
recapture. Note, the diamonds and additional length distributions of tags at release and
recapture shown with darker color indicate the data being used in MLE.

Figure 6: Early-life history data: (left) filled circles and thin black lines show the num-
ber of normally hatched skipjack eggs as a function of temperature from Fujioka et al.
(2024) study, the grey and blue lines corresponds to the proportion (right y-axis) of eggs
and larvae surviving in the reference model at one week of age correspondingly; (right)
probability of larvae occurrence predicted by boosted regression tree model from digitized
larval sampling data (Buenafe et al., 2022).
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Figure 9: Catchability and selectivity by fishery in the model. The y-axis shows the
product of catchability coefficient and selectivity function, which varies between 0 and 1,
so that the plot gives the catchability by size. For fisheries, for which the dashed line is
present, the catchability was allowed to vary linearly in time to account for the change in
the gear efficiency and/or model biases. In that case the the dashed lines correspond to
the catchability at size at the beginning of the run or the first year the fishery is active,
and the solid lines show the catchability at size at the end of the run or at the end of
the fishery’s activity. Grey solid lines correspond to the catch removal fisheries, hence
showing the size selectivity only.
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Figure 10: Taylor diagram, providing three aggregated metrics of model fit to the total
catch: correlation (angular coordinates) between predictions and observations, standard
deviation ratio (distance from (0,0) point depicts the ratio between model and data
standard deviation) and normalized mean squared error (concentric circles with the green
bullet being the center). Each point on the graph shows three metrics of the fit to the
catch data by region: R1) 120E-150W, 20N-50N, R2) 140E-170E, 20S-20N, R3) 170E-
150W, 20S-20N, R4) 110E-140E, 20S-20N, and R5) 150W-70W, 20S-30N. The metrics
are evaluated using the catch data over 1979-2022.
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Figure 11: Fit to the length frequency data over the time period of model run. Left-side
distribution shows observed and right-side distributions shows predicted length frequen-
cies. Numbers on the top of the panel correspond to NRMSE and Z-score respectively,
and the number in the panel bottom shows the total annual catch, in units shown in
sub-title.
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a) 1979-1993 a) 1994-2005 b) 2007-2015

Figure 12: Maps and NRMSE metrics of fit between observed and predicted tags recap-
tures during different tagging campaigns. Maps show the total number of tag recaptures
observed over each period, and the corresponding 1D profiles show the fit to the tropical
WCPO data. Bars correspond to the number of observed tags recaptures and solid lines
correspond to predicted tag recaptures.
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a) 1988-1999 b) 2007 c) 2008-2010

Figure 13: Maps and NRMSE metrics of fit between observed and predicted tags recap-
tures during different tagging campaigns. Maps show the total number of tag recaptures
observed over each period, and the corresponding 1D profiles show the fit to the sub-
tropical WCPO data. Bars correspond to the number of observed tags recaptures and
solid lines correspond to predicted tag recaptures.
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a) 1979-1981 b) 2000-2006 c) 2019-2022

Figure 14: Maps and NRMSE metrics of fit between observed and predicted tags recap-
tures during different tagging campaigns. Maps show the total number of tag recaptures
observed over each period, and the corresponding 1D profiles show the fit to the sub-
tropical WCPO data. Bars correspond to the number of observed tags recaptures and
solid lines correspond to predicted tag recaptures.
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Figure 15: Validation of the early-life history data. Upper panel - seasonal spatial dis-
tributions of predicted larvae one week after spawning, with circles corresponding to the
observed larval densities. The histograms on the bottom panel show the mean predicted
(bars) vs. observed (solid lines) number of skipjack larvae in association with sea surface
temperature, primary production, dissolved oxygen in the epipelagic layer and epipelagic
forage.
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Figure 16: Seasonality of predicted normalize larval density (averaged over 1960-1981) and
BRTM outputs (Buenafe et al., 2025) derived from categorical larval densities (Nishikawa
et al., 1985).
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Figure 17: Population structure of Pacific skipjack tuna predicted with estimated param-
eters: the number and the biomass of fish by age class, and the total biomass by life stage.
The light grey lines and bars correspond to the metrics of unfished population.
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Figure 19: From top to bottom: average (over 2011-2020) density of larval (Nb/km2), ju-
venile (called young, mt/km2, including all age classes younger than age at 50% maturity)
and adult (mt/km2, including all age classes older than age at 50% maturity) skipjack
tuna predicted with (left) and without fishing (right).
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Figure 20: Seasonal distributions of skipjack tuna density at recruitment and at mature
adult stage (average over 2011-2020).
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Lorenzen model biomass Lorenzen - Reference

Figure 21: Spatial distribution of total (sum of juveniles and adults) biomass (kg/km2) of
skipjack tuna predicted with parameters re-estimated with fixed Lorenzen mortality and
mean difference between Lorenzen-based model and reference model is calculated over
decade 2001-2010.
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Figure 22: Comparison on SEAPODYM estimations between the reference model and the
model with fixed Lorenzen mortality function.
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Figure 23: Regional movement probabilities. Only regions predicted to have movement
probabilities greater that 0.1 per quarter are shown.
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Figure 24: Comparison between SEAPODYM (black) and Multifan-CL (red) stock as-
sessment model predictions for the Western and Central Pacific stock of recruits (mln.
Nb).
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Figure 25: Comparison between SEAPODYM (black) and Multifan-CL (red) stock assess-
ment model predictions for the Western and Central Pacific total (juveniles and adults)
skipjack biomass (in thousand metric tons).
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Figure 26: a) Fishing impact on skipjack population in time, calculated as
BF0−Bref

BF0
. b)

Fishing depletion ratio by age class calculated as a 2020 average.
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Figure 27: Spatial fishing impact on juvenile and adult population stages of skipjack
in 2020. Contour lines show the index

BF0−Bref

BF0
and colour shows the average biomass

reduction due to fishing.
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Figure 28: Hovmoller diagrams of unfished biomass. Note the different range of biomass
shown due to spatial differences between south- and north-equatorial sub-stock densities.
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Figure 29: Total biomass centroid coordinates calculated over region 130E-130W and
10S-10N. The blue and red lines refer to the northern and southern stock respectively.
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Reference model Reference model with passive movement

Figure 30: Spatial distributions of total (sum of juveniles and adults) biomass (kg/km2)
of skipjack tuna simulated with reference parameters (left) and with passive movement
only (drift with current and small diffusive movement to account for the impact of water
turbulence). Average biomass over decade 2013-2022 are shown.
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