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1 Executive summary

Stock assessment models and other quantitative models rely heavily on fishery-dependent data,
particularly in regions where fishery-independent data (e.g., scientific surveys) are unavailable.
However, the relationship between catch-per-unit-effort (CPUE) and fish abundance is impacted
by variations in catchability and selectivity across different fishing operations. This paper presents a
comprehensive methodology for preparing unbiased fisheries data for use in spatially-explicit popu-
lation dynamics models such as SEAPODYM, a spatiotemporal model of population dynamics with
age structure. Our approach addresses two key challenges: first, by systematically grouping fishing
data into distinct fisheries with consistent catchability and selectivity patterns, and second, by
leveraging high-resolution spatial data to maintain linear relationships between catch and biomass
density at the grid cell level. We demonstrate this methodology using operational longline data
from Pacific Island countries and distant-water fishing nations targeting yellowfin tuna in the Pa-
cific Ocean. The approach incorporates covariates such as hooks between floats and target species to
account for fisherman-driven changes in catchability, while assuming remaining variability is driven
by environmental factors and the heterogeneity of the population density explicitly accounted in
SEAPODYM. By combining these operational data with coarse resolution aggregated data from
all gears, we ensure comprehensive coverage of fishing mortality while integrating fine-scale spa-
tial resolution data needed for parameter estimation. This methodology represents a significant
advancement in preparing fisheries data for spatially-explicit stock assessment models, potentially
improving the accuracy of population dynamics estimates.

2 Introduction

Stock assessment models require reliable indices of fish abundance to inform model parameters
and eventually assist management decisions. While fisheries-independent surveys would ideally
provide these indices, such surveys are often impractical or cost-prohibitive, particularly for highly
migratory species like tuna inhabiting vast regions of the Pacific Ocean. Consequently, fishery-
dependent data, specifically catch and effort data, serve as crucial inputs for stock assessments.

However, raw catch and effort data present several challenges for modeling. Catch per-unit-effort
(CPUE), which measures the amount of fish caught for a given amount of fishing effort, is used as a
proxy for abundance. However, this relationship is complicated by two key factors: the efficiency of
the fishing gear to catch fish when encountered (catchability) and the capacity of different fishing
gears to target fish of specific sizes (selectivity). Understanding these factors is particularly chal-
lenging as fishing operations vary across space and time due to differences in gear types, targeting
strategies and environmental conditions. Such variations must be taken into account to develop re-
liable abundance indices, removing biases to obtain linear relationships between catch and biomass
density, as failure to do so can lead to biased estimates of stock size [Maunder and Punt, 2004,
Ducharme-Barth et al., 2022], a long-recognized challenge that dates at least from Beverton and
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Holt [1957].

Traditional CPUE standardization methods face significant limitations when applied to longline
fisheries data, including subjective expert judgment in data selection [Braccini et al., 2011], chang-
ing fishing technologies [Hamer et al., 2024], and complex environmental influences on fish distribu-
tion [Bigelow et al., 2002]. The operational longline dataset contains relatively few variables (e.g.,
gear characteristics) that can effectively account for multiple sources of variation in catchability and
selectivity, making it challenging to isolate abundance signals from fishing practice effects. While
modern statistical spatio-temporal models (e.g., VAST, sdTMB) address some of these limitations
through random effects and environmental covariates, they remain fundamentally pattern-based
approaches that model correlational relationships between fish distribution and environmental con-
ditions. These limitations are particularly acute when trying to account for the spatial structure
of fish populations, as conventional models generally assume a homogeneous biomass distribution
within large management regions [Punt, 2019].

SEAPODYM offers a complementary mechanistic alternative that can be used alongside traditional
stock assessment approaches for fisheries management [Senina et al., 2008]. As a process-based
ecosystem model, SEAPODYM simulates the biological mechanisms underlying fish distribution
patterns—explicitly modeling how fish movement responds to environmental gradients in temper-
ature, oxygen, and food availability. This mechanistic foundation creates fundamentally different
data requirements: rather than removing spatial, temporal, and environmental signals as ”bias” to
be standardized away, SEAPODYM uses these signals as informative biomass indices that reflect
the biological processes driving fish distribution.

This approach requires structuring operational fisheries data to align with biological processes
rather than statistical patterns. Fisheries must be defined not just by gear type and fishing strat-
egy, but by how they interact with age-structured populations responding to environmental forc-
ing. The methodology presented here demonstrates how to prepare operational longline data for
SEAPODYM and can be adapted for other mechanistic ecosystem models that require process-
based rather than pattern-based data preparation.

The fishing fleets targeting yellowfin in the Pacific Ocean comprise mainly two fishing gears -
longlines and purse seine. There are also pole-and-line and other gears (e.g., handline, troll, ringnet)
but they represent less than 15% of the catches (WCPFC Tuna Yearbook). Historical data from
these fisheries were provided by the Pacific Community (SPC) for the Western and Central Pacific
Ocean, and by the Inter-American Tropical Tuna Commission for the Eastern Pacific Ocean. Our
approach here focuses on the use of operational fishing data from Pacific Island countries (PICs)
and distant-water fishing nations (DWFNs) for longline gear. These operational data, derived from
captain and observer logbooks, provides the most detailed information about fishing activities at
fine spatiotemporal scales.

The operational longline data includes several covariates that impact CPUE such as the number of
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hooks between floats [Bigelow et al., 2002, Hoyle and Maunder, 2006] and the species composition
in catches, allowing us to derive insights about the target species [Braccini et al., 2011]. These co-
variates are crucial as they allow us to remove fisher-driven impacts on catchability, such as changes
of target species or fishing strategy, by creating fisheries defined by a single selectivity function and
a catchability coefficient that is allowed to increase/decrease linearly with time [Senina et al., 2018].
After accounting for these factors, we assume that the remaining variability in catchability is driven
by the spatial distribution associated with environmental variability and fish density distributions,
which are explicitly described by the model.

While operational data provides detailed information at fine scales, albeit incomplete, it is essential
to complement it with coarse resolution aggregated data to account for total fishing mortality to
ensure that the geo-referenced dataset corresponds to the total annual stock removal.

The paper first describes the preparation of catch and effort data, followed by the treatment of
length frequency data, and finally explains how these datasets are structured into fisheries for
SEAPODYM.

3 Effort and catch data

We analyzed two longline fisheries datasets: (1) operational data from captains’ logbooks and ob-
server reports, and (2) a coarser resolution spatially and temporally aggregated dataset raised to
total catches (hereafter referred to as ”raised data”). The study region encompasses both the West-
ern and Central Pacific Ocean (WCPO) and Eastern Pacific Ocean (EPO). Both datasets included
comprehensive fishing operation details as described in Table 1. Catch documentation differed be-
tween datasets: the operational data recorded both number of fish and weight in kilograms, while
the raised data reported catches in metric tons only. We categorized the caught biomass into five
groups: yellowfin, skipjack, bigeye, albacore, and ”other” (comprising all species not included in the
first four categories). Rather than focusing solely on yellowfin biomass, we considered the total catch
composition per vessel as it provides insights into targeted species and the catchability/selectivity
patterns of each fishing trip.

3.1 Dataset formatting

The datasets have different formats, particularly in geographical coordinates, catch measurements,
and effort units. We standardized all datasets using the format in Table 1. After standardization,
we removed records missing geo-spatial coordinates and catch number. The spatial extent of the
data was then limited to the study region (100°-290°E;61°N,59°S).

The operational datasets required particular attention for outlier removal (e.g., unreasonable val-
ues). For longline data, catch weights were often estimated or missing (as the required reporting
metric is numbers), leading us to primarily rely on catch numbers as the metric of abundance. Table
1 details the data used and retained after processing, while Table 4 summarises the data removed.
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Table 1: Summary of the available effort catch data and proportion of reliable data.

Captain’s data
Input Processed

number/range unit/format number/range unit/format
Total 5576014 records 99.75 % -
Catch 100 % kg 99.75 % mt
Effort 100 % count 99.75 % hundred

Hooks Between Floats 67.9 % count 67.8 % count
Countries 32 flag 100 % flag

Vessels 11164 id 99.97 % id
Date Range 1960-06-05 - 2024-01-15 yyyy-mm-dd 1960-06 - 2022-12 yyyy-mm
Coordinates 0°-360°E;90.5°N,82.5°S DDDMM 100°-290°E;61°N,59°S 1°x 1°

Observer’s data
Input Processed

number/range unit/format number/range unit/format
Total 272896 records 94.6 % -
Catch 100 % kg 94.6 % mt
Effort 95.88 % count 94.6 % hundred

Hooks Between Floats 95.51 % count 94.6 % count
Countries 26 flag 100 % flag

Vessels 2130 id 98.3 % id
Date Range 1980-12-15 - 2024-02-04 yyyy-mm-dd 1987-06 - 2022-12 yyyy-mm
Coordinates 90.7°-348.5°E;83.5°S,45.65°N DDDMM 100°-270°E;46°N, 48°S 1°x 1°

Raised
Input Processed

number/range unit/format number/range unit/format
Total 367619 records 100 % -
Catch 100 % mt 100 % mt
Effort 100 % hundred 100 % hundred

Countries 31 flag 100 % flag
Fleets 29 id 100 % id

Date Range 1950-06 - 2023-09 yyyy-mm 1950-06 - 2022-12 yyyy-mm
Coordinates 0°-360°E;70°N,85°S 5°x 5° 102°-283°E;61°N,53°S 5°x 5°
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We applied statistical filtering to the effort values, in this case, number of hooks per set, removing
values beyond three standard deviations from the mean of the entire dataset. Records without any
reported effort could not be used in the analysis and were put aside to be used as a global catch
removal variable.

The same filtering was applied to the hooks between floats (HBF) measurements, resulting in a
working range of 2 to 50 hooks. In cases where records were only missing HBF data (32% of
captains’ logbooks and 0.3% of observer records), the records were still kept and missing values
were imputed later on.

Merging Operational Datasets

The captains’ logbooks and observer entries were merged using vessel flag, vessel name, and date
as matching criteria. When both captain and observer data existed for the same vessel and date,
observer entries were given precedence.

Spatial Processing

As previously mentioned, the data underwent spatial filtering, using a simple landmask, removing
data points outside of the study region. During this process, we aggregated the operational data
to 1°x 1°degree resolution, matching the same grid of cells as the raised data. Additional filtering
was performed using an ERA5-derived temperature mask [Hersbach et al., 2020], which excluded
all entries from SST below 10◦ [Weng et al., 2017].

3.2 Dividing datasets

We divided all catch-effort datasets into three categories based on their effort and yellowfin catch
values. Entries with positive effort formed our primary dataset for generating fisheries files. Entries
with both zero catch and zero effort were excluded from further analysis. Entries with yellowfin
positive catch but zero effort were retained solely to inform fisheries mortality calculations. This
categorization ensured that only relevant data points contributed to our analyses while maintaining
comprehensive information for mortality assessments.

3.3 Data recovery

While operational datasets provide fine-scale spatial information, they incompletely represent long-
line fisheries history. Countries such as Japan, Korea, Indonesia and Taiwan provide only a portion
of their operational data (due to reporting requirements or availability), creating significant gaps
between the total catch of the operational data and the catch represented in the raised data. We
required 1°x 1°spatial resolution data for these analyses; however, the available raised datasets
were at 5°x 5°resolution. To address this discrepancy, we created a complementary ”delta longline”
dataset. This dataset represents the difference between raised and operational data, degraded to
5°x 5°, calculated as:
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V ∆
f,g,t = V R

f,g,t − V O
f,g,t

Where:

V ∆
f,g,t represents the delta longline dataset

f indicates the flag

g represents the 5°x 5°grid cell (latitude, longitude)

t is the time (month)

V = {C, E} where C represents catch and E represents effort

V R
f,g,t is the raised data

V O
f,g,t is the operational data (captain’s and observer’s)

We first aggregated the operational data to match the raised data’s temporal (monthly) and spatial
(5°x 5°) resolution, grouping by nation. The resulting delta longlines dataset was then used in
conjunction with the operational data to provide a complete historical representation of longline
fishing activities. In some cases, the operational data catch were higher than the raised data,
resulting in negative values, which were changed as 0.

4 Yellowfin length frequency data

We analyzed two length frequency datasets: (1) operational data from observer and port sampling
trips, and (2) a regionally aggregated dataset (hereafter referred to as ”aggregated LF data”). The
operational data contains two distinct collection methods: observer sampling, which records fish
lengths with precise coordinates and catch times during fishing days, and port sampling, which
measures representative catch samples at trip conclusion, documenting only the start and end
coordinates of the trip alongside sampling time. The aggregated LF data incorporates the opera-
tional data alongside historical data and Japanese submissions to the Western and Central Pacific
Fisheries Commission (WCPFC). These aggregated data are often consolidated into large regions
ranging from 5°x 5°to 20°x 10°grid cells by quarter. While lacking the spatial precision of opera-
tional data, the aggregated dataset fills the temporal and spatial gaps in the operational records.
Comprehensive details of both datasets are described in Table 2.

4.1 Dataset formatting

Similar to the catch-effort data, the first step was to standardise the format for geolocation and
time described in Table 2, followed by the removal of entries containing null values for key data
fields or being outside of the study region. An exception was made for the length and length code of
the operational data where we attempted to salvage as much data as possible, even when considered
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Table 2: Summary of the available length frequency data before and after processing. A sample
encompass all the length frequency measurement during a day from one vessel for the detailed data
and in one region for the aggregated data.

Port sampling
Input Processed

number/range format/bin number/range format/bin
Samples 15982 1 cm 82.2 % 1 cm

Countries 17 flag 94.1 % flag
Vessels 2013 id 20.6 % id

Date Range 1994-04-05 - 2024-02-08 yyyy-mm-dd 2002-01-11 - 2022-12-31 yyyy-mm-dd
Coordinates 0°-257.5°E;25.2°N,27°S DDDMM 121°-224°E;24°N,29°S 1°x 1°

Observer
Input Processed

number/range format/bin number/range format/bin
Samples 99104 1 cm 92.5 % 1 cm

Countries 24 flag 100 % flag
Vessels 1272 id 99.53 % id

Date Range 1980-12-15 - 2024-02-04 yyyy-mm-dd 1980-12-15 - 2022-12-31 yyyy-mm-dd
Coordinates 95.9°-267.1°E;44.7°N,49.7°S DDDMM 100°-267°E;44°N,50°S 1°x 1°

Aggregated
Input Processed

number/range format/bin number/range format/bin
Samples 33141 1,2 and 5 cm 99.7 % 1 cm

Countries 29 flag 100 % flag
Fleets 6 id 99.97 % id

Date Range 1948 - 2023 quarter 1948 - 2022 quarter
Coordinates 0°-360°E;40°N,85°S 5°x 5°; 10°x 5°; 20°x 10° 100°-280°E;40°N,50°S 5°x 5°; 10°x 5°; 20°x 10°

NULL, which is detailed below.

The operational size data encompass all gears but the majority of the data comes from:

• port sampling: length data are obtained by randomly sampling the trip at offload. These data
are only recorded 10-20% of the time, only provided by the PICTs and apply primarily to
the longlines fishery. There is usually no coverage for vessels fishing outside of PICTs waters.
Each port sampling is assigned a unique trip ID.

• longline observers: length data are obtained by measuring the length of every fish being
brought onboard , but they are not present on every trip (5% coverage of all vessels fishing
in the study area). All the entries from a single fishing trip are assigned a unique trip ID.

4.2 Data recovery

The length reported in the operational data are associated with a reported length measurement
type code. The ”UF” (upper jaw to caudal fork) length code was picked as the reference as it is
commonly used. Using Macdonald et al. [2022], we found that other length codes could be converted
to ”UF”.
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UF = 3.951SD0.8369

UF = 11.385PS0.6619

US = SD

Some length codes were recorded as NULL. In these cases, the unique trip id was used to determine
if there were other samples from the same trip and species reported with a length measurement
type code. If so, that code was assumed to be the correct one and was imputed in the dataset.
Note that 20% of port sampling records were removed due to no length being recorded or missing
coordinates.

4.3 Matching effort-catch data and length frequency data

We merged the EC and LF operational datasets to obtain a mean length associated to effort
catch data, to be used as a clustering variable. The observers and port sampling data were treated
separately as they captured different temporal scales - observer data provided length frequencies
for daily catches, while port sampling measured length frequencies for an entire trip.

To begin, the LF observer entries are matched to the EC data using fishing event dates (in days),
vessel and flag name. Data types (i.e., EC or LF) that had not matched with their counterparts
were still retained. To approximate the trip structure (with the trip ID) of the LF data, fishing
trips were created in the EC data by assuming that chronologically consecutive entries by a given
vessel were part of the same fishing trip, allowing a maximum gap of three consecutive days without
entries within the same trip.

Using these defined trips, we matched EC data with port sampling entries that fell within the
temporal bounds of each EC trip. Since port sampling occurs only on the last day of a fishing
trip, when a port sampling record was identified within an EC trip, all EC data entries up to
and including the port sampling date were assigned to that trip. When multiple port sampling
entries occurred within what was initially defined as a single EC trip (based on the three-day gap
rule), this indicated that the original EC trip definition was incorrect. In such cases, the EC trip
was subdivided into separate trips, with each new trip ending on a port sampling date, regardless
of the three-day gap rule. An average fish length for each trip was calculated based on the port
sampling entries and attributed to each day of the trip without replacing any existing observer
data, if present. Furthermore, fish counts from port sampling were allocated to individual days
proportionally based on the daily catch entries in the EC data. This allocation approach assumes
that the length frequency distribution from port sampling is representative of the entire trip’s catch,
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with the proportion of measured fish assigned to each day reflecting the relative fishing catch rate
documented in the EC data.

Following this process, 2.4% of EC data daily entries were assigned a mean length from observer
or port sampling measurements. When a direct measurement was not available for a daily EC data
entry, but data were available for other days of the same trip, an average of the available length
data was used as a proxy to fill the gap. The EC data was then aggregated monthly at 1°x 1°per
vessel and flag. The average length for each monthly entry was calculated from the original LF data
if available, otherwise using the proxy length.

After this process, 4.5% of the aggregated EC data entries were associated with a mean length.
To complete the missing entries, we used the aggregated LF data. This dataset was organized
in longitude-latitude grid regions ranging from 5°x 5°to 20°x 10°and was aggregated by quarters,
years, and flags. We matched the EC entries, the ones occurring in the same temporal period
(year/quarter) and with identical flags, within the LF regions, specifically targeting EC entries that
had not already received length frequency assignments from the operational data. This matching
meant that for a given date and flag, multiple 1°x 1°grid cells of EC data falling within a larger
LF region would be assigned that region’s mean length. In instances where multiple LF regions
overlapped, the assigned mean length was calculated as the weighted mean of the LF regions, using
their respective fish counts as weights.

The final dataset was aggregated to a monthly resolution, containing values for catch, effort, and
mean length (when available) per vessel and flags.

The delta dataset of longline fisheries was merged with the aggregated LF data the same way as
with the operational data, which yielded 30% coverage of the EC data.

5 Defining fisheries

5.1 Clusters method

The following clustering method was aimed at partitioning fishing operations into distinct subsets,
characterised by similar fishing technique and selectivity (Figure 1). The operational and delta
datasets were partitioned separately to obtain clusters that will then be used as fisheries with
single catchability and selectivity parameters within the SEAPODYM modelling framework. This
aimed to create homogeneous groups of fishing operations that reflect similar fishing practices and
effectiveness, to enable the use of linear relationship between tuna biomass density and catch within
each geo-location and time.
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Figure 1: Flowchart of the clustering methodology used to partition longline fishing operations into
homogeneous fisheries.

5.1.1 Operational data

Clustering was performed using available covariates potentially indicative of fishing strategies such
as species composition, number of hooks between floats, and the mean length of the catch . Addi-
tional stratification factors included latitude (rounded to 1 degree) and water biomes. Three water
biomes were defined based on the depth of the water column and steepness of the ocean floor in
each grid cells: the continental shelf, characterized by gentle slopes (less than 3 degrees) and shallow
waters (above -200 meters); the continental slope, distinguished by its steeper gradient (more than
3 degrees) but only above - 1000 meters; and the abyssal plains, which feature gentle slopes (less
than 3 degrees) in the deep ocean (below -200 meters) or any slopes past - 1000 meters.

To maximize the use of catch-effort (EC) data, entries with missing mean length measurements
(52%) and hooks between floats (HBF; 32%) were imputed through Multiple Imputation by Chained
Equations (MICE) [Van Buuren and Groothuis-Oudshoorn, 2011]. Due to the low coverage of length
frequency data, we assume that at a monthly level, the missing values can be determined using the
existing data coupled to the species composition of the catch as predictor variables. To facilitate the
clustering analysis, HBF was discretized. We employed model-based clustering (Mclust package in
R) to identify natural groupings within the distribution of HBF, the optimal model of four groups
was selected using the Bayesian Information Criterion. Clustering was performed using data from
1990 to 2022 only, which was the most complete data, considering yellowfin, bigeye, albacore and
other in species composition of catch.
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We tested different combinations of the covariates at hand (i.e., scenarios) and calculated several
metrics (described below) to be able to rank them and select the most sensible fisheries. Given the
heterogeneous nature of the dataset, variables were standardized using Z-score normalization to
ensure comparable scales and then a principal component analysis (PCA) was applied to effectively
reduce high-dimensional data to a lower-dimensional space while preserving the maximum amount
of information in the data [Hotelling, 1933]. Principal components cumulatively explaining at least
70% of the total variance were retained for clustering analysis. This threshold-based selection of
components effectively eliminates dimensions contributing minimal variance, thereby reducing noise
while preserving the dataset’s primary structure. This dimensionality reduction enhances compu-
tational efficiency of the clustering algorithm. In order to cope with the large size of the dataset
(e.g., 2e6 entries for the operational data), clustering was performed over random samples from the
dataset. Fifteen random samples the size of 1% of the total data were used for the clustering. 1%
was enough to describe the structure of the entire dataset by assessing the consistency of the final
clusters resulting from the 15 iterations. The subsets were subjected to K-means clustering analysis
[Xie and Jiang, 2010] to determine the optimal number of clusters, with iterations testing cluster
numbers ranging from 2 to 20 (empirically, iterations resulting in more than 20 clusters were never
observed). Optimal cluster number K was determined using the Gap statistic method [Tibshirani
et al., 2001], which evaluates the change in within-cluster dispersion against that expected under
a null reference distribution. The smallest value of K such that the gap statistic is within one
standard deviation of the gap at K+1 was used.

Gap(k) ≥ Gap(k + 1) − sk + 1

Gap statistics performed over the 15 subsets were ensured to return the same optimal number of
clusters (if not, new subset were drawn until 15 agreed on the optimal number of clusters). Each of
the subsets were matched by their similarities and their centroid averaged to obtain a mean centroid
value and its normalised root mean square error for each cluster, which was then used to assess the
stability of the results. This approach distinguished between unstable clustering solutions (where
centroids varied across random samples) and stable solutions (where centroids remained consistent
across random samples).

K-means was then run on the entire dataset with the selected K and a final check was made to ensure
that each cluster contained at least 3% of yellowfin total catch. If not, clusters were removed and the
data were assigned to the closest centroids left. Furthermore, the silhouette concept [Rousseeuw,
1987] was used to assess the quality of the clustering. Silhouette width is a metric indicative of how
similar an entry is to its own cluster, compared to other clusters. It ranges from -1 to 1 and scores
higher when clusters are dense and well separated. This metric further helped flag scenarios with
bad cluster quality.

Finally, a breakpoint analysis was conducted on the time series of variables (e.g., CPUE as catch
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unit per hundred of hooks, length) to assess the consistency of the data clustered through time. This
method detects ecologically meaningful regime changes in fisheries time series through a multi-step
approach designed to identify transitions between stable operational states rather than temporary
fluctuations. First, the method filters data to the post-1990 period to focus on the modern fishing
era and applies loess smoothing (span = 0.3) to reduce short-term noise while preserving genuine
regime transitions. The core detection employs the PELT (Pruned Exact Linear Time) algorithm
[Killick et al., 2012] with BIC penalty to identify points where mean levels change significantly, using
a minimum segment length of 12 months to prevent over-segmentation. Each detected segment is
then classified as ”stable,” ”increasing,” or ”decreasing” through linear regression analysis, where
segments are labeled as trending only if they meet both statistical significance (p-value ¡ 0.1)
and practical significance (slope magnitude ¿ 10% of within-segment standard deviation) criteria,
ensuring that detected trends represent genuine patterns rather than random variations. Finally,
the method validates regime changes by examining transitions between stable periods, retaining
only breakpoints where the change in mean level exceeds a specified threshold (typically 3%) and
passed the 2 criteria described below, effectively filtering for meaningful shifts while ignoring minor
fluctuations.

• Segment Length Criterion: For biomass dependent variables such as CPUE and mean length
in catch, segments shorter than the mean of the yellowfin age distribution currently fished in
the time series (3.5 years on average) were initially flagged as potential breakpoints. Abrupt
change in CPUE or length that occurs in a time shorter than the population renewal of
yellowfin were not considered as coming from a change in the yellowfin’s biomass but from
how the data were clustered instead.

• Spatial Dispersion Criterion: For each potential breakpoint, we evaluated the fishing fleet
centroid movement, dispersion around the centroid and overlap of fishing area at the start
and end of the segment. A change in these metrics within the transition period between two
breakpoints indicated fleet relocation, which would explain the change in the variable and
negate the breakpoint classification.

This methodology allowed for robust identification of meaningful temporal shifts in the fisheries
data, distinguishing between genuine structural changes and mere spatial rearrangements of the
fishing fleet.

These three metrics were employed in identifying the best scenarios for K-means clustering. The
goal was to determine the most stable configuration, with an ideal low nRMSE and high silhouette
for each cluster per scenario and zero breakpoints indicating consistent characteristics across the
clustered data. This helped narrow down the possibilities until a final manual check to assess the
realism of the clusters.
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5.1.2 Delta data

The method to cluster the delta data was the same, albeit with variables limited to the species
composition between yellowfin, bigeye and albacore, alongside latitude and mean length.

5.2 Outlier Hampel filter

CPUE outlier values were filtered using a Hampel filter with a spatio-temporal rolling window. For
each cluster, each data point was evaluated within the context of surrounding observations falling
within a 250-kilometer radius and a temporal window that included the same calendar month
across a ±5 year period centered on the observation date. The median absolute deviation (MAD)
was calculated from this local subset of data to establish robust measures of central tendency and
dispersion. This adaptive approach accounts for spatial variations in catches while ignoring seasonal
variations. When outliers were identified, rather than removing the data points, effort values were
adjusted to the maximum threshold permitted by the Hampel filter (defined as the median ± 7 ×
MAD). This conservative approach preserves catch information while moderating the influence of
extreme effort values that could distort CPUE calculations.

Length frequency outliers were filtered out using a similar spatio-temporal Hampel filter based on
the mean length values. The study area was partitioned into 20°x 10°grid cells and within each
grid cell, the length distribution was analyzed independently, recognizing that fish size structures
can vary substantially across different oceanographic regions. The Hampel filter was applied using
the MAD criterion, where length observations exceeding seven times the MAD from the regional
median were classified as outliers and subsequently removed from the dataset (< 0.1% removed).
This regionalised approach ensures that outlier detection is sensitive to natural geographic variations
in fish size distributions while identifying biologically improbable length measurements that may
result from measurement or recording errors.

6 Cluster results

6.1 Evaluation of Clustering Quality

We systematically examined multiple variable combinations and dimensionality reduction thresh-
olds to identify optimal clustering configurations. The principal component analysis (PCA) variance
threshold had a strong impact on the resulting number of clusters as well as the quality of these
clusters. A quantitative assessment of cluster quality was made using all variable combinations,
cluster stability (which is measured using nRMSE of cluster centroid coordinates), breakpoint
analyses , and silhouette values. For operational data, the lowest nRMSE scores, and therefore
highest centroid stability occurred on average for the lowest variance threshold of 50% with the
stability decreasing with increasing variance threshold (Figure 4). However, this trend was not
necessarily true for all scenarios, with some scoring low nRMSE for any variance threshold (e.g.,
yba.hbfC.len.lat in Figure 10). The number of breakpoints was not significantly affected by the
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variance threshold (Figure 2) with an average of 2 breakpoints per cluster for HBF, 1 for mean
length and 0 for CPUE. Finally, the highest silhouette scores occurred for lower variance threshold
(50 and 70 %)(Figure 3) but when examining individual scenarios, high silhouette score could still
be achieved with a 100% variance threshold (e.g., sp in Figure 12). We selected valid scenarios
first based on their nRMSE score, then their number of breakpoints per variable (with priority on
CPUE, then length and finally HBF) and finally with a reasonably high silhouette value. Scenarios
producing only one cluster or no clusters with a majority of yellowfin were discarded. A preference
was also given to scenario considering only the species yellowfin, bigeye and albacore in case of a tie
with scenarios also including the ”other” species category, to be able to use the same variables as
with the delta data which only includes the 3 species mentioned. Finally, this reduced the number
of adequate scenarios to a handful that could be visually inspected for breakpoints missed by the
method and spatial repartition matching the known whereabouts of the species composition within
each cluster. Following these criteria, we selected the scenario based on the proportion of targeted
species in the catch (yellowfin, bigeye, and albacore) and latitude using the 70% variance threshold
(same result as with 50 % variance). This configuration yielded three distinct clusters, each with
silhouette values exceeding 0.4, with one cluster surpassing 0.6—indicating good separation and
cohesion. The corresponding nRMSE values remained consistently low (¡0.05), demonstrating high
centroid stability across all 15 iterations and the breakpoint analysis showed no breaks.

For the delta dataset, the optimal clustering was achieved using only the three target species
proportions without latitude. This configuration maintained high silhouette values and low nRMSE
while producing no CPUE breakpoints, indicating stable fishery definitions through time.

We specifically examined the impact of including the ”other” species category in our clustering
variables. In most scenarios, its inclusion generated an additional fourth cluster while simultaneously
reducing silhouette values across all clusters, suggesting decreased cluster cohesion. When restricting
the analysis to only the four target species categories (yellowfin, bigeye, albacore, and ”other”), the
algorithm formed three clusters, but problematically combined yellowfin and bigeye into a single
cluster. This configuration was deemed unsuitable for our objectives since distinguishing between
these commercially important species with distinct ecological niches is essential for accurate fishery
characterization.

Additional variables, such as bathymetry and hooks between floats (HBF), did not consistently
improve clustering metrics, suggesting that fishing strategy (as indicated by target species compo-
sition) and spatial distribution (latitude) were the most significant determinants of fishing strategy.

6.2 Characteristics of Operational Data Clusters

The operational data were partitioned into three distinct fisheries (Table 3), each characterized by
different species compositions, spatial distributions, and CPUE patterns (Figure 5). While species
targeting patterns were the primary determinants in cluster formation, the role of latitude, though
secondary, proved crucial in optimizing cluster quality. The inclusion of latitude increased silhouette
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values for two clusters and eliminated length breakpoints that were present when using only targeted
species variables. This importance is further supported by our mean decrease accuracy analysis
(Figure 7), which reveals latitude substantially influenced the formation of clusters 2 and 3, even
while remaining secondary to species composition variables.

Fishery 1: Yellowfin-Targeted Tropical Fishery
This cluster represents the primary yellowfin tuna fishery, accounting for 61% of total yellowfin
catch in the operational dataset. Catch composition within this fishery is predominantly yellowfin
(73%), with bigeye tuna comprising most of the remainder. Operations are concentrated in tropical
waters of the Western and Central Pacific Ocean (WCPO), as evidenced by the distinct spatial
pattern in Figure 5A.

The mean length of yellowfin caught in this fishery remained stable at approximately 118 cm
throughout the study period, suggesting consistent selectivity targeting mature individuals. Tem-
porally, CPUE exhibited a gradual decline until 2000, after which it stabilized through 2022, po-
tentially reflecting changes in fishing practices or management measures implemented during this
period.

Fishery 2: Bigeye-Dominated Northern Fishery
The second cluster accounted for 15% of total yellowfin catch but was primarily bigeye-targeted,
with yellowfin comprising 24% of catch composition. This fishery operated predominantly in the
northern hemisphere with a broader spatial distribution than Fishery 1 (Figure 5B). Yellowfin
caught in this fishery showed similar mean lengths (119 cm) compared to the first cluster. CPUE
followed similar temporal trends to Fishery 1 but with values 3-5 times lower, consistent with
yellowfin being a secondary rather than primary target.

Fishery 3: Albacore-Dominated Widespread Fishery
The third cluster contained 24% of total yellowfin catch, despite yellowfin comprising only 11% of
its catch composition, which was predominantly albacore. This fishery exhibited the widest spatial
distribution, spanning the entire Pacific with concentration in the southern hemisphere (Figure
5C). Mean yellowfin length in this fishery was notably smaller (113 cm) than in other clusters,
suggesting different size selectivity possibly related to shallower setting practices associated with
albacore targeting. CPUE values were the lowest among all clusters and displayed more pronounced
seasonality.

CPUE Distribution Patterns
Examination of CPUE frequency distributions (Figure 6) revealed distinct patterns across the
three fisheries. Fishery 1, which specifically targeted yellowfin, displayed a broad, relatively uniform
distribution of CPUE values, indicating variable success rates but consistent targeting behavior.
In contrast, Fisheries 2 and 3, where yellowfin was not the primary target, showed highly left-
skewed distributions with most observations clustered near zero, characteristic of incidental or
opportunistic yellowfin capture within fisheries primarily targeting other species. Spatially, despite
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differences in overall CPUE magnitude and distribution, all three fisheries exhibited peak CPUE
values in tropical waters (Figure 5), consistent with the known ecological preferences of yellowfin
tuna. However, the spatial extent and CPUE gradients differed substantially between clusters,
reflecting different targeting strategies and operational characteristics.

6.3 Characteristics of the Delta Data Clusters

The delta dataset, representing the complementary raised data, was similarly partitioned into three
distinct fisheries based on species composition, with each cluster exhibiting unique CPUE patterns
and spatial distributions.

Delta Fishery 4: Yellowfin-Dominated Fishery
This cluster accounted for 73% of total yellowfin catch in the delta dataset, with catch composition
predominantly yellowfin (76.5%) and bigeye comprising most of the remainder. This parallels the
species composition observed in Fishery 1 of the operational dataset, suggesting consistency in
yellowfin targeting strategies across different data sources.

CPUE in this cluster exhibited high variability before 1980, followed by a gradual decline until
2010, after which it stabilized. Values ranged from 0.4 to 1.4, representing the highest CPUE
among delta clusters. Spatial distribution revealed high CPUE concentrations in tropical waters
of both the WCPO and along the coast of the EPO, with a notable area of lower CPUE in the
offshore regions of the EPO, creating a distinctive gap pattern in the spatial distribution.

Delta Fishery 5: Bigeye-Dominated Fishery
The second cluster contained 15.5% of total yellowfin catch but was primarily composed of bigeye
tuna. This cluster’s CPUE exhibited high variability until 1980, followed by relative stability until
2000, then decreased between 2000 and 2010 before stabilizing again. CPUE values ranged from
0.4 to 0.28, substantially lower than in Delta Fishery 4.

Spatially, Delta Fishery 5 maintained the general pattern of higher CPUE values in the tropics, with
a lesser contrast between coastal and offshore regions in the EPO. This suggests a more uniform
distribution of fishing success across the EPO for this bigeye-dominated fishery.

Delta Fishery 6: Albacore-Dominated Fishery
The third cluster comprised 11.5% of total yellowfin catch and was predominantly composed of
albacore tuna. CPUE time series exhibited strong seasonality throughout the study period, with
particularly high variation before 1970. After 1970, CPUE maintained a relatively constant trend
with continued marked seasonality, though with reduced amplitude. CPUE values ranged from 0.02
to 0.29.

The spatial distribution of CPUE in Delta Fishery 6 showed a distinctive pattern in the EPO, with
high CPUE values concentrated along the entire western coastline of the continental United States
with lower CPUE further west compared to the two other fisheries.
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CPUE Distribution Patterns
The CPUE frequency distributions across the three delta fisheries (Figure 9) closely paralleled those
observed in the operational dataset. Delta Fishery 4, targeting yellowfin as the primary species,
exhibited a broad distribution of CPUE values similar to Fishery 1, while Delta Fisheries 5 and 6,
where yellowfin represented incidental catch, displayed the characteristic left-skewed distributions
with most observations concentrated near zero CPUE values. Spatially, all three delta fisheries
maintained the fundamental pattern of peak CPUE values in tropical waters (Figure 8), consistent
with yellowfin ecological preferences and mirroring the spatial distributions observed in the oper-
ational clusters. The primary distinction appeared in the Eastern Pacific Ocean coverage, where
the delta dataset provided more comprehensive spatial representation than the operational data,
particularly for the albacore-dominated fishery along the continental coastlines.

6.4 Comparison with Operational Data Clusters

The delta and operational datasets yielded remarkably similar clustering structures, with three
distinct fisheries primarily differentiated by species composition. Both approaches identified dis-
crete yellowfin-dominated, bigeye-dominated, and albacore-dominated fisheries with comparable
proportions of total yellowfin catch. This consistency across different data sources reinforces the
robustness of our clustering approach.

The most notable difference between operational and delta clusters appeared in their spatial CPUE
distributions, particularly in the EPO, where the operational data is lacking. These differences likely
reflect the complementary nature of the two datasets, with delta data capturing fishing activities
not represented in the operational data entries.

6.5 Validation of Clustering Approach

The effectiveness of our clustering approach is evidenced by several key outcomes. First, the absence
of breakpoints in both CPUE and length time series within the optimal clustering configuration
demonstrates temporal stability in catchability and selectivity—a critical requirement for reliable
abundance indices. Second, the distinct CPUE distributions and spatial patterns observed across
clusters confirm that our approach successfully identified genuinely different fishery types with
consistent operational characteristics.

The Hampel filter identified and adjusted 0.8% of outliers in the CPUE data. These adjustments im-
proved within-cluster cohesion without substantially altering overall CPUE trends, suggesting that
our approach successfully mitigated the influence of extreme values while preserving the underlying
signal.
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Table 3: Summary metrics of the fisheries

Fishery min CPUE max CPUE min length mean length max length min lat max lat % total % YFT
1 0.40 1.38 108.09 117.67 127.13 -34.5 19.5 61.33 73.02
2 0.02 0.24 106.01 118.88 131.50 -13.5 35.5 14.73 24.30
3 0.00 0.28 103.20 113.33 124.32 -44.5 31.5 23.93 10.64
4 0.39 1.41 101.80 117.07 132.45 -27.5 32.5 72.96 76.53
5 0.04 0.28 106.62 122.47 137.01 -27.5 37.5 15.62 20.50
6 0.02 0.29 97.31 114.98 132.58 -42.5 37.5 11.42 8.06
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Figure 2: Boxplot showing the number of breakpoints per CPUE, length, and HBF per PCA method.
Each method differs by the amount of variance kept to do the K-means clustering, either 50, 70, 90
or 100% (x-axis). Each bar is the average amount of breakpoints across all tested scenario weighted
by their number of clusters.
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Figure 3: Boxplot showing the averaged silhouette width per cluster for each PCA method.
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Figure 4: Boxplot showing the normalised root mean square error for each PCA method. Some
values were to high too be showed entirely while conserving a scale allowing to see the small values
and were cut at 0.5.
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Figure 5: Maps showing the spatial range of the fishery and its average CPUE over time (1960-
2022). The curves at the top and right of the maps shows the CPUE average value per longitude
and latitude respectively. A through C describe each fishery from 1 to 3 respectively.
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Figure 6: Frequency distribution of CPUE values (yellowfin catch per hundred hooks) across the
three operational fisheries.
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Figure 7: Mean decrease accuracy plot per variables and cluster
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Figure 8: Maps showing the spatial range of the fishery and its average CPUE over time (1960-
2022). The curves at the top and right of the maps shows the CPUE average value per longitude
and latitude respectively. A through C describe each fishery from 4 to 6 respectively.
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Figure 9: Frequency distribution of CPUE values (yellowfin catch per hundred hooks) across the
three delta fisheries.
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7 Discussion and Conclusion

Methodological Advances in CPUE Standardization

This study presents a novel approach to partitioning longline fisheries data into homogeneous
clusters for integration into the spatially-explicit SEAPODYM model. While modern CPUE stan-
dardization for tuna stocks now employs sophisticated spatio-temporal mixed models that effec-
tively address many limitations of earlier generalized linear model approaches [Maunder and Punt,
2004], these statistical methods remain fundamentally pattern-based—modeling correlational re-
lationships between fish distribution and environmental conditions through random effects and
covariates.

Our clustering methodology serves a fundamentally different purpose: rather than standardizing
CPUE to remove spatial, temporal, and environmental effects, we structure fisheries data to preserve
these signals as informative biomass indices for mechanistic modeling. This builds upon previous
habitat-based standardization approaches [Bigelow et al., 2002] that addressed similar challenges
in estimating relative abundance of tuna species, but extends the concept to support process-based
rather than statistical modeling frameworks.

The clustering methodology successfully identified distinct fisheries characterized by relatively con-
sistent catchability and selectivity patterns within the context of environmental variability. Unlike
traditional standardization that assumes basin-wide homogeneity and removes the effects of ex-
planatory variables [Maunder and Punt, 2004], our approach recognizes that systematic changes in
catchability may reflect meaningful biological processes—such as fish responding to environmental
gradients—that should be preserved as model inputs.

This approach addresses a key challenge in mechanistic modeling: establishing linear relationships
between CPUE and biomass density at spatial scales appropriate for biological processes. While
traditional methods often struggle with year x area interactions [Maunder and Punt, 2004], our
methodology explicitly accounts for spatial heterogeneity by establishing fisheries with consistent
spatial targeting patterns for integration with spatially-explicit biological processes.

While no fishery maintains perfectly stable catchability over multi-decadal time series—particularly
given technological changes including the transition to monofilament and changes in setting depth
[Ward and Hindmarsh, 2007]—our methodology identifies fisheries where catchability changes can
be attributed to systematic trends rather than structural breaks in fishing practices.

The effectiveness of our approach is demonstrated by the absence of abrupt breakpoints in CPUE
and length time series within optimally defined fisheries, indicating that any temporal changes
in catchability follow gradual, systematic patterns rather than sudden shifts in fishing behavior.
This temporal consistency, while not implying perfect stability, provides the foundation needed for
mechanistic models that explicitly account for environmental influences on fish distribution and
fishing success.
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Our clustering methodology offers complementary advantages to modern statistical spatio-temporal
approaches. Rather than competing with these methods, it provides the data structure necessary for
process-based modeling where spatial, temporal, and environmental variability represent biological
signals rather than statistical noise to be standardized away.

Addressing Key Challenges in Abundance Estimation

A central challenge in using fisheries-dependent data for abundance estimation is the non-random
distribution of fishing effort, which tends to concentrate in areas of high fish density. This spatial
targeting behavior can lead to hyperstability in abundance indices, where CPUE remains high even
as overall abundance declines [Ducharme-Barth et al., 2022].

Our approach addresses spatial targeting through two methodological choices that align with mech-
anistic modeling requirements. First, by utilizing high-resolution (1°x 1°) gridded data, we establish
conditions where relative homogeneity of biomass density can be reasonably assumed within in-
dividual grid cells, while capturing broader spatial heterogeneity through the aggregation of cells
[Nooteboom et al., 2023]. This fine-scale approach parallels habitat-based standardization efforts
[Bigelow et al., 2002] but serves a different purpose: rather than removing spatial effects statistically,
we preserve spatial information as biological signals for process-based modeling.

Second, our clustering approach identifies coherent groups of fishing operations characterized by
consistent species targeting patterns. While modern spatio-temporal CPUE models effectively han-
dle targeting through covariates and random effects, our methodology structures targeting infor-
mation differently—grouping fisheries by how they interact with biological processes rather than
by statistical properties alone. This distinction becomes important when environmental conditions
drive both fish distribution and fishing success, creating signals that statistical models might stan-
dardize away but mechanistic models need to preserve.

The issue of effort creep—increasing gear efficiency that can manifest as apparent CPUE increases
unrelated to abundance changes [Hamer et al., 2024] was not directly addressed in our data process-
ing methodology. However, SEAPODYM accommodates this phenomenon by allowing catchability
parameters to incrementally change through time [Senina et al., 2018], complementing our data-
driven approach with model flexibility.

Integration with SEAPODYM and Implications for Biomass Modeling

The fisheries defined through our clustering approach are specifically structured for integration into
SEAPODYM, which represents a fundamentally different paradigm compared to traditional stock
assessment models. While conventional models typically assume homogeneous biomass distribu-
tion within large management areas, SEAPODYM explicitly models spatial heterogeneity and fish
movement in response to environmental gradients [Lehodey et al., 2010].

This spatial explicitness offers several advantages for understanding yellowfin tuna population dy-
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namics. At the fine resolution employed in SEAPODYM (1°x 1°), the model can simultaneously
account for areas of high fishing mortality without requiring unrealistic recruitment assumptions,
as fish movement between adjacent cells provides a mechanistic explanation for local depletion and
replenishment patterns. Furthermore, apparent hyperstability in basin-wide CPUE can be mecha-
nistically explained by the non-linear relationship between spatially heterogeneous biomass density
and non-randomly distributed fishing effort, without necessarily indicating population decline across
the entire Pacific.

The integration of fisheries data with complementary information sources further strengthens
SEAPODYM’s capacity for robust abundance estimation. Larvae survey data informs recruitment
dynamics, while tagging data provides critical information on movement patterns. This multi-source
approach compensates for the non-random sampling inherent in fisheries data that tends to bias
towards high biomass density areas.

Methodological Limitations and Future Directions

Despite the advances presented in this study, several limitations and areas for future improvement
merit discussion. First, our approach to length frequency data encountered significant coverage
challenges, with only a small percentage of catch-effort entries having associated length measure-
ments. While we implemented a hierarchical approach to maximize length data utilization, the
potential for bias in size selectivity estimation remains. Future work could explore more sophisti-
cated imputation methods or alternative approaches to characterizing size selectivity with sparse
data.

Second, the treatment of effort creep through SEAPODYM’s time-varying catchability parameter
represents a simplification of potentially complex technological and behavioral changes in fishing
operations. More explicit modeling of technological transitions or incorporation of vessel-specific
characteristics could further refine catchability estimation.

Third, while our clustering approach effectively identified distinct fishery types, the possibility
remains that additional unobserved factors influence catchability and selectivity. Sensitivity anal-
yses exploring alternative clustering variables or methodologies could provide insights into the
robustness of our fishery definitions. The methodology developed in this study has potential ap-
plications beyond SEAPODYM. The principles of identifying homogeneous fishery groups with
consistent catchability and selectivity could be adapted for other spatially-structured population
models or even conventional stock assessment approaches. For traditional models like MULTIFAN-
CL [Fournier et al., 1998], our clustering approach could inform more objective fishery definitions
that reduce bias in abundance indices.

Conclusion
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This study presents a comprehensive methodology for structuring longline fisheries data into co-
hesive groups characterized by consistent catchability and selectivity. By combining multiple clus-
tering quality metrics with ecological understanding of tuna biology and fishing operations, we
have developed an objective approach to fishery definition that addresses key challenges in using
fisheries-dependent data for abundance estimation.

The resulting fishery clusters demonstrate temporal stability in CPUE-abundance relationships
while revealing distinct spatial patterns consistent with known habitat preferences of yellowfin
tuna. When integrated into SEAPODYM, these carefully defined fisheries enable robust abundance
estimation that accounts for spatial heterogeneity and movement dynamics.

As fisheries management increasingly employs spatially-explicit approaches, methodologies that
effectively harness the information content of fisheries-dependent data while accounting for its
inherent biases become increasingly valuable. The framework presented here represents a step to-
ward more objective, data-driven approaches to fishery definition that can support both scientific
understanding and sustainable management of highly migratory tuna populations.

Appendix A Extended data

Table 4: Summary of removed data

Dataset NA NULL/Outliers Mask
entries % entries % entries %

Captain EC 0 0 5258 0.09 8542 0.15
Observer EC 11554 4.2 2061 0.76 6 0.002
Raised EC 0 0 0 0 689 0.18

Detailed LF 1937382 22.6 336407 3.9 520 0.006
Aggregated LF 304 0.03 0 0 847 0.08
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Figure 10: Boxplot showing the normalised root mean square error per scenario.
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Figure 11: Boxplot showing the number of breakpoint per CPUE, length and HBF per scenario.
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Figure 12: Boxplot showing the average silhouette width per scenario.
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