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Rev 1: error in calculation of MSY corrected in results table.

Rev 2: This version contains the full assessment report. There are some minor adjustments to some

values for the reference points that include the estimation uncertainty at the bottom of Table 9.

Rev 3: This revision has an update to Figure 24 (fishery-specific LF likelihood profile) with for-

matting changes for clarity, Figure 19 (CPUE fits) and Figure 22 (CAAL fits) have been updated

with standardised residuals, Figure 20 (aggregated LF composition fits) has additional text for each

fishery with true effective sample size (as derived from robust normal likelihood), and Table 9 has

an additional line with estimates of recent depletion for the WCPFC-CA only.
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1 Executive Summary

This paper describes the 2024 stock assessment of albacore tuna (Thunnus alalunga) across the

South Pacific Ocean (south of the equator), incorporating the Convention areas of the Western

and Central Pacific Fisheries Commission (WCPFC–CA) and the Inter American Tropical Tuna

Commission (IATTC). A further three years of data are available since the last stock assessment was

conducted in 2021; the model time period now extends from 1954–2022. The 2021 assessment was

the first to include both convention areas modelled jointly in a spatially structured South Pacific

wide assessment. The 2024 assessment also includes both convention areas however, an areas-as-

fleets approach was implemented in each of the convention areas in lieu of the explicit regional

spatial structure used in 2021.

Based on recommendations from SC17 and the 2024 Pre-assessment workshop, there was a strong

focus on simplifying the 2024 assessment compared to previous versions. Key changes made from

the 2021 to the 2024 diagnostic case model include:

– Updating all data to the end of 2022 and applying a new version of MULTIFAN-CL (2.2.7.0)

– Conversion from a catch-errors to a catch-conditioned modelling framework, and the inclusion

of a likelihood component for the CPUE from the index fisheries.

– Application of time-varying coefficient of variation (CV) for index fisheries.

– Collapsed the WCPFC-CA subregions and regions to a single region.

– Change from quarterly to annual recruitment, occurring in October of each year.

– Implementation of an areas-as-fleets approach for both the WCPFC-CA and the remaining

area of the eastern Pacific Ocean (EPO) with fisheries structure informed by a regression tree

spatial structure analysis of longline size composition data.

– Development of annual indices from operational longline data with the final indices for the

WCPFC-CA restricted to the tropical area, a WCPFC-CA juvenile index from New Zealand

troll fishery data, and a full EPO index from operational longline data.

– Growth estimation informed by conditional-age-at-length (CAAL) data based on validated

otolith readings and fisheries size compositions. More detail on growth estimation changes

below.

– Lorenzen natural mortality at age, with the Amax method used to provide average M values,

with a max age of 15 years (Lorenzen, 2022).

– Effective sample sizes for size composition data calculated using the Francis weighting ap-

proach (Francis, 2017).

– Movement and recruitment distribution fixed to values derived from SEAPODYM (Senina

et al., 2020).
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– Minor updates to the weight-length a and b parameters.

– Uncertainty estimated using a Monte Carlo ensemble model approach in which 100 mod-

els incorporated uncertainty in average natural mortality, stock-recruitment steepness and

estimation error for individual models.

– A comprehensive sensitivity analysis to support the structure of the ensemble and other

modelling decisions.

These changes have been informed by a number of sources, including:

• The recommendations of the 2022 peer review of the WCPFC yellowfin tuna assessment (Punt

et al., 2023) where they apply to South Pacific albacore.

• Comments received on the previous assessment of this stock (Castillo Jordan et al., 2021)

delivered at SC17 and subsequently;

• The recommendations of the CAPAM “Tuna Stock Assessment Good Practices Workshop”

held in Wellington, New Zealand in March 2023.

• The recommendations received from the 2024 SPC Pre-Assessment Workshop and follow-up

inputs from PAW participants (Hamer, 2024).

The assessment is supported by the analysis of catch and effort data to develop CPUE abundance

indices, and size composition data (Teears et al., 2024; Potts et al., 2024). Other papers of relevance

to the assessment are the analysis of NZ troll fishery size data and CPUE (Neubauer and Hill-Moana,

2024).

In addition to the diagnostic model, a number of other models were investigated as sensitivities to

assess the relative impacts of alternative data and model assumptions on the estimated assessment

results and conclusions. These sensitivities included alternative CPUE indices, down weighting of

NZ troll CPUE, removing troll size composition data, alternative weights for the CAAL data,

alternative movement rates between the WCPFC-CA region and the EPO, effort creep in longline

CPUE indices, alternative recruitment distributions between the WCPFC-CA region and the EPO,

different numbers of age classes used in the model, selectivity and catchability time blocks, growth

models, natural mortality (M) and steepness (h). Along with the commonly used diagnostic tools

in previous assessments, additional diagnostic tools are applied to the diagnostic model including

age structured production models and catch curve analysis.

From the extensive sensitivity analysis, it was determined that the key assumptions influencing

uncertainty in management quantities were the M and h values. The uncertainty ensemble was

therefore based on capturing the uncertainty in the average M for the Lorenzen M -at-age and

steepness. In contrast to the 2021 assessment, size composition data weighting is not included

in the uncertainty characterisation due to the use of Francis weighting in 2024. The new growth

estimation used the CAAL data, fixed L1, and the estimation of offsets to the VB curve for ages
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2, 3 and 4 years to better represent the almost linear growth across the juvenile age classes. This

approach estimated growth that was consistent with the three annual size modes in the NZ troll

data and the CAAL data, which could not be achieved satisfactorily with the standard VB model.

A key improvement to the uncertainty characterisation was the implementation of a Monte Carlo

ensemble approach to incorporate the uncertainty in M and h. The method involved constructing

prior distributions for average M and h and drawing independent replicates from these priors.

One hundred pairs of average M and h were chosen to construct the uncertainty ensemble of 100

models. These models were then assessed for retention in the ensemble based on convergence and

data fit criteria. All models were ultimately retained. Estimation uncertainty for the key manage-

ment quantities for each of the 100 models in the ensemble was incorporated into the probability

distributions and statistics for those quantities.

Based on the ensemble of models, the general conclusions of this assessment are as follows:

• Consistent with the findings of the previous south Pacific albacore assessment (Castillo Jordan

et al., 2021), the spawning biomass shows a sharp decline from the start of the model period

until the mid-1970s after which it stabilises. The stock status, as indicated by the spawning

biomass depletion, shows a more gradual long-term decline from the start of the model period.

• Although estimates for recent years of stock assessments have higher uncertainty and should

be interpreted with caution, the dip in spawning biomass depletion that was a focus in the

last assessment is moderated in the new assessment, and there are recent signs that the overall

stock status has improved.

• Fishing mortality on adults continues to increase, while fishing mortality on juveniles remains

low. Fishing mortality has increased sharply since 2010 in the EPO as the longline catches

have increased, but has stabilised in the WCPFC-CA over a similar time period.

• Recruitment shows similar interannual variability across years, with an increasing trend from

the late 1990s becoming more evident in the estimates.

• Overall, the median depletion from the model ensemble with estimation uncertainty for the

recent period (2019-2022; SB recent/SBF=0) is 0.48 (80 percentile range 0.36–0.62, full range

0.23–0.77).

• The median recent fishing mortality from the model ensemble with estimation uncertainty is

below the level for achieving MSY (median Frecent/FMSY = 0.18, 80 percentile range 0.06–0.44,

full range 0.03–1.00).

• The median recent spawning biomass from the model ensemble with estimation uncertainty

is well above the spawning biomass to achieve MSY (median SB recent/SBMSY = 3.02, 80

percentile range 2.04–5.21, full range 1.20–8.96).

• All models in the uncertainty ensemble had SB recent/SBF=0 > 0.2, the Limit Reference Point
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for WCPFC key tuna stocks.

• For each model in the ensemble, the ratio of the SB recent/SBF=0 to the interim Target Ref-

erence Point (iTRP) estimated for that model was calculated. Across the 100 models the

median ratio of SB recent/SBF=0:iTRP was 0.952, ranging from 0.899 to 1.016. Therefore, the

recent stock status is close to the iTRP (estimated to be a median depletion of 0.50 across

the model ensemble).

These results are broadly consistent with the previous 2021 stock assessment and suggest that

the albacore stock across the South Pacific is not overfished nor undergoing overfishing. The

recent stock status is around the iTRP.

2 Introduction

This paper presents the 2024 stock assessment of South Pacific albacore tuna (Thunnus alalunga).

As requested by the Scientific Committee (SC) of the Western and Central Pacific Fisheries Com-

mission (WCPFC), the 2021 assessment covered the entire South Pacific Figure 1. This assessment

continues that coverage to include the albacore fisheries from the equator to 50◦S in the Pacific

Ocean, incorporating the convention areas of the WCPFC and the Inter American Tropical Tuna

Commission (IATTC) (Figure 2). Since 1999, South Pacific albacore has been assessed regularly for

the WCPFC convention area (Castillo Jordan et al., 2021; Harley et al., 2015; Hoyle and Davies,

2009; Hoyle et al., 2012; Tremblay-Boyer et al., 2018), with two assessments that covered the entire

South Pacific (Castillo Jordan et al., 2021; Hoyle et al., 2012). The 2021 assessment has been the

only previous assessment of albacore in the South Pacific with a separate model region for the south

eastern Pacific Ocean (EPO) under the management of the IATTC. The 2012 assessment conducted

by Hoyle et al. (2012) included the EPO as a fishery stratum in a single region areas-as-fleets model.

In the 2024 assessment, a simplified two region structure is employed with one region defined as

the WCPFC Convention Area (WCPFC-CA) and the second region defined as the EPO. Within

each region, an areas-as-fleets approach was applied. As was done in 2021, the 2024 assessment was

accomplished via collaboration between scientists from the Pacific Community (SPC, the Scientific

Services Provider for the WCPFC) and the IATTC.

The 2024 assessment continues the development of stock assessment models for South Pacific alba-

core, facilitated by the ongoing development of the statistical stock assessment software, known as

MULTIFAN-CL 4 (Fournier et al., 1998; Hampton and Fournier, 2001; Kleiber et al., 2019), that

is routinely used by SPC for assessments of tuna and tuna-like species. Each new assessment can

involve updates to fishery input data, implementation of new features in the MULTIFAN-CL mod-

elling software, and consideration of new information on biology, population structure and other

population vital rates. These changes are an important part of efforts to improve the modelling

4www.multifan-cl.org
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procedures to more accurately estimate stock status, fishing impacts, biological and population pro-

cesses, and the characterization of uncertainty. However, they can result in changes to the estimated

status of the stock and fishing impacts from previous assessments. It is important to recognise that

each new assessment represents a new estimation of the historical population dynamics, impacts of

fishing and stock status. Advice from the SC on previous assessments, the annual pre-assessment

workshops (PAW; Hamer (2024)), emerging scientific consensus on “good practice” (e.g., the CA-

PAM “Tuna Stock Assessment Good Practice Workshop” held in Wellington, New Zealand in

March 2023 CAPAM Tuna Good Practices) and the recommendations of the 2022 peer review of

the yellowfin tuna assessment (Punt et al., 2023) that are also appropriate to south Pacific albacore

guided this ongoing process.

The objectives of this assessment were to estimate population parameters, such as time series

of recruitment, biomass, biomass depletion and fishing mortality, which indicated the stock sta-

tus and impacts of fishing. We summarized the stock status in terms of reference points (both

limit and interim target reference points) adopted by the WCPFC for routine reporting in tuna

assessments. The methodology used for the assessment was based on the general approach of in-

tegrated modelling (Fournier and Archibald, 1982), which was carried out using MULTIFAN-CL,

and implemented a size-based, age- and spatially-structured population model. Model parameters

were estimated by maximizing an objective function, consisting of both likelihood (data) and prior

information components (penalties). The assessment used an ensemble approach to estimating un-

certainty for the basis for management advice. The ensemble was structured to incorporate key

sources of uncertainty identified by a series of sensitivity tests along with estimation uncertainty

for the key management quantities.

This assessment report should be read in conjunction with several supporting papers, listed below:

• Background analysis and data inputs for the 2024 South Pacific albacore tuna stock assess-

ment (Teears et al., 2024)

• Update to length-weight parameters (Macdonald et al., 2024b)

• Report from the SPC Pre-assessment Workshop - March 2024 (Hamer, 2024)

• Analysis of longline size frequency data for the 2024 South Pacific albacore and WCPO striped

marlin assessments (Potts et al., 2024)

• Spatial structure, movement, and regional connectivity of South Pacific albacore tuna stocks

in the WCPFC-CA and EPO (Macdonald et al., 2024a; Senina et al., 2020)
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3 Background

3.1 Stock structure

Albacore are distributed globally with separate stocks in the Indian, Atlantic and Pacific Oceans

(Nikolic et al., 2017, 2020). In the Pacific Ocean, albacore are thought to comprise discrete stocks

north and south of the equator (Nikolic et al., 2017). In the South Pacific, the stock structure

is not fully resolved. Tag recapture data for releases in the southern region of the WCPFC-CA

show a high level of latitudinal mixing, and provide some evidence of individual movements from

the WCPFC-CA to the southern EPO (Figure 4). The longest period at liberty for a recaptured

tagged albacore in the South Pacific is 11 years, and for the North Pacific 15 years (ISC Albacore

Working Group, 2011). Tagging mortality using either trolling or longline as the capture method is

thought to be high in albacore and, as a result, there have been limited tagging programs for this

species. Therefore, albacore is not an ongoing focus of tuna tagging in the South Pacific. The earlier

tagging programmes that targeted albacore in the South Pacific occurred in the early 1990s and

again in 2009-2011. For both these programmes the tag releases were all in the southern temperate

latitudes (south of 30°S), with most releases being immature fish (<80cm FL), and most recapture

displacements occurring in a northerly direction (Figure 4). There have been no tagging studies

in the southern EPO. Tagging with PSATs (pop-up satellite tags) in the south western Pacific

showed the capacity for large movements, with one individual moving more than 1000 km in 50

days (Williams et al., 2015).

The south-north mixing, and the prevalence of smaller albacore in the southern region of the

WCPFC-CA suggests a southern juvenile feeding/nursery area, south of 25°S, with increased

northerly movements and residency with age (Farley et al., 2014; Nikolic et al., 2017). In the

WCPFC-CA, spawning and larval stages mostly occur where surface water temperatures (SST)

are >24°C, and typically north of 25°S (Farley et al., 2014; Nikolic et al., 2017). In the EPO, size

composition data also show a pattern of smaller juveniles occurring where SST is <24°C, typically
closer to South America (see appendix E in Vidal et al. (2021); Potts et al. (2024)). Although

spawning areas in the EPO are not documented, similar to the WCPFC-CA, larger fish appear

to be more abundant in catches where SST is >24°C (Vidal et al., 2021). The level of mixing be-

tween the WCPFC and IATTC convention areas is poorly known, but based on the results of the

high-resolution spatial model SEAPODYM (Senina et al., 2020) appears to be limited. .

Significant spatial variation in growth and observed length-at-age with longitude has been observed,

which suggests a more complex spatial structure with longitude (Williams et al., 2012). Otolith

chemistry studies have suggested that fish caught near French Polynesia in the central South Pacific

originated from a separate larval source than fish caught further west (Macdonald et al., 2013).

Similarly, for five sample groups from the western, central and southern Pacific, Anderson et al.

(2019); Macdonald et al. (2024a) provided evidence of population structuring at adaptive loci,

particularly a differentiation of samples from French Polynesia. Recent work by Macdonald et al.
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(2024a) found that the populations around French Polynesia are not mixing extensively with the

populations around New Caledonia. This is consistent with the EPO region being treated as a

separate model region with low mixing with the WCPO. Further studies are needed to resolve the

level of mixing between the WCPFC-CA and EPO regions to better inform assessments at the scale

of the entire South Pacific.

Longline catch data indicate that adult albacore appear to migrate seasonally between tropical and

sub-tropical waters (Langley, 2004; Nikolic et al., 2017). These data suggest that albacore in the

southern hemisphere are most abundant in sub-equatorial waters during December-January and

May-July, indicating that albacore migrate south during early summer, and north during winter.

This movement tends to correspond with the seasonal shift in the 23–28°C sea surface temperature

isotherm.

Understanding the potential extent of mixing across the South Pacific is also informed by recent

developments in quantitative modelling of the spatial dynamics of South Pacific albacore across

life history stages using the Spatial Ecosystem and Population Dynamics Model (SEAPODYM)

(Lehodey et al., 2015; Senina et al., 2020). The SEAPODYMmodelling framework is highly spatially

resolved and provides predictions of spatio-temporal exchange of biomass by age class (by months),

forced by environmental/habitat variables. SEAPODYM can potentially be used to predict the

exchange rates among model regions to inform transfer rates in the stock assessment model. The

application of SEAPODYM outputs to inform recruitment distribution and movement between

model regions was discussed at the Pre-assessment Workshop (Hamer, 2024) and was utilized to

inform recruitment distribution and movement between the WCPO and EPO model regions in the

2024 assessment.

3.2 Vertical movement behaviour

An important aspect of albacore behaviour for understanding their ecology and how they interact

with fishing gear is vertical movement. For example, vessels that target albacore tuna at warmer

latitudes typically set longlines at depths between 100 and 400m (Bigelow et al., 2006), while

those at cooler latitudes typically set at shallower depths of around 100 m, and the troll fishery

targeting smaller fish around New Zealand (NZ) typically fishes at <10m depth (Williams et al.,

2015). Williams et al. (2015) used PSAT tags to study vertical movement behaviour of individual

albacore tagged near New Caledonia, Tonga and NZ (tagged fish were 89–107cm fork length, FL).

They found that for the tropical latitudes (i.e., New Caledonia and Tonga), albacore tuna showed a

distinct diurnal pattern in vertical habitat use, occupying shallower, warmer waters above the mixed

layer depth (MLD) at night (e.g., <150m deep), and deeper, cooler waters below the MLD during

the day (e.g., 200–300m deep). However, there was little evidence of a diurnal pattern of vertical

migration behaviour in albacore at temperate latitudes (NZ), with fish staying in shallow waters

above the MLD (e.g., <150m deep) almost all of the time. This latitudinal variation in vertical

migration was reflected in diets with the surface-dwelling fish near NZ consuming a low diversity
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of prey consisting primarily of crustaceans, but albacore in the more tropical regions consuming

primarily fish, with significantly more deep-water species and a greater diversity of prey species

(Matsubara et al., 2024).

3.3 Biology

3.3.1 Reproductive biology

Migratory behaviours in the South Pacific have not yet been well defined however, adults are fre-

quently caught above 30◦S where albacore have a higher mean length (Potts et al., 2024). Albacore

spawn in these tropical and sub-tropical waters between 5-25◦S during the austral summer with

peak spawning occurring from October through December (Nikolic et al., 2017; Farley et al., 2014).

In the South Pacific, Farley et al. (2013b) and Farley et al. (2014) estimated ages at 50% and 100%

maturity of 4.5 and 7 years respectively. The minimum reported size of mature females was 74cm

FL with the length at 50% maturity of approximately 85cm FL, and the length at 100% maturity

was 94cm FL. Juveniles are caught in surface fisheries in NZ coastal waters, and in the vicinity

of the sub-tropical convergence zone (STCZ, at about 40◦S and 130◦W) in the South Pacific, at

about one year old and at a size of 45–50cm FL (Hoyle and Davies, 2009). The troll fisheries in

this southern region typically catch albacore aged 1–3 yr.

3.3.2 Growth

Daily otolith growth increments indicate that initial growth is rapid (Renck et al., 2014; Farley

et al., 2021), with albacore reaching 45–50cm FL in their first year (Williams et al., 2012; Farley

et al., 2021). Subsequent growth is slower, at approximately 12cm per year from 2 to 4 years age,

and declining thereafter (Williams et al., 2012; Farley et al., 2021). Maximum recorded length is

about 120cm FL and sex-combined von Bertalanffy (VB) growth models for both the South and

North Pacific albacore predict an L∞ of around 105cm (Williams et al., 2012; Farley et al., 2013a,

2014). Maximum age is around 15 years for males and females (Williams et al., 2012; Farley et al.,

2021).

Recent analyses of age-at-length from otolith data have identified important patterns in South

Pacific albacore growth (Williams et al., 2012; Farley et al., 2021). Males grow to larger sizes

than females, and their lengths-at-age begin to diverge above 85cm FL, when they reach maturity.

Lengths-at-age of both sexes also appear to vary with longitude, with growth rates and maximum

sizes increasing toward the east. In the NZ troll fishery, there are clear modes separated by about

10cm in the length frequency data for juveniles between 50 and 80cm. These modes are likely to

represent annual age classes, based on the seasonal spawning cycle peaking in January (Farley

et al., 2014). Farley et al. (2021) re-analysed otoliths from Farley et al. (2013b) and applied a new

decimal age algorithm (developed for WCPFC-CA Pacific bigeye and yellowfin) to obtain updated

decimal age estimates for albacore. The updated growth estimates based on these data were not

used in the 2024 assessment however, the otolith integer ages were incorporated in the assessment
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to inform internal growth estimation.

3.3.3 Natural mortality

The instantaneous natural mortality (M) rate is thought to be between 0.2 and 0.5 per year,

with significant numbers of fish living 10 years or more. The default M of 0.4 used in previous

assessments was updated in 2015 to 0.3 to match that used in other stocks, including the North

Pacific. In 2016, a meta-analysis of mortality for the North Pacific stock indicated M should be

closer to 0.39, for albacore age 6 and above (Kinney and Teo, 2016). The value of M is an important

biological uncertainty that is treated in detail in the current assessment.

3.4 Fisheries

Distant-water longline fleets from Japan, Korea, Chinese Taipei, and China, and the domestic

longline fleets from a number of Pacific Island Countries and Territories (PICTs), catch albacore

over a large area of the South Pacific (Figure 5, Figure 6). Most of the catch is taken by longline.

Significant catches began in 1954, when Japan began to expand the range of their tuna fleets post

World War 2. Smaller albacore have been targeted by a troll fishery around NZ since the 1960s,

the United States troll fishery (with Canadian-flagged vessels also participating in some years)

operating further east, and a small fishery occurring along the east coast of Australia. Catches

from the troll fishery are relatively small, generally less than 10,000 mt per year. The Chinese

Taipei fleet, in particular, has targeted albacore consistently since the 1960s (Figure 6).

Since the mid-1990s, longline catch and effort (Figure 7) has increased considerably with the de-

velopment and expansion of longline fisheries targeting albacore in several Pacific Island EEZs,

notably those of American Samoa, Cook Islands, Fiji, French Polynesia, New Caledonia, Samoa,

Solomon Islands, Tonga, and Vanuatu. Driftnet vessels from Japan, Korea, and Chinese Taipei

also targeted albacore in the central Tasman Sea and in the central Pacific near the sub-tropical

convergence zone for a short period during the 1980s and early 1990s (Figure 5). Driftnet catch

reached approximately 22,000 mt in 1989, but rapidly declined to zero following a United Nations

moratorium on industrial-scale drift-netting.

The areas of highest albacore catch rates have typically been in waters between 10–35°S in the

WCPFC-CA. The spatial pattern of CPUE has been relatively consistent over time, although

overall CPUE has reduced (Figure 7, Figure 8).

Longline fisheries operate throughout the year, although there is a strong seasonal trend in the

catch distribution by latitude, with the fishery operating in southern latitudes (south of 35◦S)

during late summer and autumn, moving northwards during winter. Surface troll fisheries around

NZ are highly seasonal, occurring mainly from December-April.
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4 Data compilation

Data used in this South Pacific albacore assessment consist of fishery-specific catch, effort, length-

frequency (LF), and age-length data. Details of these data and their stratification are described

below. In the 2021 assessment, tag release-recapture data were included however, these data were

not utilized in the current assessment due to large uncertainties around tagging mortality and tag

reporting rates. A summary of the available data is in Table 1.

4.1 Spatial stratification

The 2021 assessment was the first attempt at a spatially structured assessment of albacore across

the entire South Pacific encompassing the southern hemisphere area of the WCPFC-CA and the

EPO under the management jurisdictions of the WCPFC and the IATTC (Castillo Jordan et al.,

2021). The 2012 assessment (Hoyle et al., 2012) considered the entire South Pacific as a single

region model with the fisheries stratified into six areas (i.e., an areas-as-fleets approach). The 2015

assessment (Harley et al., 2015) introduced a fully spatially structured model for the WCPFC-CA

south of the equator with eight regions, however, there were difficulties with the complexity of this

structure and the spatial structure was therefore simplified to five regions for the 2018 assessment

focussing on the WCPFC-CA (Tremblay-Boyer et al., 2018).

The 2021 spatial structure was defined by four regions; three regions in the WCPFC-CA and one

region in the EPO with sub-regions to delineate areas of overlap between the WCPFC-CA and

EPO (Figure 1). An areas-as-fleets approach was applied in the current assessment. This neces-

sitated changes to the spatial structure as well as the fishery definitions for both the extraction

and index fisheries. To develop the spatial structure and fishery definitions for the current assess-

ment a range of information was considered including: the previous assessment structure, tagging

data, size composition data, genetics research (Anderson et al., 2019; Macdonald et al., 2024a),

review of biology, fisheries, and management (Nikolic et al., 2017), modelling of spatial dynamics

(SEAPODYM; Senina et al. (2020)), fishery structural regression tree analyses (Potts et al., 2024;

Teears et al., 2024), fishery coverage by fleets/gears; and management jurisdictional boundaries.

The spatial boundaries for the current assessment model span from 0◦ to 50◦S and from 140◦E to

the western coast of South America (approximately 70◦W). The regional structure for the WCPFC-

CA includes a single region and the overlap between the WCPO and the EPO was included as part

of the WCPFC-CA (Figure 2). The latitudinal boundaries for fisheries defintions in the WCPFC-

CA and EPO were considered on the basis of biological hypotheses of seasonal movement, spatial

structuring of the population by age, and patterns of fishing activity.

4.2 Temporal stratification

The time period covered by this assessment was the first quarter of 1954 to the 3rd quarter of

2022. The 4th quarter of 2022 was not included because the definition of “year” in the population
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dynamics is Oct–Sep, in line with the assumption of recruitment occurring in Oct. Within this

overall period, data were compiled by quarter for longline and driftnet fisheries and by month for

troll fisheries. Expansion of the time-series were a deviation from the 2021 assessment and better

met the assumption of an unexploited population at the beginning of the modelling period.

4.3 Fisheries definitions

MULTIFAN-CL requires all catch and effort to be allocated to fisheries. Ideally, the defined fisheries

have selectivity and catchability characteristics that do not vary greatly over time. For most tuna

assessments, fisheries can be defined according to gear type, fishing method, flag, and region or

sub-region.

The simplification of the spatial regions and the application of an areas-as-fleets approach, resulted

in significant changes to the fishery definitions applied in the 2021 assessment. Within the two

model regions, fisheries areas were defined as a six area fleet structure to define the WCPFC-CA

fisheries and a three area fleet structure to define the EPO fisheries (Figure 3).

The boundary at 10◦S in the WCPFC-CA was established to facilitate the exploration of manage-

ment options (i.e., stock projections that apply different fishery management options) and also to

ensure compatibility with future mixed fishery strategies in MSE modelling. Similar to the approach

taken in 2021, the fleets associated with each gear sector and each region were further disaggregated

based on vessel flag to improve the model fit to catch and size composition data due to differing

selectivities. Flags5 were grouped into three main groups: distant water fishing nations (DWFNs),

Pacific island countries and territories (PICTs) and Australia and NZ (AU/NZ).

4.3.1 Extraction fisheries

The fishery definitions for the 2024 assessment are detailed in Table 2. In summary there are 17

extraction fisheries, that include groupings of longline fisheries for the DWFNs, PICTs, and AU/NZ,

along with two troll fisheries and one driftnet fishery in the WCPFC-CA and one troll fishery in

the EPO. The extraction fisheries are dominated by the longline sector (13 out of 17), as it is the

dominant gear sector for South Pacific albacore. The extraction fisheries are stratified according to

the model regions and spatial sub-region in Figure 3, resulting in 13 fisheries for the WCPFC-CA

and 4 fisheries for the EPO (IATTC) region.

4.4 Catch-conditioned approach

In previous MULTIFAN-CL assessments of albacore, catch was predicted by the model (termed a

“catch-errors” method) with observation error allowed, and the standard deviation of the log-catch

deviates assumed to be very small (equivalent to a CV of 0.002). This produced accurate predictions

of observed catches and therefore only a small contribution of the catch to the overall objective

5Flags defined as where flag of chartered vessels is considered to be that of the chartering nation, which is consistent
with the attribution of catch histories under WCPFC management measures
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function. However, the cost of treating the catch in this way was that effort deviation coefficients

had to be estimated as model parameters for each catch observation. While these parameters

were constrained by penalties and estimation was feasible, it resulted in very large numbers of

parameters needing to be estimated by the function minimiser with many of these being effort

deviation coefficients and parameters relating to catchability.

In order to reduce the complexity and number of parameters in the estimation, the “catch-conditioned”

approach was developed (Davies et al., 2022) and has been previously applied in the most recent

skipjack, yellowfin, and bigeye assessments (Castillo Jordan et al., 2022; Day et al., 2023; Mag-

nusson et al., 2023). The catch-conditioned approach allows for the exact solution of the catch

equation for fishing mortality by using a Newton-Raphson sub-iterative procedure. The most sig-

nificant outcome of this method is the removal of the effort deviation coefficients and catchability

parameters from the estimation procedure. This improves convergence diagnostics, in particular

the achievement of positive definite Hessian matrices (an important convergence diagnostic) due

to the simplification of the variance-covariance matrix to one with significantly fewer parameters.

This approach also reduces the run times for estimation and model convergence, allowing for more

exploration of various model configurations. Additionally, effort data no longer need to be included

but can be input for the purpose of estimating the fishing mortality and effort relationship (via

regression) for making stock projections.

4.5 Catch data

Catch data were compiled according to the fisheries defined in Table 2. See Appendix 1: Catch and

length frequency data summaries by fishery in Teears et al. (2024) for detailed plots. All catches

were expressed in numbers of fish, with the exception of the troll and driftnet fisheries, where

catches were expressed in weight (metric tonnes). As mentioned in Catch-conditioned approach,

effort data are not a necessary input using the catch-conditioned approach and were not included

in the MULTIFAN-CL input summary.

Annual catches by flag for the South Pacific, and the WCPFC-CA and EPO regions are provided

in Figure 6 and historically by gear across model regions in Figure 5. Catch for the entire South

Pacific has generally been between 80,000–100,000 mt since 2009, after an increasing trend from

1990. The majority of the catch has always been from the WCPFC-CA, although the catch from

the EPO has been increasing since 2000, most notably since 2010. Catches in the EPO peaked at

slightly above 20,000mt in 2014, largely due to increased catches by the Chinese fleet since 2010.

The Pacific-wide catch is almost all taken by longline, except for the troll catches primarily around

NZ (Figure 5). Driftnet catches only occurred over a few years in the late 1980s and early 1990s.

Most of the recent catch and effort has occurred in the area almost exclusively comprised of EEZs

between 10-25◦S in the WCPFC-CA (Figure 7). Over the last two decades, catch and effort has

increased in the south-central Pacific extending into the overlap and EPO region
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4.5.1 CPUE

Given the dynamic and patchy effort of longline fleets in the South Pacific over time, there are

distinct advantages to developing index fisheries from a combined-fleets dataset. This makes max-

imum use of the fully integrated, multi-fleet standardised CPUE analyses by providing the best

possible spatial and temporal coverage for the indices of relative abundance in the assessment, and

avoids assigning the multi-fleet standardised CPUE time series to only one fleet component within

the assessment. The multi-fleet regional abundance indices were calculated using the sdmTMB

package for implementing spatial delta-generalized linear mixed models (Anderson et al., 2022) and

is discussed further below and in the supporting paper by Teears et al. (2024).

We defined two index fisheries for the WCPFC-CA and one index fishery for the EPO for which

catchability was assumed constant across years. The index fisheries in the WCPFC-CA are char-

acterized by the longline fishery from 0◦–25◦S and the NZ troll fishery. The index fishery in the

EPO was characterized by the longline fishery over the full region 2. The effort for each time

step was adjusted such that the original standardised CPUE from the supporting analysis (Teears

et al., 2024) was preserved. However, a change from the previous assessment was the application of

time varying CVs for the index fisheries. This addresses the concern that changes in longline fleet

targeting, gear configuration and material, and fleet dynamics could result in temporal variation

in uncertainty that would be important to capture within the estimation framework. There was

considerable overlap in the fleet composition for the longline index fisheries, but there were also

some differences. Data for each of the longline index fisheries spanned the full time series, 1954-2022

however; the NZ troll index spanned the years from 1992-2022 (Neubauer and Hill-Moana, 2024).

In the previous two assessments, indices of relative abundance based on longline data were developed

using a spatio-temporal modelling approach implemented in the VAST R package (Thorson et al.,

2015). The current assessment uses a similar spatio-temporal modelling approach implemented in

the sdmTMB R package (Anderson et al., 2022) as was done in 2023 for the estimation of bigeye and

yellowfin tuna (Teears et al., 2023). The sdmTMB geostatistical software was selected as it has been

developed to be computationally efficient, flexible, and user-friendly with online community support

(Anderson et al., 2022) and thus, represents a reasonable alternative for improving reproducibility

and efficiency. The modelling process is described in detail in Teears et al. (2024).

The sdmTMB framework was used to implement a spatio-temporal delta generalized linear mixed

model (GLMM), from which area-weighted abundance indices were generated after “standardizing

out” the influence of the catchability covariates. The modelling approach explicitly addresses the

spatial structure in the response variable, that is, the fact that observations closer in space are more

likely to be similar. This allows the spatial autocorrelation to be accounted for, which increases the

precision in estimates and in some instances makes it easier to identify a relationship between the

response and candidate explanatory variables.

In the 2021 assessment, the CPUE standardization model used targeting cluster as a catchabil-
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ity covariate, which was derived using longline catch species composition (i.e., yellowfin, bigeye,

albacore, and other species) and hooks between floats (HBF). This approach follows the assump-

tion that changes in species‘ composition of longline sets represent changes in targeting behaviour.

However, species composition may be confounded with changes in abundance of each species. Ad-

ditionally, vessel flag was predicted to be an important covariate as there can be fleet effects and

differences in fishing strategies employed. Therefore, the final model used to generate the CPUE

indices included HBF in place of targeting cluster and vessel flag as catchability covariates. Testing

of standardization models with HBF gave similar results to those with targeting cluster.

In the WCPFC-CA, separate indices were developed (including all flags) in the northern (north of

25◦S) and southern (south of 25◦S) areas of the region to index adults and juveniles, respectively.

In the southern area, NZ troll fishery CPUE data were standardised (along with corresponding size

compositions) to index relative abundance (Neubauer and Hill-Moana, 2024). In the northern area,

an annual index was developed that included HBF, flag, and season (i.e., month) as a cyclic spline;

all of which were treated as catchability covariates. Season was considered a catchability covariate

based on the seasonal dynamics of the fishery driven by fluctuating local availability and market

demand (R. Dunham, Tri Marine Group, personal communication, March 13, 2024) for the main

longline species (i.e., albacore, bigeye, swordfish, and yellowfin).

In the EPO, a single index fishery was developed for the whole region. In the 2021 assessment, only

the Japanese data were included in the standardization of the EPO index. However, in addition to

changes in apparent targeting among the Japanese fleet over time, there were multiple flags over

more recent years (≥2000; e.g. China and Chinese-Taipei) that indicated differing signals in relative

abundance (see Teears et al. (2024) for further details) which led to the decision to include other

flags within the analysis as well.

The MULTIFAN-CL model was configured to allow for the time-varying nature of the CVs such

that the fit to the CPUE data was given greater influence in the likelihood in time-steps with more

precise estimates of relative abundance. However, in contrast to the previous assessment, regional

weights were not informed by the CPUE standardization model, which were input as mean-centred

in the data input file as it was considered an improvement to allow the recruitment distribution to

provide information on regional scaling since these were fixed at estimates from the SEAPODYM

model.

4.6 Size compositions and length data treatment

Available LF data for each of the defined fisheries were compiled into 50, 2-cm size classes (30–

128cm). This was a change from the 2021 assessment that used 100, 1-cm size classes (30–129cm). An

investigation into the length composition data indicated frequent misreporting of bin size resolution

in data submissions. Briefly, there were an inordinate number of frequencies in even numbered bins,

odd numbered bins, or, to a much lesser extent, length bins that were multiples of five. Subsequently,

efforts to identify and remove “contaminated” length compositions at the trip level were performed
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to improve the quality of the data while preserving as much of the “uncontaminated” data as

possible (see Teears et al. 2024 for further details). However, the change from 1-cm to 2-cm length

bins ultimately allowed more data to be included, particularly for the longline fisheries. Data were

collected from a number of sources and can be summarized as follows.

4.6.1 Troll and other fisheries

NZ domestic troll size composition data (sub-region 1-e) were collected from port sampling pro-

grammes conducted by the NZ Ministry of Fisheries and, more recently, the NZ National Institute

of Water and Atmospheric Research (NIWA).

LF data from troll fishing operations in the STCZ were collected and compiled through the Albacore

Research Tagging Project (1991-1992) and by port sampling programmes in Levuka, Fiji; Pago

Pago, American Samoa; and Papeete, French Polynesia; and, during the 1990–1991 and 1991–1992

seasons, by scientific observers.

Driftnet data were provided by the National Research Institute of Far Seas Fisheries (NRIFSF)

for Japanese driftnet vessels. Data from Japanese vessels were also collected by observers and by

port sampling in Nouméa, New Caledonia. It was assumed that these data are representative of all

driftnet activity.

4.7 Re-weighting size compositions

Statistical correction of size composition data is required as length and weight samples are often

collected unevenly in space and time. The methods for re-weighting of the size composition data

are detailed in Teears et al. (2024) and are based on those developed by McKechnie (2014) for

longline extraction fisheries, and Tremblay-Boyer et al. (2018) for longline index fisheries. For the

extraction fisheries, re-weighting of composition data is required to ensure that sampling biases in

space, time, and the fleets providing data, are minimised so that size composition data better reflect

the composition of the overall removals. Strata-specific size data samples were therefore re-weighted

by catch for the extraction fisheries. For the index fisheries, re-weighting of composition data is

required to ensure that the size composition of the abundance indices reflect the size component of

the population that is being sampled by the index fisheries through space and time. Strata-specific

samples are therefore re-weighted by relative abundance using the CPUE. Given that the same

composition data were used for both the extraction and index fisheries, the observed number of

size-frequency samples input into the assessment was divided by two for both the extraction and

index fisheries where these are the same fisheries.

4.8 Age-at-length

As in the previous assessment, age-length data from otolith readings were utilized from the ageing

study of South Pacific albacore by Farley et al. (2021). The work used the previously collected and
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prepared otoliths (collected in 2009-2010; Farley et al. 2013a) with the addition of new data on daily

ages from 60 small fish (43–47cm FL) sampled from NZ waters and the re-reading and measuring of

increment zones on 600 previously collected ‘high confidence’ otoliths from the WCPFC-CA. The

reanalysis applied an age algorithm (developed for WCPFC-CA bigeye and yellowfin; Farley et al.

2020) to obtain updated decimal age estimates for albacore that were applied in the assessment.

Age-at-length were input as conditional-ages-at-length as this method relaxes the assumption that

the data were representative of the entire age range and as recommended by the 2022 peer review

of the yellowfin assessment (Punt et al., 2023). In all, 654 age-at-length samples were aggregated

into 33 fishery and sampling year/quarter strata.

5 Model description

5.1 General characteristics

The model comprises of several components, (i) the dynamics of the fish population; (ii) the fishery

dynamics; (iii) the observation models for the data; (iv) the parameter estimation procedure; (v) the

uncertainty estimation procedure (both parameter and model uncertainty); and (vi) stock assess-

ment interpretations. Detailed technical descriptions of components (i)–(iv) are given in Hampton

and Fournier (2001) and Kleiber et al. (2019). In addition, we describe the procedures followed for

estimating the parameters of the model, the uncertainty, and the way in which stock assessment

conclusions are drawn using a series of reference points. In this section, model settings primarily

refer to those used within the “diagnostic case” model. Some of these settings are later varied in

sensitivity analyses.

5.2 Population dynamics

The model partitions the population into two spatial regions (under the 2024 regional structure)

and 12 annual age-classes. The last age-class comprises a “plus-group” in which mortality and

other characteristics are assumed to be constant. The population is “monitored” in the model at

annual time steps, extending through a time window of 1954–2022. The main population dynamics

processes are as follows.

5.2.1 Temporal structure

The estimation model was configured to estimate population dynamics on an annual basis with

corresponding annual recruitment. However, catches were extracted from the population at specified

quarters or months, and within-year natural mortality applied to correctly implement the catch

equations. The beginning of the year was initialized at week 37, which corresponds to the mid-

point of the third quarter. This was based on a mean length of the first age class of ∼45cm (i.e.,

age 3 quarters) and a spawning season mid-point in January (Farley et al., 2013b). This temporal
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structure was a simplification of the 2021 assessment, which was at a quarterly time-step beginning

in the first week of the calendar year.

5.2.2 Recruitment

Recruitment was defined as the appearance of age-class 1 (year) fish in the population. In contrast

to the tropical tunas, spawning of South Pacific albacore occurs during the Austral summer. It was

assumed that recruitment occurs instantaneously at the beginning of each model year (i.e., week

37 of the calendar year). Spatially aggregated (over all model regions) recruitment was assumed

to have a weak relationship with spawning potential via a Beverton and Holt stock-recruitment

relationship (SRR) with a fixed value of steepness (h). The h parameter is defined as the ratio of

the equilibrium recruitment produced by 20% of the equilibrium unexploited spawning potential

to that produced by the equilibrium unexploited spawning potential (Francis, 1992; Harley, 2011).

Typically, fisheries data are not very informative for the h parameter in the SRR (ISSF, 2011). In

the previous assessment, values of 0.65, 0.80 and 0.95 were included in the uncertainty grid. In the

current assessment, a Monte Carlo model ensemble approach was adopted where h values (along

with average M -at-age) were sampled from an assumed prior distribution (see Monte–Carlo model

ensemble uncertainty estimation methods for further details).

The SRR was incorporated mainly so that yield analyses, equilibrium– and depletion–based refer-

ence points and population projections could be undertaken for stock assessment purposes. As was

done in the previous assessment, a penalty (equivalent to a CV of 0.71) was applied to recruitment

deviations from the SRR so that it would have a minor effect on the recruitment estimates and

other model estimates (Hampton and Fournier, 2001), but still allow the estimation of asymptotic

recruitment. This approach was recommended by the review of the 2011 bigeye stock assessment

(Ianelli et al., 2012). Recruitment deviations were estimated on the log scale for the full model

period, excluding the terminal annual recruitment (which was not freely estimated and was set

equal to the arithmetic mean of the estimated recruitments).

The regional recruitment distribution was configured to use fixed proportions based on the average

distribution obtained from the SEAPODYM model (Senina et al., 2020). The distribution was

assumed to be time invariant at 0.819 and 0.181 in regions 1 and 2, respectively.

5.2.3 Initial population

The population age structure in the initial time period in each region was assumed to arise from

an equilibrium unexploited population. This assumption was consistent with the catch history

and avoids having to estimate the initial age structure, which is generally poorly determined, as

independent parameters in the model.
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5.2.4 Length-weight relationship

Since the 2005 assessment (Langley and Hampton, 2005), length-weight relationship estimates were

derived from:

WW = a ∗ FLb

where WW was whole weight, FL was fork length, a = 6.9587e−6, and b = 3.2351 as estimated

from available length-weight data collected.

A significant quantity of new length-at-weight data have become available since then and has been

analysed along with previously available data for updating the length-weight parameters as input

in the current stock assessment (Macdonald et al., 2024b). The updated length-weight parameters

are a = 1.708e−5 and b = 3.0483.

5.2.5 Growth

The standard growth assumptions applied in MULTIFAN-CL concerning age and growth are: i)

the lengths-at-age are normally distributed for each age-class; ii) the standard deviations of length

for each age-class were a log-linear function of the mean lengths-at-age; and 3) the probability

distributions of weights-at-age were a deterministic function of the lengths-at-age and the specified

weight-length relationship. These processes are assumed to be spatially and temporally invariant.

This assessment included two predominant data sources that are potentially informative regarding

growth – the length frequency data and the conditional age-at-length data. In respect of the LF data,

the NZ troll data in particular demonstrate periods of strong modal structure that almost certainly

represent annual age classes (Figure 9). We initially employed a fixed growth parameterisation

informed by an external analysis of the otolith-based length-age data (Farley et al., 2021). This

analysis indicated that a logistic model provided a superior fit to the data; however this growth

formulation is not currently available in MULTIFAN-CL. For initial model exploration, we therefore

used a VB model fitted to the same data set, providing parameter estimates of L∞ = 110.2,

k = 0.268yr1 and a0 = −1.24yr (J. Farley, pers.comm., 31/03/2021). However, we found that this

model did not provide adequate fits to the LF data, and in particular was not able to represent the

modal structure shown in Figure 9 well.

On the advice of Punt et al. (2023), we then incorporated the otolith ageing data into the assessment

model in a conditional age-at-length (CAAL) structure, as described in Conditional-age-at-length,

and estimated growth parameters internally. However, it was clear that the estimated VB model

was still not capable of adequately fitting either the LF data or the CAAL data.

We re-examined the original growth models estimated by Farley et al. (2021) and noted that the

preferred logistic model demonstrated approximately linear growth to around age 4, which is a key

departure from VB growth. Anticipating that this was responsible for the lack of fit to both the

LF and CAAL data that was problematic with the VB model, we then extended the VB model
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to include offsets from the VB growth pattern for age classes 2, 3 and 4 years. This involved the

estimation of three additional parameters, but we found that the VB-with-offsets model was able

to adequately replicate the linear growth for the young age classes and provide better fits to both

the LF data (and in particular to the NZ troll data segments showing strong modal structure)

and the CAAL data (see later results section). This growth model was therefore adopted for the

diagnostic case (and model ensemble). This resulted in a growth model with eight parameters.

After experimenting with various combinations for estimated and fixed parameters, we adopted the

following approach:

• The mean length of the first age class, L1, was fixed at 45.5cm. This value implied an age of

approximately 9 months, consistent with the assumption of recruitment occurring in October

and January being the approximate mid-point of the spawning season.

• The growth coefficient, k, and mean length of the oldest age class, L2 (age-class 12+) were

estimated in the assessment model.

• Offsets from VB growth were estimated for age classes 2, 3 and 4.

• The standard deviation of length at age is determined by two parameters, a generic standard

deviation (SD) parameter, which was estimated in the assessment model, and a parameter

describing how the SD increases with age. This parameter was fixed at a value that kept the

SD for the youngest age class to about 2.5cm, consistent with the length distribution seen in

this age class in the NZ troll LF data.

5.2.6 Movement

Movement was assumed to occur instantaneously at the beginning of each quarter via age-specific

movement probabilities that specify the proportion of fish in a given region that move to the adjacent

region. The movement probabilities were estimated from the SEAPODYMmodel (Figure 10; Senina

et al. 2020).

5.2.7 Natural mortality

CAPAM at the 2023 “Tuna Stock Assessment Good Practices Workshop” recommended applying

an age-specific pattern inM by using the inverse mean length-at-age method developed by Lorenzen

(1996). Furthermore, average M should be scaled using a maximum age (Amax) approach when

estimating M -at-age internally is not possible, as was the case with the current assessment. For

this assessment, we have adopted this approach for specifying M -at-age and have followed the

Hamel and Cope (2022) method (5.4/Amax). We applied an assumed Amax of 15 yrs based mainly

on the observations of the oldest fish in the age-at-length data set (15.16 yrs), with two other

observations >14 yrs. Furthermore, bomb radiocarbon observations from other oceans suggest an

Amax in the “mid-teens” to be appropriate for South Pacific albacore (A. Andrews, pers.comm.,

07/07/2024). An Amax of 15 yr results in an expected value for average M of 0.36. Following the
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CAPAM Workshop advice, we allowed M -at-age to be inversely proportional to mean length-at-age

following Lorenzen (1996). We assumed that the value of 0.36 could be applied as a simple average

M (M) for the mature age classes (4–12+) in the model (Hamel and Cope, 2022; Hoyle et al., 2023)

and configured the Lorenzen function to meet this assumption.

5.2.8 Reproductive potential-at-age (sexual maturity)

The reproductive potential ogive is an important component of the assessment structure as it trans-

lates model estimates of total population biomass to the relevant management quantity, spawning

biomass (SB). Reproductive output at age, which is used to derive spawning potential, attempts

to provide a measure of the relative contribution of fish at different ages to the next generation.

We specified estimates of length-specific spawning potential, which is then converted internally

within the model to an age-based vector dependent upon the growth model (Figure 11). Spawning

potential-at-length was specified as the product of sex ratio and maturity-at-length, rescaled to a

maximum of one. Sex ratio at length was obtained by fitting a spline to the observed sex-ratio from

SPC-held longline observer data, stratified by flag and 10◦ cell and weighted by longline catch to

account for uneven observer coverage amongst fleets in space. Longline observer data only covered

lengths from 70–110cm so lengths beyond this range were extrapolated to cover the stock assess-

ment range by: (1) setting sex ratio for lengths <70cm at the 70cm value and (2) assuming sex

ratio for females declined linearly from the value observed at 110cm to 0 at 130cm. The maturity

proportion at length was obtained from the weighted maturity ogives presented in Farley et al.

(2014), smoothed via a logistic curve.

5.3 Fishery dynamics

The interaction of the fisheries with the population occurs through fishing mortality. Fishing mor-

tality is assumed to be a composite of several separable processes – selectivity, which describes the

age-specific pattern of fishing mortality; catchability, which scales fishing effort to fishing mortality.

5.3.1 Selectivity

Selectivity is fishery-specific and assumed to be year-invariant. As was done in the 2021 and 2018

assessments, selectivity was based on the cubic spline interpolation technique. This is a form of

smoothing, but the number of parameters for each fishery is the number of cubic spline “nodes”

that are deemed to be sufficient to characterise the selectivity over the age range. Cubic splines

were configured with three nodes, which was sufficient to allow for reasonably complex selectivity

patterns with the exception of the longline fisheries below 25◦S in the WCPFC-CA (fisheries 8, 9,

and 10), which were configured with four nodes.

As noted in Fisheries definitions, the division between fisheries in the WCPFC-CA above and

below 10◦S was designed for the purpose of exploring management options. Subsequently, fleet-

specific selectivity for longline fisheries above and below 10◦S were grouped (i.e., fisheries 1, 2, and
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5 were grouped with fisheries 3, 4, and 6, respectively). Additionally, selectivity for troll fisheries

12 and 17 were grouped together as they were expected to share similar selectivity curves. In the

previous assessment, the index fisheries were grouped to have shared selectivity, which also carried

the assumption that differences in length frequency observations were due to differences in the

underlying size structure of the population. However, for this assessment, this assumption was

relaxed due to likely differences in targeting that were difficult to standardise out in the CPUE

model due to lack of adequate gear configuration information (see Teears et al. (2024) for more

information).

In the previous assessment, spatial structure and movement were explicitly modelled, and seasonal

changes in size composition of catches were modelled through movement. In the current assessment,

an areas-as-fleets approach was adopted within each of the WCPFC-CA and EPO regions. In order

to allow for seasonal changes in size composition of catches, we allowed selectivity to vary seasonally

for those fisheries that operated substantially throughout the year in the tropical sub-regions (1-a,

1-b, 1-c, 1-d and 2-a).

For the longline index fisheries, selectivity was configured to be non-decreasing for successively

older age-classes.

The configuration of the diagnostic case model with respect to selectivity and other model param-

eters is provided in Table 3.

5.4 Likelihood components

There are three main data components that contribute to the log-likelihood function for the current

assessment: the LF data, the conditional-age-at-length data, and the CPUE data.

5.4.1 Length-frequency

The probability distributions for the LF proportions are assumed to be approximated by log-normal

distributions, with the variance determined by the effective sample size (ESS) and the observed LF

proportion. Lower ESS values account for the fact that (i) LF samples are not truly random (because

of non-independence in the population with respect to size), and would have higher variance as a

result; and (ii) the model does not include all possible process error, resulting in further under-

estimation of variances.

In previous assessments, a down-weighting factor was arbitrarily applied to the observed sample

sizes to produce the ESS (and the down-weighting factor usually considered as an uncertainty

component in an uncertainty grid). In the current assessment, LF samples were assigned an ESS

calculated using the data-weighting method developed by Francis (2011) and referred to hereafter

as the “Francis method”. The Francis method involves calculating a multiplication factor for the

LF data for each fishery from a previous model run (with initial arbitrary ESS values) with the

aim of matching the input variance (from the observed data) to the output variance (from the
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standardised residuals). This multiplication factor is transformed into the ESS divisor values and

adjusted accordingly in the input files for each fishery. Note that the ESS weighting is performed

after the observed sample size has been capped at 1000 samples. The model is run again with the

new weightings, and the resulting output is used to recalculate the ESS values once more. This

iterative weighting process is performed multiple times if necessary until the weightings stabilize

resulting in approximately matching input and output variances for each fishery. The resulting

effective sample sizes were maintained for sensitivity analyses.

5.4.2 Conditional-age-at-length

The CAAL data is modelled by using the growth function to predict the age distribution by length

class for each fishery-specific CAAL sample. The key advantages of this approach relative to the

traditional approach of using the age-length observations to estimate a growth curve external to the

assessment model are: 1) The predictions account for the age-specific selectivity of the fishery from

which the samples were taken; 2) The method is consistent with the length-stratified sampling design

and does not require representative sampling of ages from the population; and 3) uncertainty in the

estimates of growth parameters are a part of the overall estimation uncertainty and are therefore

propagated through to the stock assessment results of key interest.

The observed age composition in each length class is assumed to follow a multinomial distribution

with the negative log-likelihood summed for all length classes and across all samples.

The current MULTIFAN-CL model configures the ESS for CAAL by applying a scalar to the

observed sample size (OSS) for each sample. For the diagnostic case model, the ESS for all samples

was set as OSS ∗ 0.75. Sensitivity to this scalar was explored.

5.4.3 Index fishery CPUE

The CPUE indices were modelled as annual log-normally distributed observations. The contribution

of each observation to the log likelihood is made up of a time series component, or relative CV,

and a generic component, or scaled CV, that is specified for each index. We used the CPUE

standardisation analysis estimates to specify both components for the longline indices (the generic

components of which were approximately 0.20 for both longline indices); however, the generic

CV values obtained for the troll index were considered unreasonably small (∼0.02). We therefore

specified the generic CV for the troll index to be 0.20 but retained the time series component

informed by the troll CPUE analysis.

5.5 Parameter and uncertainty estimation

The parameters of the model (Table 3) were estimated by maximizing the log-likelihood of all

data components plus the log of the probability density functions of the penalties specified in the

model. The maximization to a point of model convergence was performed by an efficient optimiza-

tion using exact derivatives with respect to the model parameters (auto-differentiation, Fournier
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et al. (2012)). Estimation was conducted in a series of phases, the first of which used relatively

arbitrary starting values for most parameters. A bash shell script, “doitall” file (see Appendix

1 for diagnostic case model doitall file), implements the phased procedure for fitting the model.

After obtaining a converged model, the Hessian matrix was computed and its positive definite sta-

tus verified by the absence of negative eigenvalues. Then, the estimation errors for the important

stock-assessment-related dependent variables (including time series of recruitment, SB, dynamic

depletion and depletion and MSY-based reference points) were computed using the Delta method.

6 Diagnostics methods

As has been suggested in Carvalho et al. (2017) and Carvalho et al. (2021), diagnostic tools are

vital for evaluating the quality of integrated stock assessment models for informing management

advice and there is no single diagnostic tool that is capable of comprehensive evaluation for all

models. As such, a suite of tools from the “diagnostic toolbox” was applied to the current model

assessment.

6.1 Convergence diagnostics

All models in this assessment were considered to be converged if 1) a maximum parameter gradient

of 1e-05 was achieved; 2) the Hessian matrix was positive definite; 3) the model fit could not be

significantly improved by jittering the estimated parameters (Carvalho et al., 2021); (4) estimated

parameters should not be on their bounds; or (5) be highly correlated with each other (−0.9 > r >

0.9).

6.2 Model fit

Plots of observed and predicted index, LF and CAAL data were examined, including residuals

plots. Particular attention was paid to the fits to the NZ troll LF data during model development,

which indicated distinct annual age class modes representing the younger ages.

6.3 Age-Structured Production Model (ASPM)

ASPM diagnostics (Carvalho et al., 2017, 2021; Maunder and Piner, 2015; Minte-Vera et al., 2017)

for the diagnostic case model were estimated by 1) fixing growth and selectivity parameters at

their estimated values; 2) removing the LF and CAAL data from the model, leaving only the

CPUE indices as data to be fitted; 3) setting all log recruitment deviations to a fixed value of

0; and 4) re-fitting the model estimating only the population scaling parameters. A comparison

of biomass and depletion scaling and trends estimated by the ASPM and the full model gives an

indication of the extent to which these estimates are informed by the CPUE indices only. A second

version of the ASPM, in which recruitment deviations were estimated, was also run.
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6.4 Catch Curve Analysis (CCA)

A CCA is essentially the reverse of the ASPM, whereby the CPUE index data are removed from the

model and all parameter estimation retained. The CCA indicates the information on population

trends and scaling provided by the LF and CAAL data.

6.5 Likelihood profile

A likelihood profile over a metric related to population scale is frequently used to evaluate conflict

among data types. In this assessment, we profiled on the estimated population biomass averaged

over the full model period (1954-2022) and examined the response of the likelihood of each data

type (and their components). Ideally, we would like to see the negative log likelihood of each data

component used in the model reaching a minimum at similar levels of average biomass.

6.6 Retrospective analysis

Retrospective analyses were undertaken as a general test of the stability of the model. A robust

model, when rerun with data for the terminal year/s sequentially excluded (Cadigan and Farrell,

2005), should produce outputs that are variable across runs, and without a systematic pattern in

either the scaling or time-series trends. The Mohn’s rho statistic, a measure of the average relative

bias of retrospective estimates, was computed for recruitment, SB and spawning biomass depletion

(SBt/SBF=0(t)) to indicate whether significant retrospective bias was present in the model. When

calculating Mohn’s ρ for recruitment, the penultimate year was used for comparison since the

terminal year recruitment value was set to the arithmetic mean of the recruitment time series,

thereby having the effect of reducing any potential retrospective pattern.

7 Sensitivity analysis methods

Sensitivity analyses were undertaken to determine the sensitivity of important stock assessment re-

sults (recruitment, SB, SB recent/SBF=0, Frecent/FMSY and SB recent/SBMSY; see Table 4 for reference

point definitions) to various structural assumptions, parameter settings and decisions made during

model development. For the purpose of these comparisons, we used the diagnostic case model as

the reference model. The results of these tests informed decisions regarding the composition of the

multi-model ensemble used to characterise uncertainty in the assessment results.

The range of sensitivity tests was developed by the assessment team over the course of model

development, taking account of suggestions by the 2024 SPC Pre-Assessment Workshop (Hamer,

2024) as well as discussions with external scientists. The tests, hopefully, capture the main sources

of potential uncertainty in the key model results given the time available.

The sensitivity tests conducted included (1) use of an alternative longline CPUE index for the

WCPFC-CA region; (2) exclusion of the NZ troll CPUE index; (3) exclusion of the NZ troll LF
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data; (4) alternative weighting of the CAAL data in the likelihood; (5) alternative movement

probabilities between the WCPFC-CA and EPO regions; (6) several longline effort creep scenarios;

(7) alternative settings for the distribution of recruitment between the WCPFC-CA and EPO

regions; (8) alternative numbers of age classes in the model; (9) use of selectivity and catchability

time blocks in the model; (10) use of an alternative growth model (simple VB) in the assessment;

(11) alternative settings for the natural mortality rate; and (12) alternative settings for the steepness

parameter in the Beverton and Holt stock-recruitment relationship.

8 Monte–Carlo model ensemble uncertainty estimation methods

Typically, three types of uncertainty could be incorporated into the estimates of stock status used

for management advice. One involves the statistical uncertainty of the estimates produced by indi-

vidual models, often referred to as “estimation” uncertainty (described above). The second involves

“model” uncertainty, which is the uncertainty in the structural and fixed-parameter assumptions

underpinning individual models, e.g., fixed M , h, etc. . . . The third involves data inputs, such as

alternative abundance indices or other data inputs. Stock assessments of tuna for the WCPFC have

often included an approach to assess the model uncertainty in the assessment model by running a

factorial “grid” of models to explore the interactions among selected “axes of uncertainty”. The grid

contains all combinations of two or more parameter settings or assumptions for each uncertainty

axis and this was commonly referred to as the “structural uncertainty grid”.

In the current assessment, the characterization of uncertainty in management reference points

and quantities of interest was accomplished by applying a Monte Carlo model ensemble approach

following the methods introduced by Ducharme-Barth and Vincent (2021), implemented in the 2021

stock assessment of south-west Pacific swordfish (Ducharme-Barth et al., 2021) and recommended

as good practice by Neubauer et al. (2023). Building off the familiar “model uncertainty grid”, the

model ensemble approach continues to consider the effects of model uncertainty while extending

it to also account for the statistical estimation uncertainty from each model in the ensemble. This

allows for a more holistic and transparent description of the uncertainty in estimates of stock status.

Another key difference between the model ensemble and the model uncertainty grid is the relaxation

of the full factorial design. Instead of choosing set levels for certain fixed parameters (e.g. h ∈ 0.65,

0.8, 0.95), a random set of the fixed parameters is drawn from an assumed prior distribution for

each model in the ensemble. This approach has the advantage of implicitly weighting the ensemble

to the most likely parameter combinations given the shape of the prior.

For aspects of model uncertainty that cannot be parametrized using prior assumed distributions

(e.g., fitting to alternate CPUE indices), a full factorial approach could still be used and then

overlaid on the parameter draws from the priors in a hybrid factorial ensemble.

The estimation uncertainty for each model in the ensemble was determined as described in Param-

eter and uncertainty estimation However, for the ensemble models, we computed the estimation
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uncertainty (i.e., standard deviations of the estimates) for only the key reference point variables

(SB recent/SBF=0, Frecent/FMSY and SB recent/SBMSY) and not the full set of time-series estimates

as an efficiency measure. This was done for all models in the model ensemble and the estimation

uncertainty was combined across models in a parametric bootstrap similar to the approach used in

stock assessments conducted by the International Pacific Halibut Commission (Stewart and Martell,

2014) and applied in the 2023 yellowfin and bigeye assessments (Day et al., 2023; Magnusson et al.,

2023).

Natural mortality and steepness emerged from the sensitivity analyses as the key sources of model

uncertainty impacting stock-assessment-related estimates (see Sensitivity analyses). Therefore, prior

distributions for these parameters were constructed as described below.

Diagnostics applied to the model ensemble were not as extensive as those applied to the diagnostic

case model as described in Diagnostics methods due to the high number of models in the ensemble.

Therefore, ensemble model were considered converged if 1) a maximum parameter gradient of 1e-4

was achieved; 2) the Hessian matrix was positive definite; 3) the negative log-likelihood of the NZ

troll fishery for samples 14, 15 and 16 (as these showed distinct age-class modes) was ≤-130.

8.0.1 Natural mortality (M) prior distribution

As described in Section 5.2.7, M of 0.36yr−1 was specified using the Amax approach assuming

an Amax of 15yr. Hamel and Cope (2022) recommended a CV of 0.31 for M . However, we found

that sampling from this distribution produced a significant number of low (<0.25) and high (>0.7)

values of average M that were considered outside the range. Therefore, the CV was reduced to 0.2

to focus the replicates on a more plausible range of ∼0.25–0.55 (Figure 12). Each value of average

M sampled from the prior was converted to M-at-age using the Lorenzen approach described in

Natural mortality.

8.0.2 Steepness (h) prior distribution

In order to develop the h prior, the approach of Brodziak et al. (2011) was considered, which

uses various life history parameters, including M -at-age, in characterising a prior for h. With

the assistance of the author, this approach was applied using South Pacific albacore reproductive

parameters and M -at-age from the diagnostic case model. The mode of the resulting distribution

was at 0.99 and initial runs of the Monte-Carlo ensemble model approach were generating h values

of ≥0.99 in ∼20% of the replicates. This distribution also implied a non-trivial probability of very

low h values, which represented a significant change from the previous approach of using 0.65, 0.80

and 0.95 as discrete values in a factorial grid with equal probability.

The MULTIFAN-CL model frequently did not converge due to inadequately fitting the SRR to

the SB and recruitment estimates when using the very high values of h. Furthermore, there were

several replicates for which h had been sampled to be very low, <0.5, which were producing what
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were judged to be unreasonable estimates of population dynamics in the MULTIFAN-CL models.

To proceed, approximately ∼30% of the ensemble models would be rejected, effectively truncating

the h prior on the low and very high ends. Subsequently, a modification to the prior for h was made

so that such high values >0.99 and low values <0.5 had much lower probability than as indicated

in the distribution described above. The approach that was therefore adopted was similar to one

used by Ducharme-Barth et al. (2021). Firstly, we wanted to recognise the application of Brodziak

et al. (2011) that incorporated life-history criteria and indicated that h, on average, was likely to be

considerably higher than what had been assumed in previous assessments. Secondly, we also wanted

to respect the approach used in the previous assessment, including meta-analyses, that indicated a

reasonable range of h was likely to be ∼0.65–0.95, as applied in the factorial grid in 2021. Using this

rationale, a censored (0.2–1) beta prior with a mean of 0.87 and σ = 0.063 was developed resulting

in the prior distribution shown in Figure 12.

9 Stock assessment interpretation methods

Several ancillary analyses using the fitted model/suite of models were conducted in order to interpret

the results for stock assessment purposes. The methods involved are summarized below and further

details can be found in Kleiber et al. (2019).

9.1 Yield analysis

The yield analysis consists of computing equilibrium catch (or yield) and SB, conditional on a

specified basal level of age-specific fishing mortality (Fa) for the entire model domain and deter-

mined as the mean over a recent period of time (2018–2021), a series of fishing mortality multipliers

(fmult), the M -at-age, the mean weight-at-age (Wa) and the SRR parameters. All of these param-

eters, apart from fmult, which is arbitrarily specified over a range of 0–50 (in increments of 0.1),

are available from the parameter estimates (or specifications) of the model. The maximum yield

with respect to fmult can be determined using the formula given in Kleiber et al. (2019), and is

equivalent to the maximum sustainable yield (MSY). The reciprocal of the Fmult resulting in the

MSY is equivalent to Frecent/FMSY. Similarly, the SB at MSY (SBMSY ) can also be determined.

The ratios of the current (or recent average) levels of fishing mortality and SB to their respective

levels at MSY are determined for all models of interest, including those in the model ensemble. Note

that in this case MSY quantities can only be estimated at the scale of the entire model domain,

and not for individual regions, or in this case, separately for the WCPFC-CA and EPO.

9.2 Depletion and fishery impact

Many assessments estimate the ratio of recent to equilibrium biomass (usually SB) as an index

of fishery depletion. The problem with this approach is that recruitment may vary considerably

over the time series, and if either the initial or recent biomass estimates (or both) are “non-

representative” because of recruitment variability or general high uncertainty with early time series
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data, then the ratio may not measure fishery depletion reliably.

We assess fishery depletion by computing the unexploited SB time-series using the estimated

model parameters, but assuming that fishing mortality was zero. Because both the estimated SBt

(with fishing), and the unexploited SBF=0(t), incorporate recruitment variability, their ratio at each

time step (t) of the analysis, SBt/SBF=0(t), can be interpreted as an index of fishery depletion.

The computation of unexploited SB includes an adjustment in recruitment to acknowledge the

possibility of a reduction in recruitment for exploited populations through stock-recruitment effects.

To achieve this, the estimated recruitment deviations are multiplied by the ratio of the unexploited

equilibrium recruitment and the equilibrium recruitment as predicted by the Beverton and Holt

SRR at the year-specific level of spawning biomass.

A fishery impact analysis was used to estimate depletion associated with specific fisheries or groups

of fisheries. Here, fishery groups of interest, tropical longline (sub-regions 1-ab), sub-tropical longline

(sub-regions 1-cd), southern longline (sub-regions 1-ef), EPO fisheries (sub-regions 2-abc), troll and

driftnet fisheries, are removed in-turn in separate simulations. The changes in depletion observed

in these runs are then indicative of the depletion caused by each of the removed fisheries.

9.3 Reference points

The SBF=0 in each time period was calculated given the estimated recruitments and the Beverton-

Holt SRR. This offers a basis for comparing the exploited population relative to the population

subject to natural mortality only. The WCPFC adopted 20%SBF=0 as a limit reference point (LRP)

for the albacore stock (and for all other key tuna), where SBF=0 is calculated for this assessment

ending in 2022 as the average over the period 2012–2021. The WCPFC also adopted an interim

target reference point (iTRP) for South Pacific albacore specified as 0.96 SB2017−2019/SBF=0.

This was computed as 0.96 times the mean of the following three ratios: SB2017/SBF=0,2007−2016,

SB2018/SBF=0,2008−2017 and SB2019/SBF=0,2009−2018. Stock status was referenced against the iTRP

by calculating SBrecent/SBF=0,2012−2021 and SBlatest/SBF=0,2012−2021, where “recent” is 2019-2022

and “latest” is 2022, and expressing these as ratios to the iTRP (Table 4). This was performed for

the 100 models in the ensemble with the median value and 10 and 90 percentiles taken to define

the central tendency of the stock status estimates and its uncertainty in relation to the iTRP.

The other key reference point, Frecent/FMSY (Table 4), is the estimated average fishing mortality over

the full assessment area over a recent period of time (Frecent; 2018–2021 for this stock assessment)

divided by the fishing mortality producing MSY (as produced by the yield analysis and detailed in

Yield analysis)

9.4 Majuro and Kobe plots

For the standard yield analysis (Yield analysis), Fa, is determined as the average over some recent

period of time (2018–2021 herein). In addition to this approach, the MSY-based reference points
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(Ft = FMSY and SBt = SBMSY ) were also computed for each year included in the diagnostic case

model (1954–2022, with no value calculated for the terminal year) by repeating the yield analysis

for each year in turn. This enabled temporal trends in the reference point variables to be estimated

taking account of the differences in MSY levels under varying historical patterns of age-specific

exploitation. This analysis is presented in the form of dynamic Kobe and Majuro plots, which have

been presented for all recent WCPFC stock assessments.

10 Results

10.1 CPUE trends

In both the WCPFC-CA and EPO, the standardised trends in relative abundance based on longline

data showed an overall decline from the early part of the time series to relatively stable trends since

approximately the 1980s with recent estimates of relative abundance remaining below the long-term

mean (Figure 13). The WCPFC-CA index indicated an increasing trend prior to 1960 when the

EPO index indicated a decline. For the NZ troll data, the index is more variable at the beginning

of the time-series (from 1992) however, the overall trend is relatively stable throughout.

10.2 Consequences of key model developments

Aspects of the progression of model development from the 2021 reference case to the model used

as the diagnostic case in 2024 are described below with brief notes on the implication of the

developments for SB and SB recent/SBF=0, which are also displayed in Figure 14. We note that this

is not intended as a full detailed stepwise analysis given our intention from the start was to go back

to a much a simpler model, that would be very different to the previous assessment model, but is

provided for information to those interested in implications of model development:

1. Started with the 2021 reference case model (Castillo Jordan et al., 2021).

2. Application of the catch-conditioned approach and concentrated CPUE likeli-

hood: resulted in an overall lower SB recent/SBF=0 and SB but with similar trends with the

exception of the early 1960s, compared to model 1.

3. Reduction of the number of cubic spline selectivity nodes from 4 to 3: had almost

indistinguishable differences from the previous model 2.

4. Simplification by collapsing the sub-regions and assigning the overlap area to the

WCPFC-CA: had almost indistinguishable differences from model 3.

5. Simplification by collapsing WCPFC-CA into one region and assigning new fish-

eries definitions using areas-as-fleets approach resulting in two regions (WCPFC-

CA and EPO) over the spatial extent: resulted in SB recent/SBF=0 beginning and ter-

minating at equivalent levels but exhibiting higher levels in the interim, compared to model
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4. The SB showed similar results with the exception of higher SB at the beginning of the

time-series compared to model 4.

6. Removal of “contaminated” LF data: resulted in SB recent/SBF=0 beginning and termi-

nating at equivalent levels but exhibiting lower levels in the interim. The SB showed similar

results with the exception of lower SB at the beginning of the time-series compared to model

5.

7. Updating with the new MULTIFAN-CL executable (v2.2.5.1): resulted in indistin-

guishable results from model 6.

8. Converting recruitment frequency from quarterly (at the beginning of the cal-

endar year) to annual (occurring at the beginning of month 10): resulted in sim-

ilar trends with slight differences in the fluctuations throughout the time-series for both

SB recent/SBF=0 and SB compared to model 7.

9. Converting the time-step for CPUE to annual, conversion from Maunder M to

Lorenzen M , extending time-series back to 1954, updating length-weight parame-

ters, updating with the new years of data, applying LF data weighting using Fran-

cis method, inclusion of CAAL, and implementation of the VB offsets growth:

resulted in similar trends with more variability and lower levels of both SB recent/SBF=0 and

SB compared to model 8.

Overall, the 2024 South Pacific albacore diagnostic case model estimates very similar levels of

SB recent/SBF=0 and SB at the beginning and terminal years compared to the 2021 diagnostic

model. The temporal trends were also similar, although the 2024 model showed lower levels of

SB recent/SBF=0 and SB during the middle period of the assessment. The increasing trend in recent

years shown by the new diagnostic case model is notable. This recent increase results in 2022 SB

(and less so for SB recent/SBF=0) that is higher than the level estimated in the final year (2019) of

the 2021 WCPFC-CA only model (i.e. compare navy blue and grey lines; Figure 14).

10.3 Model parameter estimation

Estimates from the diagnostic case model are discussed in this section to explore model behaviour

and parameter estimates.

10.3.1 Selectivity

Estimated selectivity functions were consistent with known operational characteristics of the dif-

ferent gear types; longline fisheries selecting larger, older individuals (Figure 15) and the driftnet

and troll fisheries selecting smaller, younger fish that are more prevalent in the surface fisheries

of the southern regions. These latter fisheries displayed dome-shaped selectivities which, increased

rapidly from age 0 to maximum selectivity at, or below, 4 years of age and then declined back

to 0. Slight differences among these surface fisheries existed, with the driftnet fisheries selecting a
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slightly wider range of ages and a slightly higher modal age than the troll fisheries (age 4) whereas,

the troll fisheries (including the EPO) were estimated to have a lower modal age (age 3).

Most of the longline fisheries were estimated to have dome-shaped selectivity with the exception

of the following: the two longline indices (as constrained with high penalties to have asymptotic

selectivity), the longline fisheries in sub-regions 1-ef, season 1 in some of the longline fisheries in

northern areas of the WCPFC-CA, and season 1–3 in the AU/NZ in sub-region 1-abcd. Slight

differences among longline fisheries were evident in the age at which fish began to be selected,

and the slopes of the ascending limbs of the selectivity functions, which varied for different flag

groupings and regions of operation of the fishery. Longline fisheries in the northern part of the

WCPFC-CA exhibited significant seasonality in selectivity patterns, as would be expected due to

seasonal movements of different sized fish.

10.3.2 Growth and natural mortality

Growth estimates from the diagnostic case model indicated a mostly linear shape for the first four

age classes as estimated by the VB offsets parametrization (Figure 16). The estimated growth

parameters were 45.54cm (fixed), 101.36cm, and 3.398 for L1, L2, and k, respectively with -6.191,

-8.422, and -5.042 estimated offsets for ages 2–4, respectively. The added flexibility from estimating

offsets in early stage growth provided some deviation from the traditional shape of the VB growth

curve specified by MULTIFAN-CL which, has been indicated in previous research on albacore

growth. Specifically, Farley et al. (2021) found that a logistic curve fit the data better than a

VB curve. The M -at-age curve derived from the growth and maximum age of 15 (Amax method)

estimates are shown in Figure 17.

10.3.3 Recruitment

The time series of estimated recruitment is displayed in Figure 26. High recruitment estimates in the

early period of the assessment are likely related to the initial high CPUE that drops rapidly, typical

of tuna longline indices in the WCPO, and are treated with some caution. Across the time series

recruitment estimates are highly variable at the inter-annual time scale and show an increasing

trend from around 1980. The estimated 95% confidence intervals are very wide in the early years of

the time series, and contract moving forward in time. Note that the terminal recruitment is fixed

at the average of the time series and therefore has lower uncertainty than would otherwise be the

case.

The spawner recruit relationship for the diagnostic case is displayed in Figure 27. Recruitment

deviation around the spawner recruitment relationship is similar across the SB levels estimated

throughout the model time period.
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10.3.4 Biomass and biomass depletion

SB declined rapidly from 1950s until the late 1970s after which SB stabilised and even has increased

slightly in the WCPFC-CA until 2015 after which it declined again until the very recent years when

an increase is estimated (Figure 28). The overall trend is relatively consistent in each model region

despite the estimated levels of biomass associated with each region differing substantially. As for

recruitment, 95% confidence intervals for SB are wider in the early years of the time series.

SBt/SBF=0(t) has declined continuously since 1954 in both model regions and in 2022 is estimated

to beat its lowest level in the EPO. In the WCPFC-CA SBt/SBF=0(t) reached a minimum in 2020

and has since increased sharply. (Figure 29). The 95% confidence intervals for SBt/SBF=0(t) begin

at zero in 1954 (because of the unexploited population condition) but expand moving forward in

time. At the end of the time series, the CV is approximately 0.05.

10.3.5 Fishing mortality and age-specific exploitation

An increase in fishing mortality of adult age-classes is estimated to have occurred over most of

the assessment period (Figure 30), accelerating since the 2000s. Adult mortality has continued to

increase from 2010, and although the last two years show a drop in adult fishing mortality, the

recent year estimates are considered less reliable. Juvenile fishing mortality increased until ∼1990,

with a peak in 1989 due to the driftnet fishery and has remained stable at a comparatively lower

level since that time. A small peak in juvenile fishing mortality is estimated to have occurred in

2020.

The estimated relative frequency at age by decade (Figure 31) indicated the dominance of the

first four age classes and the persistence of older fish throughout the temporal extent, although in

lower proportions. The estimated instantaneous mortality at age and decade indicated that prior

to 2000, effectively no fishing mortality on the youngest age classes until ∼age-3 when a gradual

increase with age was indicated. After 2000, the fishing mortality increased more noticeably at

age-5 until age-7 when fishing mortality decreased gradually. The estimated annual instantaneous

fishing mortality by age and area (Figure 32) indicated a sharp increase in fishing mortality for

age-6 and older in the WCPFC-CA. A similar pattern was exhibited in the EPO after 2010 most

notably for ages 6–8. These age-specific characteristics are reflected in the estimates of 2019-2022

depletion by age class (Figure 33).

10.3.6 Fishing impact

It is possible to attribute the fishery impact with respect to depletion levels to specific fishery

components (i.e., grouped by gear-type), in order to estimate which types of fishing activity have

the most impact on the spawning potential (Figure 34). Fishing impacts were estimated to increase

gradually through the 1960s in the WCPFC-CA primarily due to the longline fishery with the

tropical, sub-tropical, and southern area fisheries all having approximately equal contributions.
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During the late 1960s, the longline in the EPO began to have an impact, although to a lesser

extent. During the 1970s, impacts stabilized and even declined until the mid 1990s with the southern

longline having the largest impact. In the 1980s, the troll fishery (with some contribution from the

drift-net fishery in the 1980s) began to have a substantial impact until the early 2000s when the

impact decreased to a stable level as a result of the banning of driftnet fishing. From the mid 1990s

the impact for the sub-tropical longline increased notably until approximately 2018 when it began

to decline while the EPO longline began to have a larger impact than previously.

10.4 Diagnostics results

In the following section, we present diagnostics for the diagnostic case model.

10.4.1 Convergence diagnostics

The following indicators of model convergence were recorded:

• The maximum parameter gradient for the diagnostic case model was 5.52e-07.

• The Hessian was positive definite.

• A jitter analysis was not able to improve on this solution, with all 25 jitters having total

negative log likelihoods ≥ the diagnostic case model (Figure 18).

• Of the 165 estimated parameters, seven had converged at their lower bound. In all cases,

these were the first of the three selectivity spline coefficients for longline fisheries 1/3 (shared

selectivity) for quarter (Q) 1 and Q2, fisheries 2/4 for all quarters and fishery 14 for semester

1. It appeared that this was related to the model trying to estimate zero selectivity for young

age classes for these fisheries/seasons. Potentially this could be remedied by specifying the

required number of age classes to have zero selectivity. Unfortunately, this specification in

MULTIFAN-CL can currently be made only generically (for all seasons). This is an area

where the model code can be improved.

• We examined the correlation matrix for the estimated parameters, and found 16 cases where

correlations <-0.9 occurred. In all cases these occurred for the 2nd and 3rd (for fisheries with

3 selectivity nodes) or for the 3rd and 4th nodes (for fisheries with 4 selectivity nodes).

Overall, we are confident that the converged diagnostic model represents a global solution on the

basis of the small parameter gradients, a positive definite Hessian, and the jitter analysis. However,

there are areas where the model could be improved in the selectivity parameterisation, which is an

area of follow-up research.

10.4.2 Model fit

The Diagnostic case model showed acceptable fits to the CPUE indices (Figure 19), with predicted

relative abundance being within the 95% confidence intervals of the longline indices throughout
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the time series. The longline residuals plots show some patterns for the final decade, with mainly

negative residuals (indicating some over-estimation of relative abundance) for the WCPFC-CA

index and mainly negative residuals for the EPO index.

The diagnostic model provided reasonable fits to the time-aggregated length frequency data for fish-

eries in the WCPO, particularly the longline fisheries (Figure 20). Poorer fits occurred for fisheries

with low sample sizes (adjusted and/or observed) and temporally patchy and variable compositions

(e.g. troll and driftnet fisheries). Furthermore, there were poorer fits for several longline fisheries,

more specifically, for sub-regions 1-ef where the model had difficulty fitting the multimodal obser-

vations. For the longline fishery in the EPO, the data were fit reasonably well, while, similar to the

WCPO, a poorer fit was obtained for the troll fishery in the EPO. The time series of observed and

predicted median lengths show some lack of fit, e.g. an increasing trend in median size in fishery

4 (Figure 21). Note that the estimates of effective sample size provided by the Francis weighting

method strongly down-weighted the LF data for most fisheries, allowing the model to fit these data

less well than would otherwise be the case.

The diagnostic case model provided a reasonable fit to the CAAL data, although there is a tendency

for the diagnostic model to underestimate age composition for the largest length classes in the

sample, as evidenced by a group of positive residuals for 90-110cm sizes (Figure 22). This is an area

of follow-up research with the fish ageing scientists.

10.4.3 Age-structured production model (ASPM)

Two versions of the ASPM were fitted, one without and one with estimated recruitment deviations.

In the first only population scale is being estimated, informed only by the CPUE data. The mean

recruitment, SB and SBF=0 are scaled reasonably well compared to the diagnostic case model,

indicating that the CPUE indices are informing population scale (Figure 23). Some of the time

series changes in SB and SBF=0 are also captured, although SB is over-estimated through the

middle part of the time series. When the estimation of recruitment deviations is included, the

estimates of recruitment, SB and SBF=0 track the diagnostic case model estimates reasonably

closely. This indicates the desirable property that population scaling are informed by the CPUE

indices.

10.4.4 Catch curve analysis (CCA)

The catch curve analysis, in which the model is fitted to the size composition and CAAL data only,

indicates somewhat lower population scaling and divergent trends, particularly in the early part of

the time series, compared to the diagnostic case model (Figure 23). However, in the more recent

period since 1990 (where better sampling occurs for most fisheries), the trends and scaling tend

to converge to some extent. Interestingly, some of the recent recruitment variability lines up quite

well between the CCA, diagnostic case and the ASPM with recruitment deviations. This suggests

that the more recent population signals are consistent among the CPUE and LF/CAAL data.
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10.4.5 Likelihood profiles

Likelihood profiles by data component and by index and fishery for the CPUE indices and LF data,

respectively, are shown in Figure 24. The profile by data component indicates that in aggregate, the

CPUE indices, LF and CAAL data are all providing a consistent signal with respect to population

scale.

For the CPUE indices, both longline indices are very consistent while the NZ troll index indicates

higher population scaling. The extent to which this impacts the results of the assessment is explored

further in the Sensitivity Analysis section.

For the LF data, there is considerable variability in population scale information across the range

of fisheries. This is perhaps not unexpected as the data are broken down into smaller components,

but nevertheless indicates an area where follow-up research is required.

10.4.6 Retrospectives

The retrospective analysis indicated the diagnostic model showed no significant retrospective pat-

terns (Figure 25) as evidenced by |ρ| ≤ 0.1 for SB and SBt/SBF=0(t) (for each region and combined

regions) however, recruitment indicated some retrospective pattern ρ = −0.31 for each region and

combined regions. This might be related to the assumption that recruitment in the final year is

fixed at the historical average.

10.5 Sensitivity analyses

10.5.1 CPUE indices

Two longline CPUE indices for region 1 (WCPFC-CA) have been explored in this assessment (see

Teears et al. (2024)). In the diagnostic case model, the region 1 longline index was constructed for

the full tropical region (covering sub-regions 1-a, 1-b, 1-c, and 1-d) and is an annual average index

using data for all months of the year. This CPUE index is denoted WCPFC-CA.NORTH. As an

alternative, we applied a more restricted index, denoted WCPFC-CA.SPAWN, that was designed

to focus on the South Pacific albacore spawning area (10-25◦S) and season (October–January).

Time-series of the two indices, and their 95% confidence intervals, are shown in Figure 35. Both

indices show sharp initial declines to the mid-1970s, although estimates in the 1950s and early 1960s

are associated with high uncertainty. The WCPFC-CA.NORTH index is then fairly stable through

to the late 1990s after which there is a slow decline. By contrast, the WCPFC-CA.SPAWN index

shows a more continuous decline from the late 1970s to the present.

Models incorporating these alternative indices for the WCPFC-CA region showed good conver-

gence, and with positive definite Hessians. Fits to data were similar and acceptable. In particular,

in both cases the assessment model fits to the indices were good (Figure 36). The key stock as-

sessment results are shown in Figure 37. The trends and inter-annual variability in recruitment

are similar for both models, with small differences in scaling of the three metrics (recruitment,
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SB, and SBt/SBF=0(t)). The three reference point variables (SB recent/SBF=0, SB recent/SBMSY,

and Frecent/FMSY) were also very similar for the two models (Table 5). Given the similarity of the

results, it was decided to include only the model based on the WCPFC-CA.NORTH index in the

final multi-model ensemble.

10.5.2 Troll CPUE index

A CPUE index based on the NZ troll fishery (Neubauer and Hill-Moana, 2024) was incorporated

into the diagnostic case model. The motivation for this was to provide the model with information

on the younger age-classes of albacore that are targeted by this fishery. However, we acknowledge

concerns around whether the troll CPUE responds to stock-wide recruitment processes, or more

reflects environmentally driven availability of juvenile albacore to the local NZ fishery. Therefore,

we undertook a sensitivity analysis to examine the impacts of effectively removing the influence of

the CPUE index by increasing the CV to 10,000, thereby down weighting the data to a trivial level.

We adopted this approach rather than simply removing the data to enable the model to predict

the CPUE even though it was not being fitted. The length frequency data associated with the troll

index was also removed for this test, and the selectivity fixed according to that estimated in the

diagnostic case model.

The main effect of including the troll CPUE index is to provide some constraints on recruitment

variability. This is evident in the recruitment estimates for the models including and excluding the

troll index (Figure 38). In particular when the troll index is excluded, recruitment estimates for the

recent period (2018-2021) are much higher; and probably unrealistically so. This is also reflected in

the model predictions of the troll CPUE (Figure 39). While the exclusion of the troll index does not

unduly impact the estimates of pre-2018 recruitment, SB, and SBt/SBF=0(t), such high terminal

recruitments will have a large impact on projections. There is also some minor impact of excluding

the troll CPUE on the reference point variables (Table 5) probably related to the inflated terminal

recruitment. In view of this stabilising influence and the likelihood that the index is at least partly

driven by recruitment dynamics, it was decided that the troll CPUE index should be retained in

the diagnostic and ensemble models.

10.5.3 NZ troll length frequency data

For the same reasons alluded to earlier regarding the representativeness of the NZ troll fishery

CPUE, similar concerns have been raised regarding the length frequency data for this fishery. To

investigate the impact of the troll length frequency data on key stock status results, we undertook

a sensitivity in which the length frequency data for the three troll fisheries were removed from the

data. In doing so, selectivity for the troll fisheries was fixed at their estimates from the diagnostic

case model. We adopted this approach because it would not have been possible to estimate selec-

tivity without any size composition data, and the interest is in the impact of the length data on

recruitment and related population estimates.
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The removal of the troll length frequency data resulted in some minor differences in scaling and

the timing of recruitment troughs and peaks (Figure 40a) and minor differences in the scaling of

SB (Figure 40b) and SBt/SBF=0(t) (Figure 40c). The reference point variables were slightly more

optimistic with the exclusion of the troll length frequencies Table 5. In view of these results, we

were comfortable in including these data in all models for the assessment.

10.5.4 Weighting of the conditional age-at-length data

All models considered in this assessment incorporate conditional age-at-length (CAAL) data. These

data were compiled from 654 age estimates obtained from reading the otoliths of albacore of known

length (Farley et al., 2021). Rather than use estimates of growth parameters obtained from external

analyses of these data as fixed parameters in the assessment, we opted, following the recommen-

dation of Punt et al. (2023), to incorporate the data as CAAL into the assessment model. The

likelihood for the CAAL data was multinomial, and the weighting that the data receive in the over-

all likelihood depends on the assumed ESS of individual samples (categorised by sampled fishery

and time period). While the nature of the sampling design is consistent with the multinomial struc-

ture, we recognise that it is likely that the multinomial ESS is less than the observed sample size

(OSS) because of unaccounted for process error in the model. In the diagnostic and ensemble mod-

els we made the arbitrary assumption that ESS is 0.75*OSS. In sensitivity analysis, we tested the

impact of this assumption by comparing the diagnostic model with models in which ESS=0.5*OSS

and ESS=1.0*OSS.

The key stock assessment results are almost identical regardless of the multiplier used to specify the

ESS (Figure 41, trajectories of recruitment, SB, and SBt/SBF=0(t) are effectively identical). The

reference point variables are also unaffected (Table 5). Therefore, it was not necessary to include

the weighting of the CAAL data in the ensemble of models for characterising uncertainty.

10.5.5 Movement

Initial attempts to estimate movement internally in the assessment produced unrealistic results

thus, this approach was not pursued. Instead, movement probabilities were determined from a

SEAPODYM model of South Pacific albacore fitted to high resolution spatial data (Senina et al.,

2020). The movement probabilities were averaged across years and specified by age class and season

(see Movement). To test the assessment model’s sensitivity to the movement specification, we ran

four additional models for comparison: a) no movement between the two regions, b) movement

probabilities half those indicated by the SEAPODYM model, c) movement probabilities twice

those indicated by the SEAPODYM model and d) movement probabilities in both directions of 0.9

per period approximating full and instantaneous mixing of the stock. An example of the range of

movement probabilities considered, for the first quarter, is shown in Figure 42. We did not consider

scenarios a) and d) to be necessarily biologically plausible; they are included here as extreme

scenarios at the lower and upper limits and were requested by participants at the Pre-assessment
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Workshop.

Estimates of recruitment, SB, and SBt/SBF=0(t) for the five movement scenarios are shown in

Figure 43. With the exception of the no movement scenario, the results for the other movement

scenarios provide reasonably consistent results. There was a slight decrease in population scaling

with increased movement, but the results for the 2 x SEAPODYM movement and full mixing are

practically identical, indicating that the results are relatively insensitive to movement higher than

2 x SEAPODYM. Impacts of movement on the reference point variables (Table 5) are consistent

with the impacts on scaling. On the basis of these results and noting that we do not consider “no

movement” to be a biologically plausible scenario, it appears that the stock assessment results are

robust to the movement assumption and that it is not necessary to consider alternative movement

scenarios in the final model ensemble for uncertainty characterisation.

10.5.6 Effort creep

In stock assessments that use commercial CPUE as the basis for abundance indices, there is always

a concern that the CPUE series does not account for increasing fishing power over time resulting

from, inter alia, the adoption of new technology, increasing skill of fishers and information sharing.

In combination, these factors are often referred to as “effort creep”. The CPUE analysis undertaken

to support this assessment (Teears et al., 2024) may have captured some aspects of effort creep,

e.g., by including changes in longline gear materials and configuration in the statistical analysis.

However, it is probable that other sources of effort creep have not been accounted for due to

absence of information. We have therefore undertaken a sensitivity analysis to investigate the

possible impacts on assessment results of unaccounted for effort creep. We did this by modifying

the CPUE time series of the two longline indices in such a way that effective effort increased by

0.5%, 1% or 1.5% annually (Figure 44). These changes were applied consistently over the full time

series. Changes were assumed to be additive rather than multiplicative. For example, under the

1.5% scenario, effective effort (CPUE) in 2022 is approximately two times (half) the level in the

absence of effort creep. These levels of effort creep are similar to those proposed for longline fisheries

in Hoyle (2024).

Somewhat surprisingly, the key stock assessment results are consistent across the effort creep sce-

narios (Figure 45, Table 5). Most of the impact on recruitment and SB occurs near the start of

the time series, making initial declines steeper. However, there appears to be little impact on the

estimates subsequent to the 1990s. The estimates of SB depletion are impacted mainly over the

early-to middle portion of the time series. There is minor impact of effort creep scenarios on SB

depletion subsequent to about 2000. For this reason, we considered it unnecessary to incorporate

uncertainty due to effort creep into the model ensemble.

This possibly counter-intuitive result is also consistent with the minor impact seen when running

the model with the alternative WCPFC-CA.SPAWN CPUE index. This index also displayed a

stronger decline in CPUE (Figure 35, Figure 36) but also had little impact on the assessment
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outcomes (Figure 37). This apparent insensitivity may be related to the relatively old portion of

the population that is estimated to be selected by longline fisheries compared to, for example, the

portion making up the SB (Figure 46). This makes it possible for the model to reconcile different

trends in longline CPUE and SB. Further investigation of this issue is required.

10.5.7 Recruitment distribution

In this assessment, we specified the distribution of recruitment, assumed constant over time, between

regions 1 (WCPFC-CA) and 2 (EPO). The assumed allocation of (0.82, 0.18) between regions 1

and 2, respectively, was informed by the SEAPODYM model for South Pacific albacore (Senina

et al., 2020). Initial attempts to estimate the recruitment distribution internally in the assessment

model produced results considered unrealistic (most of the recruitment in region 2). Given that we

are using a fixed allocation, we examined alternative plausible specifications (90:10 and 70:30) to

see if the assumption impacted the key assessment results. The results indicated very little impact

(Figure 47, Table 5); therefore, alternative recruitment distributions were not included in the model

ensemble for uncertainty characterisation.

10.5.8 Number of age classes

It is necessary to make an assumption regarding the number of age classes in the model. This

assumption can be informed by the known maximum age, although fewer age classes might be

appropriate if there is little change in the mean size at age with increasing age for the older

age classes, noting that the final age class is treated as a “plus group” in the catch equations

of the model. In this assessment, consistent with previous assessments of this stock, we assumed

12 age classes. In this sensitivity analysis we ran models with 10 age classes and 15 age class for

comparison. The results for recruitment, SB and SB/SBF=0 are shown in Figure 48. The estimates

of recruitment are consistent across the three models, but there are small differences in scaling of

SB and to a lesser extent SBt/SBF=0(t), with the 10 age class model having slightly higher scaling

that the 12 and 15 age class models, which are practically identical. The reference point variables

show similar lack of sensitivity (Table 5). In view of these results, we were comfortable in going

forward with the 12 age class model in the model ensemble and not including uncertainty in this

assumption.

10.5.9 Selectivity and catchability time-blocks

Our standard assumption in the diagnostic case model is that selectivity is constant over time

for all fisheries, including index fisheries, and that catchability is constant for the index fisheries.

There is the possibility, at least for the long-standing distant-water longline fisheries, that selectivity

and catchability could have changed in response to changes in hooks-between-floats and mainline

material. Inspection of available data suggested that 1977 and 1994 were years in which major

changes could have occurred in DWFN longline fleets. We therefore constructed two models in
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which selectivity for fisheries 1–4, 8, 14, 16, 18 and 20 was allowed to vary across three time periods

– 1954–1976, 1977–1993 and 1994–2022. In the second of these models, the two longline-based index

fisheries (18 and 20) were also split into these periods to allow catchability to change.

Adding time blocks for selectivity and catchability added considerable parameter complexity in-

creasing the degrees of freedom of the model. The fit statistics of the models are in Table 6. The

Akaike Information Criterion (AIC) statistic indicates that the improvement in fit (smaller nega-

tive log likelihood) achieved by the two models with time blocks does not justify the additional

parameter complexity. On these grounds, we would reject the more complex models and retain

the diagnostic case. For completeness, we show the comparison of model results in Figure 49. The

time-blocked models estimate higher recruitment and SB, particularly early in the time series, and

slightly more optimistic SBt/SBF=0(t). Accordingly, the reference point variables become more

optimistic under the time-blocked scenarios (Table 5). We did not diagnose these results in detail,

but it is possible that some of the reduction in size of fish in the catch is attributed to changed

selectivity rather than a change in the size structure of the underlying population.

10.5.10 Growth

During model development, we found that a von Bertalanffy growth curve struggled to reconcile

both the length frequency data, in particular the positioning of the three modes in the NZ troll

fishery data, and the conditional age-at-length data. However, after a thorough investigation, we

found that allowing “VB offsets” to be estimated, i.e., deviations from von Bertalanffy growth, for

age classes 2, 3 and 4 did a reasonable job in fitting both data sets. The growth model approach

adopted for the diagnostic case is summarised in Table 7.

Table 8 compares the likelihood components of the diagnostic case model with a standard VB

model without estimated offsets. In the latter, all growth parameters (L1, L12, k, V 1 and V 2) were

estimated. The standard VB model has better likelihood components for CPUE and CAAL but is

inferior for length-frequency data compared to the VB offsets model. Overall, the VB offsets model

has a superior likelihood by 7 units. The VB model estimates a higher variance for mean-length

at age for the young age classes (Figure 50) and cannot model the modal structure of the NZ troll

fishery size data (Figure 51). For these reasons, we have retained the VB offsets model as the basis

for our diagnostic case and the model ensemble. For completeness, the key stock assessment results

for the VB model are presented in Figure 52 and Table 5.

10.5.11 Natural mortality

The rate of natural mortality is uncertain and cannot be estimated from data typically included in

stock assessments. For this reason, it is essential to consider the uncertainty in M in any assessment.

Here we have compared the key stock assessment results from three levels of M (averaged across

age classes 4-12) – 0.36, 0.24, and 0.54 yr-1. These values represent, respectively, the mean of the

Amax–based prior (assuming Amax = 15 yr), and approximate lower and upper 95% confidence
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intervals on the mean assuming a CV of 0.2.

The different M settings have a profound impact on the key stock assessment results (Figure 53).

Between the lower and upper values tested, recruitment varied by about 20 times, SB by more

than 2 times and SBt/SBF=0(t) in recent years ranged from about 0.3 to 0.7. The impact of M on

the reference point variables (Table 5) is similarly high. Clearly, M is a major factor contributing

to uncertainty in the assessment results and is therefore included in the framework developed for

the multi-model ensemble for charactering uncertainty.

10.5.12 Steepness

Like natural mortality, the steepness parameter (h) of the Beverton and Hold stock-recruitment

relationship is almost always uncertain and cannot be estimated internally in the assessment. Here

we have used three settings for h, 0.65, 0.8 and 0.95, to compare the key stock assessment results.

This is the range of steepness values that have been typically used in WCPFC-CA tuna assessments.

The different steepness settings have virtually no effect on the estimates of recruitment and SB, and

have slight effect on the SBt/SBF=0(t) at lower levels of SB (Figure 54). However, there is a strong

effect on the MSY-related reference point variables; Frecent/FMSY and SB recent/SBMSY (Table 5)

with lower (higher) steepness producing more pessimistic (optimistic) outcomes. We have therefore

included steepness in the multi-model ensemble to capture these effects.

10.6 Monte–Carlo model ensemble uncertainty estimation

Diagnostics for the 100 models in the ensemble indicated that all models converged based on

the selected criteria and were, therefore, included in the final results. Tables of diagnostics and

likelihoods are available in Appendix 2.

The results of the ensemble uncertainty analysis are summarised in several forms: 1) histograms of

model uncertainty estimated from Monte-Carlo draws from the model ensemble of SB recent/SBF=0,

SB recent/SBMSY, and Frecent/FMSY coloured by values of M and h (Figure 55, Figure 56, and Fig-

ure 57) combined with 2) estimates of SB recent/SBF=0, SB recent/SBMSY, and Frecent/FMSY by values

of M and h for each model in the ensemble; 3) quantile trajectories (90% and 75%) are provided for

SB recent/SBF=0 and SB in Figure 58 and Figure 59; 4) a table of summary statistics of reference

points for the model ensemble is included in Table 9; and 5) Majuro and Kobe plots are shown for

estimates from the model ensemble and the dynamic MSY analysis (Figure 61).

The models from the ensemble indicated the probability that SB recent/SBF=0 <0.2 was 0, the

probability that Frecent/FMSY >1 was 0, and the probability of SB recent/SBMSY > 1 was 0.999.

M had a high influence on SB recent/SBF=0, SB recent/SBMSY, and Frecent/FMSY as evidenced by the

linear (or exponential for Frecent/FMSY) relationship indicated in Figure 55, Figure 56, and Figure 57

whereas, the relationship between h and these reference points were less evident.

Annual quantiles indicated 90% of ensemble had terminal SB recent/SBF=0 ≥ 0.358, 0.353, and 0.364
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for the WCPFC-CA, the EPO, and combined regions, respectively (Figure 58). Annual quantiles

indicated 90% of ensemble models had terminal SB ≥ 131.0, 59.9, and 192.0 (1,000s of tons)

for the WCPFC-CA, the EPO, and combined regions, respectively (Figure 59). Annual quantiles

indicated 90% of ensemble models had terminal fishing mortalities ≤ 0.454, 0.323, and 0.418 for

the WCPFC-CA, the EPO, and combined regions, respectively (Figure 60)

The dynamic MSY analysis indicated that for all time periods, the SB recent/SBF=0 was > 0.2,

SB recent/SBMSY was > 1 and the Frecent/FMSY was < 1 (Figure 61). Similarly, all models in the en-

semble for the recent period (2019–2022) indicated the SB recent/SBF=0 was > 0.2, SB recent/SBMSY

was > 1 and the Frecent/FMSY was < 1.

10.6.1 ‘Status quo’ stochastic projections

Preliminary “status quo” stochastic projections were performed using the 100 models developed

in the model ensemble. Projections were run for 40 years, and therefore ran from 2023 through to

2062. Future catch levels in longline and troll fleets across the South Pacific were assumed to be the

average catches across the period 2020-2022. Catchability of each fishery was assumed to remain

constant in the projection period at the level estimated in the terminal period of the assessment

model. To be consistent with other analyses and noting recent increases in catch levels within

the EPO region, future catch of fisheries within the “remainder of the EPO” (EPO excluding the

overlap area) were scaled up to an equivalent of 22,500 mt, the levels reported in 2021 and 2022.

50 stochastic projections were performed from each of the 100 assessment models. Future recruit-

ment was defined by the estimated stock recruitment relationship, with variability around it defined

by recruitment deviation estimates from the stock assessment over the period 1972 to 2020.

Figure 62 presents the resulting South Pacific albacore depletion level of the stock within the

WCPFC Convention Area. Depletion is calculated consistent with the guidance provided byWCPFC20

in terms of the calculation of the iTRP6, reflecting the dynamic nature of this metric. Also included

is a point denoting the calculation of SB recent/SBF=0 as defined for the stock assessment (see def-

inition in Table 4).

6“Spawning potential depletion” refers to the estimated South Pacific albacore spawning potential as a percentage
of the estimated spawning potential in the absence of fishing (i.e., the unfished spawning potential). The metric is
dynamic and is estimated for each model time step.
The method to be used in calculating spawning potential in the absence of fishing (SBF=0) shall be:
a. SBF=0,t1−t2 , is the average of the estimated spawning potential in the absence of fishing for a time window of ten
years based on the most recent South Pacific albacore stock assessment, where t1 = y − 10 to t2 = y − 1 where y is
the year under consideration; and
b. The estimation shall be based on the relevant estimates of recruitment that have been adjusted to reflect conditions
without fishing according to the stock recruitment relationship.
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11 Discussion

11.1 General remarks on the stock assessment

South Pacific albacore present multiple challenges for stock assessment because much of the spatial

population structure and connectivity dynamics have yet to be clearly defined. As such, Goethel

and Berger (2017) suggested that this could lead to biased estimates of stock status indicators and

a simpler spatial structure would be preferable to one of higher complexity. The current assessment

has been substantially spatially simplified to two regions (WCPFC-CA and EPO), temporally

simplified to annual recruitment (occurring in October), and fisheries restructured in an areas-

as-fleets approach based on a regression tree methodology using LF data (Lennert-Cody et al.,

2010, 2013; Potts et al., 2024). Furthermore, the current assessment continued the application of

recruitment distribution and movement information from SEAPODYM (Senina et al., 2020), which

combine biological, fisheries, and environmental data to provide more informed estimates of these

important parameters given the lack of informative movement and recruitment data.

This assessment has incorporated several changes that we consider improves the quality of the

assessment, including:

• Incorporating the CAAL data into the assessment has, in combination with the use of the

VB offsets growth model, resolved some of the previous uncertainties in growth that were had

been problematic. As a result, there is now more consistency in growth estimates and reduced

data conflict between the CAAL data and the LF data than in the past. The allowance for

non-VB growth and possibly a more appropriate weighting of the LF data based on the Francis

method appears to have been critical in resolving this issue. An area of further improvement

would be to allow for a logistic growth curve in MULTIFAN-CL, which might provide a more

parsimonious method of accommodating the near linear growth of juveniles.

• Conversion of the model to a catch-conditioned approach and a simplification of the regional

structure of the model has resulted in better model diagnostics and an overall improvement

in the statistical properties of the model. The changes allowed for rapid model convergence,

positive definite Hessians and reasonable estimates of most parameters away from bounds

and without high parameter correlations.

• The simplified model structure and parameterisation resulted in a considerable reduction

in run time for models. Consequently, a greater range of sensitivity analyses were able to be

undertaken in the time available, resulting in a better understanding of how various structural,

parameter and data decisions impact the key model results.

• We adopted a specification for M -at-age that was consistent with emerging best practice,

as identified by the 2023 CAPAM “Tuna Stock Assessment Good Practices Workshop”. Ac-

cordingly, natural mortality was specified as age-specific based on Lorenzen (1996) and M

was scaled using the Hamel and Cope (2022) approach. A prior distribution was developed
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following this approach with a somewhat lower than recommended CV of 0.2 to constrain M

to plausible values.

• The treatment of uncertainty in this assessment was greatly improved through the use of

a model ensemble Monte Carlo bootstrap approach (Ducharme-Barth and Vincent, 2021;

Ducharme-Barth et al., 2021) applied to uncertainty due to natural mortality and steepness.

The approach provided a more natural weighting of models in the ensemble than had been

the case with a fully factorised grid across multiple dimensions of uncertainty. This, and

the incorporation of estimation uncertainty for individual models of the ensemble into the

estimation of distributions of key stock status reference points results in a more comprehensive

and balanced treatment of uncertainty than in previous assessments.

11.2 Examining other key data inputs

The approach to standardise the longline CPUE data for the indices was similar to the previous

assessment in that both used a spatiotemporal delta-GLMM modelling approach. However, the

synthetic targeting cluster variable as a catchability covariate was replaced with hooks-between-

floats due to confounding of the former with abundance. Vessel flag as a catchability covariate was

maintained from the 2021 assessment; however the addition of season as a catchability covariate

informed the model of seasonal variation in fishery dynamics caused by non-biological drivers.

Preliminary analyses explored splitting the CPUE time series to allow for changes in gear config-

uration over time. However, there was concern that important information would be lost with this

approach. Ideally, it would be better to model the entire time-series and include gear information to

account for changes in selectivity and/or catchability due to gear changes. This was further explored

with sensitivities in selectivity and catchability time-blocks. However, important gear configuration

information is lacking from the data to appropriately model these dynamics. There remains a need

for further exploration.

Spatial stratification of the albacore stock by size has been observed, with smaller/younger fish

more available in the southern regions of the assessment domain and the larger individuals more

distributed throughout the sub-tropical waters. Standardizing the catch data by size class, or life-

stage (juveniles versus adults), could improve the estimation of selectivity for the index fisheries,

which may differ from the selectivity of the capture fisheries. These alternative size-based approaches

to CPUE index standardization (Maunder et al., 2020) could prove valuable for the next South

Pacific albacore assessment.

There is some limited data from archival tagging on vertical habitat utilisation of albacore, both

from the south and north Pacific. This may provide an opportunity to revisit the habitat-based

standardisation approach (Bigelow et al., 2002) to potentially better estimate effective longline

fishing effort for albacore.

While developments related to the CPUE standardisation methodology are important, perhaps
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more important is the need for greater focus on improving the scope of the data to support these

analyses so indices of relative abundance are more representative of the true stock dynamics. Sci-

entific observers collect detailed vessel, gear, and fishing strategy related information that could

improve these analyses, but coverage levels are insufficient (generally less than 5%) to provide the

spatial and temporal coverage needed for these analyses. Electronic monitoring for longline fish-

eries has shown great promise (Brown et al., 2021), and steps to expand and enhance these tools

to better monitor the longline sector are encouraged. Lastly, developing collaborative partnerships

and cooperative research programmes with the fishing industry is important to; 1) explore ques-

tions related to fishing strategy, gears, decision making, and other operational factors influencing

catch rates, and 2) improve the understanding of fishery operations by the scientists tasked with

conducting these analyses. Both of these would no doubt lead to improvements in the approaches

for developing abundance indices from fishery dependent catch and effort data.

11.3 Main assessment conclusions

The 2024 stock assessment provided results that were broadly consistent with the previous assess-

ment. Spawning potential is estimated to decrease until 1975 and then stabilise or gradually increase

until 2015. A decline occurred following this, until a slight increase occurred in the WCPFC-CA

in the last 2 years. Dynamic depletion shows a more consistent decrease over time, accelerating

post-2000. Some of the unusual features of the previous assessment concerning a recruitment “dip”

and sharp drop in SBt/SBF=0(t) towards the end of the assessment period appear to have been

resolved, or at least moderated, through the extension of the data series for the assessment. Esti-

mates of uncertainty for the diagnostic case model as far back as the 1970s are relatively low and

the various diagnostics indicated the model to be reasonably well fit, stable, without major data

conflicts or retrospective patterns, and provide similar results when various data types are removed.

The main conclusions of this assessment are summarised as follows:

• The assessment indicates the stock is not overfished, and there was zero probability of the

stock being below 20%SBF=0. Estimates of SB recent/SBF=0 (with estimation uncertainty

included) were 0.48, 0.36, and 0.62 for median, 10th, and 90th percentiles, respectively.

• The assessment indicates that the stock was not subject to overfishing and there was zero

probability of Frecent/FMSY being above 1 with Frecent/FMSY estimates (with estimation un-

certainty included) of 0.18, 0.06, and 0.44 for median, 10th, and 90th percentiles, respectively.

• The ratio of SB recent/SBF=0:iTRP was approximately 1 (median 0.952; 0.924 – 0.986, 10th

and 90th percentiles).

11.4 Recommendations for further research and software development

• Continue and refine as necessary the CKMR study for albacore, and develop the necessary

stock assessment model software module to incorporate CKMR data into the integrated as-
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sessment model.

• Additional collection of otolith and/or other age samples to better characterise the distribu-

tion of age-at-length across different source fisheries. Further evaluation of the existing otolith

sample to examine the large positive age residuals at larger lengths.

• Develop a logistic growth model for MULTIFAN-CL.

• Investigate the potential importance of sex structure, and identify the potential bias of ignor-

ing sex structure, in the South Pacific albacore assessment.

• Consider and test alternative parameterisations of selectivity for the assessment, to address

issues noted in this assessment regarding selectivity parameter correlation and convergence

at bounds.

• Continue the development of the SEAPODYM model for South Pacific albacore and its

alignment with the stock assessment.

• Further develop the longline CPUE standardisation model, in particular to investigate a

habitat-based model for better estimation of effective longline effort.

• Further work on the quality of longline LF data to address issues of data conflict within the

various fisheries data sets identified in this assessment.
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14 Tables

Table 1: Summary of data available for the 2024 South Pacific albacore assessment by fisheries and
year defined in Table 2.

Table 2: Definition of fisheries for the 2024 MULTIFAN-CL South Pacific albacore tuna stock
assessment, refer to Figure 3.

Fishery Number Gear Model Code-Fleets Flags Model Region Fleet area
1 LL 1.LL.DWFN.1a DWFN 1 a
2 LL 2.LL.DWFN.1b DWFN 1 b
3 LL 3.LL.DWFN.1c DWFN 1 c
4 LL 4.LL.DWFN.1d DWFN 1 d
5 LL 5.LL.PICT.1ab PICT 1 a, b
6 LL 6.LL.PICT.1cd PICT 1 c, d
7 LL 7.LL.AZ.1abcd AU/NZ 1 a, b, c, d
8 LL 8.LL.DWFN.1ef DWFN 1 e, f
9 LL 9.LL.PICT.1ef PICT 1 e, f
10 LL 10.LL.AZ.1ef AU/NZ 1 e, f
11 TR 11.TR-ALL.1e ALL 1 e
12 TR 12.TR.ALL.1f ALL 1 f
13 DN 13DN.ALL.1ef ALL 1 e, f
14 LL 14.LL.EPO.2a ALL 2 a
15 LL 15.LL.EPO.2b ALL 2 b
16 LL 16.LL.EPO.2c ALL 2 c
17 TR 17.TR.EPO.2abc ALL 2 a, b, c
18 LL 18.LL.INDEX.1abcd INDEX 1 a,b,c,d
19 TR 19.TR.INDEX.1ef INDEX 1 e,f
20 LL 20.LL.INDEX.2abc INDEX 2 a,b,c
DWFN: BZ, CN, ES, JP, JP-DW, KR, SU, TW, US, VN, VU
PICT: CK, FJ, FM, ID, KI, NC, NU, PF, PG, PH, SB, TO, TV, WS
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Table 3: Parameter structure for the diagnostic case model. Fisheries are numbered as per Table 2. Region 1 = WCPFC-CA, region 2 =
EPO.

Parameter Region Fishery Group Age- related No. seasons No. of parameters Fixed/ Estimated Constraints Comments
Selectivity All selectivities are splines.

1 1 1 3 4 12 Est
1 2 2 3 4 12 Est
1 3 1 3 4
1 4 2 3 4
1 5 3 3 4 12 Est
1 6 3 3 4
1 7 4 3 4 12 Est
1 8 5 4 1 4 Est
1 9 6 4 1 4 Est
1 10 7 4 1 4 Est
1 11 8 3 1 3 Est
1 12 9 3 1 3 Est
1 13 10 3 1 3 Est
2 14 11 3 2 6 Est
2 15 12 3 1 3 Est
2 16 13 3 1 3 Est
2 17 9 3 1
1 18 14 3 1 3 Est Non-decreasing with age
1 19 15 3 1 3 Est
2 20 16 3 1 3 Est Non-decreasing with age

Recruitment
Deviations 1 1 67 Est Recruitment in 2022 set to historical average. σ = 0.7.

2 1 Time-series variation shared across regions.
Regional proportions 1 Fixed 0.82, 0.18 as per SEAPODYM estimates.
Natural mortality 2 Fixed Lorenzen shape (inverse mean length) and scale.

Growth
L1 1 Fixed
L12 1 Est
k 1 Est

Offsets 3 Est Offsets for age classes 2, 3 and 4.
V1 1 Est
V2 1 Fixed

Movement 1 12 4 48 Fixed SEAPODYM estimates.
2 12 4 48 Fixed

Population scale 1 Est
Stock-recruitment Beverton and Holt stock-recruitment relationship

Scale 1 Est
Steepness 1 Fixed
TOTAL 102 Fixed

165 Est



Table 4: Description of symbols used in the yield and stock status analyses. For the purpose of this
assessment, “recent” for F is the average over the period 2018–2021 and for SB is the average over
the period 2019–2022 and “latest” is 2022.

Symbol Description
Frecent Average fishing mortality-at-age for a recent period (2018–2021)
YFrecent Equilibrium yield at average fishing mortality for a recent period (2018–2021)
fmult Fishing mortality multiplier at maximum sustainable yield (MSY)
FMSY Fishing mortality-at-age producing the maximum sustainable yield (MSY)
MSY Equilibrium yield at FMSY

Frecent/FMSY Average fishing mortality-at-age for a recent period (2018–2021) relative to FMSY

SB latest SB in the latest time period (2022)
SB recent SB for a recent period (2019–2022)
SBF=0 Average SB predicted in the absence of fishing for the period 2012–2021
SBMSY SB that will produce the maximum sustainable yield (MSY)

SBMSY/SBF=0 SB that produces maximum sustainable yield (MSY) relative to the average
SB predicted to occur in the absence of fishing for the period 2012–2021

SB latest/SBF=0 SB in the latest time period (2022) relative to the average SB
predicted to occur in the absence of fishing for the period 2012–2021

SB latest/SBMSY SB in the latest time period (2022) relative to that which will produce
the maximum sustainable yield (MSY)

SB recent/SBF=0 SB for a recent period (2019–2022) relative to the average spawning
biomass predicted to occur in the absence of fishing for the period 2012–2021

SB recent/SBMSY SB for a recent period (2019–2022) relative to the SB
that produces maximum sustainable yield (MSY)

20%SBF=0 WCPFC adopted limit reference point – 20% of SB in the
absence of fishing average over years t− 10 to t− 1 (2012–2021)

0.96 * SB2017−2019/SBF=0 WCPFC adopted interim target reference point (iTRP) – 0.96 times the mean of:
SB2017/SBF=0,2007−2016, SB2018/SBF=0,2008−2017 and SB2019/SBF=0,2009−2018
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Table 5: Sensitivity of important reference point variables to the different model variants examined
in the sensitivity analyses.

Sensitivity Variant SB recent/SBF=0 Frecent/FMSY SB recent/SBMSY

LL indices WCPO.NORTH 0.421 0.366 2.21
WCPO.SPAWN 0.416 0.368 2.16

Troll CPUE Included 0.421 0.366 2.21
Excluded 0.449 0.350 2.06

Troll LF Included 0.421 0.366 2.21
Excluded 0.449 0.281 2.48

CAAL weight 0.50 0.422 0.364 2.21
0.75 0.421 0.366 2.21
1.00 0.420 0.368 2.20

Movement None 0.502 0.275 2.50
0.5 x SEAPODYM 0.437 0.341 2.28
SEAPODYM 0.421 0.366 2.21
2 x SEAPODYM 0.408 0.388 2.15
Full mixing 0.409 0.397 2.14

Effort creep 0 0.421 0.366 2.21
0.50% 0.418 0.372 2.14
1% 0.416 0.376 2.09
1.50% 0.415 0.379 2.06

Recruit distribution R1:R2 70:30 0.420 0.368 2.20
82:18 0.421 0.366 2.21
90:10 0.422 0.364 2.21

No of age classes 10 0.442 0.346 2.31
12 0.421 0.366 2.21
15 0.426 0.355 2.23

Non-decreasing selectivity F18, F20 0.421 0.366 2.21
F7, F14 0.462 0.318 2.20

Time–block None 0.421 0.366 2.21
Selectivity 0.488 0.251 2.38
Selectivity+catchability 0.480 0.260 2.25

Growth VB with offsets 0.421 0.366 2.21
Standard VB 0.430 0.310 2.58

Natural mortality 0.24 0.301 0.769 1.61
0.36 0.458 0.283 2.40
0.54 0.649 0.065 3.68

Steepness 0.65 0.396 0.637 1.71
0.80 0.421 0.366 2.21
0.95 0.436 0.172 3.36
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Table 6: Fit statistics for sensitivity of selectivity and catchability models. AIC refers to Akaike
Information Criterion.

Model -Log likelihood No. of parameters AIC
Diagnostic model -41,824.6 165 - 83,319.20
Selectivity TB -41,868.3 251 - 83,234.60

Selectivity + catchability TB -41,873.8 251 - 83,245.60

Table 7: The growth characteristics for the model adopted for the diagnostic case.

Parameter Description Treatment

L1 Mean length of age class 1
Fixed at a value (45.5cm) consistent with a
mean age at recruitment of 9 mon.

L12 Mean length of age class 12 Estimated

k Growth coefficient Estimated

Offsets (3)
Deviations from VB growth for age
classes 2, 3 and 4

Estimated

V 1
Generic standard deviation of mean
length-at-age

Estimated

V 2 Change in mean length-at-age with age

Fixed at a value (0.547) that sets the SD of
length for age class 1 to a value consistent with
the first mode in the NZ troll length frequency
data (∼2.5cm)

Table 8: Comparison of the likelihood components of the diagnostic case model with a standard
VB model without estimated offsets.

Likelihood component Diagnostic (VB offsets) Standard VB
CPUE indices -170.0 -186.3

Length frequency -42,457.3 -42,374.9
Conditional age at length 786.4 731.0

Penalties 16.3 13.2
Total -41,824.6 -41,817.64

No. parameters 165 164
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Table 9: Summary of reference points over the model ensemble, along with results incorporating
estimation uncertainty. Note that these values do not include estimation uncertainty, unless other-
wise indicated. Estimates for WCPFC-CA only are also provided.

Mean Median Min 10% 90% Max

FMSY 0.15 0.16 0.10 0.12 0.18 0.20
fmult 7.95 5.61 1.21 2.27 17.18 27.66
Frecent/FMSY 0.22 0.18 0.04 0.06 0.44 0.82
MSY 113,308 101,100 62,120 74,018 176,330 202,400
SB0 587,089 566,950 529,100 537,100 662,500 749,700
SBF=0 724,200 711,059 665,389 674,633 788,312 857,071
SB latest/SB0 0.66 0.67 0.38 0.53 0.81 0.90
SB latest/SBF=0 0.54 0.54 0.29 0.41 0.70 0.78
SB latest/SBMSY 3.71 3.40 1.65 2.32 5.77 7.45
SBMSY 111,738 110,950 65,140 80,350 142,690 172,600
SBMSY/SB0 0.19 0.20 0.11 0.13 0.24 0.27
SBMSY/SBF=0 0.15 0.16 0.10 0.11 0.19 0.22
SB recent/SBF=0 0.48 0.48 0.27 0.37 0.62 0.65
SB recent/SBMSY 3.30 3.06 1.54 2.10 5.23 6.34
YFrecent 74,531 74,375 61,760 67,731 83,023 86,180
SB latest/SBF=0:iTRP 1.065 1.051 0.961 1.015 1.139 1.213
SB recent/SBF=0:iTRP 0.952 0.952 0.899 0.924 0.986 1.016

WCPFC-CA only
SB recent/SBF=0 0.49 0.48 0.27 0.37 0.62 0.66

Including estimation uncertainty
Frecent/FMSY 0.23 0.18 0.03 0.06 0.44 1.00
SB recent/SBF=0 0.48 0.48 0.23 0.36 0.62 0.77
SB recent/SBMSY 3.32 3.02 1.20 2.04 5.21 8.96

Note: Recalibrated value for iTRP = 0.50 (Pilling et al., 2024)
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15 Figures

Figure 1: The geographical area covered by the 2021 stock assessment and the boundaries of the
four model regions with addition of the sub-region applied for the EPO and overlap regions used
for South Pacific-wide albacore assessment. The overlap region is the area between 130◦–150◦ west
demarcated by the dashed line.
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Figure 2: The geographical area covered by the stock assessment and the boundaries of the two
model regions used for the South Pacific-wide 2024 albacore assessment.

Figure 3: The geographical area boundaries of the nine fisheries areas used for the South Pacific-
wide 2024 albacore assessment.
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Figure 4: Map of tag displacements for South Pacific albacore tagged under the different tagging
programs (top), and (bottom) table of tag-releases and recaptures for the various tagging programs
1979 to 1992.
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Figure 5: a) Spatial pattern of albacore catch by gear type over the last decade, and b) historical
catches of albacore across the spatial extent from 1954-2022 by gear type.
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Figure 6: a) Annual catches of albacore from 1952-2022 separated by the WCPFC-CA and the
IATTC (EPO) region, b) annual catches of albacore from 1952-2022 separated by flag for the
WCPFC-CA and the IATTC (EPO) regions.
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Figure 7: (top) Spatial distribution of albacore catches and (bottom) longline effort in the South
Pacific by decade. Model regions indicated by black lines.
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Figure 8: Spatial distribution of longline nominal albacore CPUE in the South Pacific by decade.
Model regions indicated by black lines.
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Figure 9: A segment of NZ troll fishery length-frequency data demonstrating strong modal structure
representing annual age classes.
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Figure 10: Regional movement parametrized by SEAPODYM estimates by age and season for the
diagnostic case model.

Figure 11: Reproductive potential ogives for South Pacific albacore by length (left) and converted
to age (years; right).
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Figure 12: Assumed prior distributions of average M (a) and steepness rates (b) considered in the
model ensemble uncertainty characterization.

Figure 13: standardised relative abundance indices by region plotted with 95% confidence intervals
(shading), from 1954–2022.
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Figure 14: Model development change in recruitment, SB, and SBt/SBF=0(t) from the 2021 refer-
ence case model to the 2024 diagnostic case model.
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Figure 15: Estimated age-specific (top) and length-specific (bottom) selectivity coefficients by fish-
ery for the diagnostic case model.
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Figure 16: Estimated length-at-age (Fork Length) von Bertalanffy (VB) relationship with 95%
confidence intervals from the diagnostic case model. Note ages 2–4 were modelled with estimated
offsets from the VB curve.

Figure 17: Estimated M -at-age from the von Bertalanffy (VB) growth parameters from the diag-
nostic case model. Average Ma=4:12 = 0.329 and Ma=4:12/Ma=12 = 1.079.
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Figure 18: Negative log likelihood for 25 jittered models (coloured points; colours represent whether
a PDH was achieved) and diagnostic case model (represented by an asterisk). Y-axis has been
reversed. Lower values (more negative) of negative log likelihood indicate an improvement in fit.
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Figure 19: Model fits (top, black line) to observed standardised CPUE (blue dots) with 95% confi-
dence intervals (grey shading) for the three index fisheries, and standardised residuals (bottom) of
model fits to observed CPUE indices. The red line represents a lowess smoother fit to the residuals.
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Figure 20: Aggregated (over time) observed (blue histograms) and predicted (grey lines) catch-
at-length for longline, troll, and driftnet fisheries with sample sizes for the diagnostic case model.
Includes the estimated effective sample size (ess) as derived from the robust normal likelihood,
the adjusted input sample size (adj) as scaled by the Francis weighting method, and the observed
sample size (n).
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Figure 21: Comparison of the observed (black points) and predicted (red points) median length
by fishery in the diagnostic case model. The intervals (grey shading) represent the observed values
encompassed by the 25% and 75% quantiles. Sampling data are aggregated by year.

Figure 22: Comparison of the observed (black points sized based on number of observations) and
predicted (red line) age-at-length data (left) with corresponding standardised residuals (right) for
the diagnostic case model.
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Figure 23: Recruitment (top), SB (middle), and SBt/SBF=0(t) (bottom) for the age-structured
production model (ASPM) with and without recruitment deviations (-recdev, -norecdev), catch-
curve analysis (CCA), and the diagnostic case model (Diagnostic).
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Figure 24: Relative likelihood (top) with total, penalties, length-frequency (LF), CPUE, and age-
length data. Relative likelihood of CPUE indices (middle) for region 1 (R1) and region 2 (R2)
longline indices and troll index. Relative likelihood of length-frequency (bottom) by fisheries. All
relative likelihoods were performed on average total biomass (metric tons; 1954–2021).
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Figure 25: Retrospective analysis results for SB, SBt/SBF=0(t), and recruitment for diagnostic
case model.
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Figure 26: Estimated annual recruitment with 95% confidence intervals across model regions for
the diagnostic case model.

Figure 27: Estimated relationship between recruitment and SB based on annual values for the
diagnostic case model.
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Figure 28: Estimated temporal SB with 95% confidence intervals by model region and the South
Pacific as a whole, for the diagnostic case model.

Figure 29: Estimated temporal SBt/SBF=0(t) with 95% confidence intervals by model region and
the South Pacific as a whole, for the diagnostic case model.
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Figure 30: Estimated annual juvenile (dashed line) and adult (solid line) fishing mortality for the
diagnostic case model.
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Figure 31: Estimated relative frequency by age class and decade (numbers-at-age; left) and esti-
mated instantaneous fishing mortality by age class and decade (right) for the diagnostic case model.
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Figure 32: Estimated annual instantaneous fishing mortality by age class and area for the diagnostic
case model.
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Figure 33: Estimated SBt/SBF=0(t) by age class for the diagnostic case model.
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Figure 34: Estimates of fishery impact, or reduction in SB due to fishing (Fishery impact = 1
- SBt/SBF=0(t)) by region (region 1 – WCPFC-CA and region 2 – EPO) and combined regions
attributed to various fishery groups for the diagnostic case model.

91



Figure 35: The WCPFC-CA.NORTH and WCPFC-CA.SPAWN indices of relative abundance, and
their 95% confidence intervals, tested in the sensitivity analysis. The panels on the left show the
full time series, while the panels on the right omit the initial ten years to better highlight recent
trends.
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Figure 36: Fits to the WCPFC-CA longline indices.
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Figure 37: Estimates of recruitment, SB, and SBt/SBF=0(t) from models using the WCPFC-
CA.NORTH and WCPFC-CA.SPAWN indices of abundance.
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Figure 38: Estimates of recruitment, SB, and SBt/SBF=0(t) from models using the WCPFC-
CA.NORTH index of abundance with and without the inclusion of the NZ troll index of abundance.
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Figure 39: NZ troll fishery CPUE observations (red circles) and model predictions of the index. The
blue line is the model predictions for the diagnostic model in which the troll index is fitted (average
CV of 0.2). The green line is from a model in which the troll index has been down-weighted to a
trivially small level (CV of 10,000).
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Figure 40: Estimates of recruitment, SB, and SBt/SBF=0(t) from models using the WCPFC-
CA.NORTH index of abundance with and without troll length frequency data.
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Figure 41: Estimates of recruitment, SB, and SBt/SBF=0(t) from models with conditional age-at-
length (CAAL) data set to an effective sample size (ESS) of 0.75 (diagnostic case), 0.5 and 1.0
times the observed sample size.
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Figure 42: Movement probabilities for the first quarter applied in the sensitivity analysis of move-
ment. Hi-move is 2 x SEAPODYM movement, Lo-move is 0.5 x SEAPODYM movement, Full-move
is movement probabilities of 0.9 per period in both directions.
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Figure 43: Estimates of recruitment, SB, and SBt/SBF=0(t) from models with different movement
scenarios. Full mixing has movement probabilities in both directions of 0.9 per period.
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Figure 44: CPUE indices for the WCPFC-CA.NORTH index under a range of effort creep scenarios.
The upper panel shows the full time series while the lower panel shows the series from 1975 to
highlight more recent trends.
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Figure 45: Estimates of recruitment, SB, and SBt/SBF=0(t) from models with different effort creep
scenarios.
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Figure 46: Estimated age-specific selectivity for the longline WCPFC-CA.NORTH index (F18) and
maturity.
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Figure 47: Estimates of recruitment, SB, and SBt/SBF=0(t) from models with different assumptions
regarding the distribution of recruitment between regions 1 (WCPFC-CA) and 2 (EPO).
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Figure 48: Estimates of recruitment, SB, and SBt/SBF=0(t) from models with different assumptions
regarding the number of annual age classes in the model.

105



Figure 49: Estimates of recruitment, SB, and SBt/SBF=0(t) from models with different assumptions
regarding time blocks of selectivity and index fishery time blocks.
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Figure 50: Estimated growth models. The upper panel is the von Bertalanffy offsets model and the
lower panel is the standard von Bertalanffy model.
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Figure 51: Observed (yellow histograms) and predicted (red lines) length frequency data for a
segment of the NZ troll fishery showing clear modal structure. The left panel shows predictions for
the VB offsets model and the right panel for the standard VB model.
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Figure 52: Estimates of recruitment, SB, and SBt/SBF=0(t) from models with growth model for-
mulations – von Bertalanffy offsets model and standard von Bertalanffy model.
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Figure 53: Estimates of recruitment, SB and SBt/SBF=0(t) from models with different settings for

average natural mortality (M).
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Figure 54: Estimates of recruitment, SB and SBt/SBF=0(t) from models with different settings for
steepness (h).
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Figure 55: Histograms of Monte-Carlo estimated model uncertainty for SB recent/SBF=0 by M (top-
left) and h (top-right) with mean line (blue) and SBrecent/SBF=0 = 0.2 line (red). Also includes
estimated SB recent/SBF=0 by M (bottom-left) and h (bottom-right) for each model in the ensemble
with loess smoother.
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Figure 56: Histograms of Monte-Carlo estimated model uncertainty for SB recent/SBMSY by M (top-
left) and h (top-right) with mean line (blue) and SB/SBMSY = 1 line (red). Also includes estimated
SB recent/SBMSY by M (bottom-left) and h (bottom-right) for each model in the ensemble with a
loess smoother.
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Figure 57: Histograms of Monte-Carlo estimated model uncertainty for Frecent/FMSY by M (top-
left) and h (top-right) with mean line (blue) and F/FMSY = 1 line (red). Also includes estimated
Frecent/FMSY by M (bottom-left) and h (bottom-right) for each model in the ensemble with a loess
smoother.
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Figure 58: Annual estimated 90% (dark blue) and 75% (light blue) quantiles of SBt/SBF=0(t) by
region from the model ensemble. The dashed line within the interval indicates the median.
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Figure 59: Annual estimated 90% (dark blue) and 75% (light blue) quantiles of SB by region from
the model ensemble. The dashed line indicates the median.
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Figure 60: Annual estimated 90% (dark blue) and 75% (light blue) quantiles of aggregated fishing
mortality by region from the model ensemble. The dashed line indicates the median.
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Figure 61: Majuro plots (top) and Kobe plots (bottom) summarising the results for the dynamic
MSY analysis (left) and each of the models in the model ensemble for the recent period (2019–
2022; right). Majuro plots include dashed line at iTRP estimate (0.5), calculated from the current
assessment (Pilling et al., 2024). Colors for dynamic MSY go from red to green over time. The red
point in model ensemble represents the median.
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Figure 62: South Pacific albacore SB depletion for the WCPFC Convention Area from the uncer-
tainty grid of assessment model runs for the period 1990 to 2022 (the vertical line at 2022 represents
the last year of the assessment), and stochastic projection results for the period 2023 to 2062 assum-
ing actual catch and effort levels in 2022, and that 2022 fishing levels continued. Prior to 2022 the
data represent the 60th and 95th percentiles of the uncertainty grid from the assessment models and
the median. During the projection period (2023-2062) levels of recruitment variability estimated
over the period used to estimate the stock-recruitment relationship (1972-2020) are assumed to
continue in the future. The dashed lines indicate three example trajectories (chosen randomly out
of 5000) from the model grid. The red dashed line represents the WCPFC agreed limit reference
point (0.20). Point represents SB recent/SBF=0, as defined within the stock assessment process.
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16 Appendix 1

The text below (known as the “doitall” file) provides the flag settings and phase operations for

running the diagnostic case model within a bash shell.

# ————————

# Create initial 00.par file

# ————————

# MULTIFAN-CLo64 alb.frq alb.ini 00.par # # does not work within a script

# ————————

#

# ————————

# PHASE 1 - initial fit with control phases

# ————————

#

MULTIFAN-CLo64 alb.frq 00.par 01.par # - PHASE1

#

# - control phase type

1 32 7 # sets control, but don‘t estimate growth

1 387 1

1 246 0 # Produces independent variables report

#

# - initial equilibrium population conditions

2 177 1 # use old totpop scaling method

2 32 1 # and estimate the totpop parameter

2 94 1 # initial age structure based on Z

2 128 10 # average Z for 1st 20 periods

#

#——————————————————————————

# Catch conditioned flags

# general activation

1 373 1 # activated CC with Baranov equation

1 393 0 # activate estimation of: kludged equilib coffs, and implicit fm level regression pars

2 92 2 # specifies the catch-conditioned option with Baranov equation

# - catch equation bounds

2 116 80 # value for Zmax fish in the catch equations

2 189 80 # the fraction of Zmax fish above which the penalty is calculated

1 382 300 # weight for Zmax fish penalty - set to 300 to avoid triggering Zmax flag=1

# De-activate any catch errors flags

-999 1 0
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-999 4 0

-999 10 0

-999 15 0

-999 13 0

# – survey fisheries defined

# Index wt Time varying CV

-18 92 20 -18 66 1

-19 92 20 -19 66 1

-20 92 20 -20 66 1

# – Grouping flags for survey CPUE

#

# - size data

1 141 3 # sets likelihood function for LF data to normal

1 311 1 # tail compression - necessage to limit min sample size

1 312 50 # these settings omit LF samples ¡50 fish

# - effective size data sample size based on Francis weighting

-1 49 80

-2 49 183

-3 49 52

-4 49 192

-5 49 287

-6 49 123

-7 49 28

-8 49 428

-9 49 235

-10 49 142

-11 49 28

-12 49 53

-13 49 271

-14 49 128

-15 49 242

-16 49 477

-17 49 1

-18 49 179

-19 49 53

-20 49 64

#

#

# - maturity
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2 188 2 # Sets option to use weighted spline to dynamically convert

# maturity specified in length to maturity at age

# - growth

1 173 4 # old comment: # 1st n lengths are independent pars

1 12 0 # turn off estimation growth mean length of first age class

1 13 0 # turn off estimation growth mean length of last age class

1 14 0 # turn off estimation growth K

1 15 0 # turn off estimation growth generic standard deviation length-at-age

1 16 0 # turn off estimation growth length-dependent standard deviation

1 184 0 # turn off estimation growth independent mean length parameters

1 227 0 # turn off estimation growth Richards parameter

#

# - recruitment

2 57 1 # sets no. of recruitments per year to 1

2 93 1 # sets no. of recruitments per year to 1

1 400 1 # assume constant mean recruitment for last 2 years

1 398 1 # sets terminal recruitment to arithmetic mean of estimated recrui

1 149 100 # initial recruitment deviate penalties (from average)

#

# natural mortality

2 109 3 # set Lorenzen M - turn off as using specified age pars(2)

2 121 0 # do not estimate parameters (set for length)

# - movement

2 114 1 # take movement from matrices

#

# - selectivity

-999 26 2 # sets length-dependent selectivity option

-999 57 3 # uses cubic spline selectivity

-999 61 3 # with 3 nodes for cubic spline

-8 61 4 # moreflexibility for southern LL

-9 61 4

-10 61 4

#

# Selectivity grouping - EPO troll fisheries grouped with US troll, northern DWFN and PICT

fisheries grouped across 10S boundary

-1 24 1

-2 24 2

-3 24 1

-4 24 2
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-5 24 3

-6 24 3

-7 24 4

-8 24 5

-9 24 6

-10 24 7

-11 24 8

-12 24 9

-13 24 10

-14 24 11

-15 24 12

-16 24 13

-17 24 9

-18 24 14

-19 24 15

-20 24 16

#

#

-999 71 0 # no time-block selectivities

#

# sets non-decreasing selectivity for longline fisheries and zero selectivity for age classes 19 and 20

in troll and driftnet fisheries

#

-1 16 0

-2 16 0

-3 16 0

-4 16 0

-5 16 0

-6 16 0

-7 16 0

-8 16 0

-9 16 0

-10 16 0

-11 16 0

-12 16 0

-13 16 0

-14 16 0

-15 16 0

-16 16 0
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-17 16 0

-18 16 1

-19 16 0

-20 16 1

#

# apply constraint to selectivity = 0 for young age classes for particular fisheries

-1 75 2

-2 75 2

-3 75 2

-4 75 2

-5 75 3

-6 75 3

-7 75 3

-8 75 1

-9 75 1

-10 75 1

-11 75 0

-12 75 0

-13 75 1

-14 75 3

-15 75 1

-16 75 1

-17 75 0

-18 75 2

-19 75 0

-20 75 4

#

PHASE1

#

# ———

# PHASE 2

# ———

MULTIFAN-CLo64 alb.frq 01.par 02.par # - PHASE2

#

2 113 0 # estimate initpop/totpop scaling parameter - turned off

# selectivity

-999 3 0 # all selectivities equal for age classes 47 and 48 (default)

#

# catch equation fishing mortality bound
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# -999 14 10 # Penalties to stop F blowing out

#

# output

1 190 1 # write plot.rep

#

# number of evaluations and convergence threshold

1 1 500 # set max. number of function evaluations per phase to 1000

1 50 -1

#

PHASE2

#

# ———

# PHASE 3

# ———

MULTIFAN-CLo64 alb.frq 02.par 03.par # - PHASE3

#

# fishing impact analysis

-999 55 1 # activate fishery impact analyis - run zero F option

2 171 1 # unfished calculations use BH-SRR multiplier on recruitments

#

# BH-SRR and Yield calculation

#

2 182 0 # Fit BH-SRR to annual recruitments

2 146 1 # estimate SRR parameters

2 145 1 # activates SRR estimation with penalty 1

1 149 0 # recr dev pen set to 0

2 162 0 # don‘t estimate steepness

2 163 0 # use fixed steepness in BH-SRR

2 147 1 # lag between spawning and recruitment

2 148 5 # no. years for averaging F (same as yft)

2 155 1 # but omits the last year

2 161 1 # log-normal bias correction in BH-SRR predictions used for yields

2 199 57 # start period for recruitments used in BH-SRR estimation - 1965 onwards

2 200 1 # end period for recruitments used in BH-SRR estimation - exclude last year

#

# catch equation

-999 14 0 # limit on F per fishing incident - turned off

#

# number of evaluations and threshold max.gradient
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1 1 2000

1 50 -5

# Period of average recruitment used for impact analysis or projections

2 190 0 # Turn off - use entire model period for calculating the average

2 191 0

1 189 1 1 190 1 1 188 1 1 187 1 1 186 1 # full output

2 116 300

PHASE3

# ———

# PHASE 4

# ———

MULTIFAN-CLo64 alb.frq 03.par 04.par # - PHASE4

# Estimate K

1 14 1

1 173 4

1 184 1

# 1 240 1

1 1 5000

#

#

PHASE4

# ———

# PHASE 5

# ———

MULTIFAN-CLo64 alb.frq 04.par 05.par # - PHASE5

#

1 1 5000

1 50 -6

# Selectivity time block

# -1 71 2

# -2 71 2

# -3 71 2

# -4 71 2

# -8 71 2

#-14 71 2

#-16 71 2

PHASE5

# ———

# PHASE 6
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# ———

MULTIFAN-CLo64 alb.frq 05.par 06.par # - PHASE6

#

1 50 -7

1 1 5000

-1 74 4 # Number of seasonal selectivity patterns

-2 74 4

-3 74 4

-4 74 4 # Number of seasonal selectivity patterns

-5 74 4

-6 74 4

-7 74 4

-8 74 1

-9 74 1

-10 74 1

-11 74 1

-12 74 1

-13 74 1

-14 74 2

-15 74 1

-16 74 1

-17 74 1

-18 74 1

-19 74 1

-20 74 1

PHASE6

# ———

# PHASE 7

# ———

MULTIFAN-CLo64 alb.frq 06.par 07.par # - PHASE7

#

1 15 1

PHASE7

# ———

# PHASE 7a

# ———

MULTIFAN-CLo64 alb.frq 07.par 07-CAL.par # - PHASE7a

#

1 240 1
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PHASE7a

# ———

# PHASE 8

# ———

MULTIFAN-CLo64 alb.frq 07-CAL.par 08-CAL.par # - PHASE8

#

1 13 1

1 1 5000

PHASE8
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Table 10: Monte Carlo ensemble model results (models 1–35) with steepness (h), average natural mortality (M), maximum gradient,
number of negative eigen values (Neg vals), and negative log-likelihood (LL) for total, total LF (length-frequency), CPUE (catch-per-unit-
effort), conditional-age-at-length (CAAL), Beverton-Holt steepness, longline WCPO CPUE, troll CPUE, EPO CPUE, LF troll samples
number 14–16 (when age class modes are distinct), and LF troll.

Model h M Max gradient Neg vals Total LL total LF CPUE CAAL BH Steep CPUE WCPO CPUE Troll CPUE EPO LF troll 14-16 LF troll

1 0.91 0.28 8.13E-07 0 -41,816 -42,454 -166 787 10.3 -85.4 -7.8 -73.1 -131 -4,712
2 0.85 0.42 5.59E-07 0 -41,831 -42,467 -176 796 8.5 -85.6 -14.4 -75.7 -130 -4,704
3 0.87 0.26 1.45E-05 0 -41,810 -42,451 -164 787 10.7 -85.0 -6.6 -72.5 -131 -4,713
4 0.78 0.44 5.75E-07 0 -41,717 -42,555 -179 1,005 7.6 -83.7 -19.0 -76.2 -133 -4,767
5 0.90 0.29 1.36E-05 0 -41,818 -42,455 -167 787 10.2 -85.6 -8.3 -73.3 -131 -4,712
6 0.93 0.45 1.52E-06 0 -41,725 -42,542 -179 985 7.5 -84.6 -18.4 -76.4 -133 -4,758
7 0.87 0.45 7.59E-07 0 -41,724 -42,542 -179 985 7.6 -84.6 -18.2 -76.4 -133 -4,758
8 0.80 0.31 1.33E-06 0 -41,822 -42,456 -169 787 9.9 -85.8 -9.4 -73.9 -131 -4,712
9 0.91 0.35 2.26E-06 0 -41,828 -42,459 -172 786 9.4 -86.1 -11.0 -74.5 -131 -4,711
10 0.84 0.29 2.29E-06 0 -41,817 -42,454 -167 787 10.3 -85.4 -7.9 -73.2 -131 -4,712
11 0.94 0.24 6.98E-07 0 -41,807 -42,450 -163 787 10.9 -84.8 -5.9 -72.1 -131 -4,713
12 0.89 0.33 1.15E-06 0 -41,821 -42,463 -171 797 9.5 -85.4 -11.1 -74.3 -131 -4,705
13 0.97 0.28 2.37E-06 0 -41,816 -42,454 -166 787 10.3 -85.5 -7.9 -73.1 -131 -4,712
14 0.93 0.48 9.10E-07 0 -41,835 -42,469 -177 797 8.1 -85.5 -15.7 -76.2 -130 -4,704
15 0.88 0.33 5.12E-07 0 -41,825 -42,457 -170 786 9.7 -85.9 -10.1 -74.1 -131 -4,711
16 0.84 0.44 2.33E-06 0 -41,838 -42,463 -176 786 8.6 -86.3 -13.8 -75.9 -131 -4,709
17 0.97 0.33 4.09E-06 0 -41,820 -42,463 -170 797 9.6 -85.4 -10.9 -74.2 -131 -4,705
18 0.90 0.36 6.40E-07 0 -41,830 -42,460 -172 786 9.3 -86.1 -11.4 -74.7 -131 -4,711
19 0.90 0.36 5.64E-07 0 -41,830 -42,460 -172 786 9.3 -86.1 -11.4 -74.7 -131 -4,711
20 0.91 0.51 5.93E-06 0 -41,842 -42,465 -178 787 8.1 -86.2 -15.3 -76.6 -131 -4,708
21 0.87 0.44 4.07E-06 0 -41,724 -42,542 -179 985 7.6 -84.6 -18.1 -76.3 -133 -4,758
22 0.84 0.54 4.54E-05 0 -41,843 -42,466 -179 787 7.9 -86.1 -15.7 -76.9 -131 -4,707
23 0.85 0.41 9.59E-07 0 -41,722 -42,542 -178 984 7.9 -84.6 -17.2 -75.8 -133 -4,759
24 0.91 0.52 8.09E-06 0 -41,842 -42,465 -178 787 8.1 -86.2 -15.4 -76.7 -131 -4,708
25 0.84 0.39 2.02E-06 0 -41,833 -42,461 -174 786 9.0 -86.2 -12.3 -75.1 -131 -4,710
26 0.74 0.36 8.49E-07 0 -41,829 -42,459 -172 786 9.3 -86.1 -11.2 -74.7 -131 -4,711
27 0.82 0.50 7.52E-07 0 -41,726 -42,543 -181 985 7.2 -84.5 -19.3 -77.0 -133 -4,757
28 0.92 0.20 6.20E-06 0 -41,794 -42,452 -158 798 11.7 -83.8 -3.4 -70.9 -130 -4,705
29 0.89 0.30 2.76E-06 0 -41,815 -42,460 -168 797 10.0 -85.1 -9.3 -73.6 -131 -4,705
30 0.94 0.41 7.88E-07 0 -41,722 -42,542 -178 984 7.8 -84.6 -17.3 -75.8 -133 -4,758
31 0.79 0.51 2.04E-06 0 -41,728 -42,531 -182 972 7.3 -85.9 -18.7 -77.5 -133 -4,755
32 0.82 0.23 4.06E-07 0 -41,804 -42,449 -161 787 11.1 -84.5 -5.0 -71.8 -131 -4,713
33 0.82 0.35 1.68E-06 0 -41,823 -42,464 -172 797 9.3 -85.4 -11.7 -74.6 -131 -4,705
34 0.83 0.24 8.54E-07 0 -41,808 -42,450 -163 787 10.8 -84.8 -5.9 -72.2 -131 -4,713
35 0.90 0.29 8.40E-07 0 -41,817 -42,454 -167 787 10.3 -85.5 -8.0 -73.2 -131 -4,712
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Table 11: Monte Carlo ensemble model results (models 36–70) with steepness (h), average natural mortality (M), maximum gradient,
number of negative eigen values (Neg vals), and negative log-likelihood (LL) for total, total LF (length-frequency), CPUE (catch-per-unit-
effort), conditional-age-at-length (CAAL), Beverton-Holt steepness, longline WCPO CPUE, troll CPUE, EPO CPUE, LF troll samples
number 14–16 (when age class modes are distinct), and LF troll.

Model h M Max gradient Neg vals Total LL total LF CPUE CAAL BH Steep CPUE WCPO CPUE Troll CPUE EPO LF troll 14-16 LF troll

36 0.93 0.33 1.20E-06 0 -41,820 -42,463 -171 797 9.5 -85.4 -11.0 -74.2 -131 -4,705
37 0.86 0.21 3.10E-06 0 -41,799 -42,447 -159 788 11.5 -84.1 -3.7 -71.0 -131 -4,713
38 0.96 0.40 3.43E-06 0 -41,834 -42,461 -174 786 9.0 -86.3 -12.5 -75.2 -131 -4,710
39 0.90 0.29 7.89E-07 0 -41,819 -42,455 -167 787 10.1 -85.6 -8.4 -73.4 -131 -4,712
40 0.91 0.42 8.50E-07 0 -41,837 -42,463 -175 786 8.7 -86.3 -13.3 -75.6 -131 -4,709
41 0.90 0.39 3.18E-06 0 -41,833 -42,461 -173 786 9.1 -86.2 -12.2 -75.1 -131 -4,710
42 0.88 0.33 2.43E-06 0 -41,826 -42,458 -170 786 9.6 -86.0 -10.3 -74.2 -131 -4,711
43 0.85 0.29 1.10E-06 0 -41,817 -42,454 -167 787 10.3 -85.5 -8.0 -73.2 -131 -4,712
44 0.82 0.39 7.63E-07 0 -41,721 -42,541 -177 984 8.0 -84.6 -16.8 -75.6 -133 -4,759
45 0.86 0.35 1.01E-06 0 -41,823 -42,464 -172 797 9.3 -85.5 -11.9 -74.6 -131 -4,705
46 0.84 0.35 7.37E-07 0 -41,828 -42,459 -172 786 9.4 -86.1 -10.9 -74.5 -131 -4,711
47 0.81 0.25 3.16E-06 0 -41,809 -42,450 -163 787 10.8 -84.8 -6.2 -72.4 -131 -4,713
48 0.84 0.39 1.63E-06 0 -41,721 -42,541 -177 984 8.0 -84.6 -16.8 -75.6 -133 -4,759
49 0.91 0.34 9.41E-07 0 -41,822 -42,463 -171 797 9.4 -85.4 -11.5 -74.4 -131 -4,705
50 0.88 0.50 2.42E-06 0 -41,842 -42,465 -178 787 8.2 -86.3 -15.0 -76.5 -131 -4,708
51 0.86 0.36 4.25E-06 0 -41,829 -42,459 -172 786 9.3 -86.1 -11.2 -74.7 -131 -4,711
52 0.76 0.49 2.48E-06 0 -41,726 -42,543 -181 985 7.3 -84.6 -19.1 -76.9 -133 -4,757
53 0.87 0.40 1.25E-06 0 -41,721 -42,541 -177 984 8.0 -84.6 -16.9 -75.6 -133 -4,759
54 0.88 0.45 2.74E-05 0 -41,839 -42,464 -176 786 8.5 -86.3 -14.0 -76.0 -131 -4,709
55 0.93 0.36 7.11E-07 0 -41,825 -42,464 -173 797 9.2 -85.5 -12.3 -74.8 -131 -4,705
56 0.93 0.41 9.81E-07 0 -41,722 -42,542 -178 984 7.9 -84.6 -17.2 -75.8 -133 -4,759
57 0.71 0.28 1.13E-06 0 -41,815 -42,453 -166 787 10.4 -85.3 -7.4 -73.0 -131 -4,712
58 0.84 0.39 9.69E-07 0 -41,834 -42,461 -174 786 9.0 -86.3 -12.5 -75.2 -131 -4,710
59 0.91 0.33 5.46E-06 0 -41,824 -42,457 -170 786 9.7 -85.9 -10.0 -74.1 -131 -4,711
60 0.89 0.45 1.15E-06 0 -41,724 -42,542 -179 985 7.5 -84.6 -18.3 -76.4 -133 -4,758
61 0.91 0.40 2.71E-06 0 -41,722 -42,542 -177 984 7.9 -84.6 -17.1 -75.7 -133 -4,759
62 0.89 0.26 4.59E-06 0 -41,812 -42,452 -165 787 10.6 -85.1 -7.0 -72.7 -131 -4,713
63 0.89 0.40 1.37E-06 0 -41,722 -42,542 -177 984 7.9 -84.6 -17.1 -75.7 -133 -4,759
64 0.72 0.44 9.46E-07 0 -41,717 -42,555 -179 1,005 7.6 -83.6 -19.0 -76.2 -133 -4,767
65 0.76 0.32 1.56E-06 0 -41,819 -42,462 -170 797 9.6 -85.3 -10.6 -74.2 -131 -4,705
66 0.85 0.30 4.35E-06 0 -41,819 -42,455 -167 787 10.1 -85.6 -8.4 -73.4 -131 -4,712
67 0.86 0.53 1.53E-06 0 -41,843 -42,466 -179 787 8.0 -86.2 -15.7 -76.8 -131 -4,707
68 0.87 0.31 9.33E-07 0 -41,822 -42,456 -169 787 9.9 -85.7 -9.2 -73.8 -131 -4,712
69 0.91 0.51 3.88E-06 0 -41,842 -42,465 -178 787 8.1 -86.3 -15.2 -76.6 -131 -4,708
70 0.74 0.41 9.78E-07 0 -41,722 -42,542 -178 984 7.9 -84.6 -17.2 -75.8 -133 -4,759
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Table 12: Monte Carlo ensemble model results (models 71–100) with steepness (h), average natural mortality (M), maximum gradient,
number of negative eigen values (Neg vals), and negative log-likelihood (LL) for total, total LF (length-frequency), CPUE (catch-per-unit-
effort), conditional-age-at-length (CAAL), Beverton-Holt steepness, longline WCPO CPUE, troll CPUE, EPO CPUE, LF troll samples
number 14–16 (when age class modes are distinct), and LF troll.

Model h M Max gradient Neg vals Total LL total LF CPUE CAAL BH Steep CPUE WCPO CPUE Troll CPUE EPO LF troll 14-16 LF troll

71 0.88 0.40 1.19E-06 0 -41,721 -42,542 -177 984 7.9 -84.6 -17.0 -75.6 -133 -4,759
72 0.90 0.31 2.33E-06 0 -41,818 -42,462 -169 797 9.8 -85.3 -10.2 -73.9 -131 -4,705
73 0.90 0.38 8.23E-07 0 -41,832 -42,461 -173 786 9.1 -86.2 -12.1 -75.0 -131 -4,710
74 0.86 0.29 9.60E-07 0 -41,818 -42,455 -167 787 10.2 -85.5 -8.3 -73.4 -131 -4,712
75 0.96 0.31 6.03E-06 0 -41,821 -42,456 -169 787 9.9 -85.7 -9.1 -73.7 -131 -4,712
76 0.92 0.52 2.50E-06 0 -41,842 -42,465 -178 787 8.1 -86.2 -15.4 -76.7 -131 -4,708
77 0.79 0.34 2.04E-06 0 -41,821 -42,463 -171 797 9.4 -85.4 -11.3 -74.4 -131 -4,705
78 0.85 0.46 1.44E-05 0 -41,839 -42,464 -176 786 8.5 -86.3 -14.1 -76.0 -131 -4,709
79 0.84 0.38 3.21E-07 0 -41,720 -42,541 -176 984 8.1 -84.5 -16.5 -75.4 -133 -4,759
80 0.95 0.28 6.68E-07 0 -41,816 -42,453 -166 787 10.4 -85.4 -7.7 -73.0 -131 -4,712
81 0.88 0.37 8.00E-07 0 -41,831 -42,460 -173 786 9.2 -86.2 -11.6 -74.8 -131 -4,711
82 0.70 0.43 6.02E-07 0 -41,837 -42,463 -176 786 8.7 -86.3 -13.6 -75.9 -131 -4,709
83 0.92 0.36 9.52E-07 0 -41,824 -42,464 -172 797 9.2 -85.5 -12.2 -74.7 -131 -4,705
84 0.94 0.40 1.25E-06 0 -41,722 -42,542 -177 984 7.9 -84.6 -17.1 -75.7 -133 -4,759
85 0.85 0.31 2.45E-06 0 -41,821 -42,456 -169 787 9.9 -85.7 -9.2 -73.8 -131 -4,712
86 0.91 0.36 2.21E-06 0 -41,829 -42,459 -172 786 9.3 -86.1 -11.3 -74.7 -131 -4,711
87 0.90 0.43 2.82E-07 0 -41,723 -42,542 -178 985 7.7 -84.6 -17.7 -76.1 -133 -4,758
88 0.86 0.33 2.38E-06 0 -41,825 -42,457 -170 786 9.7 -85.9 -10.0 -74.1 -131 -4,711
89 0.81 0.39 4.53E-06 0 -41,833 -42,461 -174 786 9.0 -86.2 -12.3 -75.2 -131 -4,710
90 0.93 0.37 2.42E-06 0 -41,830 -42,460 -173 786 9.2 -86.2 -11.6 -74.8 -131 -4,711
91 0.88 0.28 7.24E-07 0 -41,816 -42,454 -166 787 10.3 -85.4 -7.8 -73.1 -131 -4,712
92 0.97 0.37 8.13E-07 0 -41,830 -42,460 -172 786 9.3 -86.2 -11.5 -74.7 -131 -4,711
93 0.86 0.35 9.62E-07 0 -41,823 -42,464 -172 797 9.3 -85.5 -11.9 -74.6 -131 -4,705
94 0.94 0.44 2.47E-06 0 -41,717 -42,555 -179 1,005 7.6 -83.7 -19.0 -76.2 -133 -4,767
95 0.89 0.37 6.06E-07 0 -41,831 -42,460 -173 786 9.2 -86.2 -11.7 -74.8 -131 -4,711
96 0.86 0.33 7.34E-07 0 -41,825 -42,457 -170 786 9.7 -85.9 -10.1 -74.1 -131 -4,711
97 0.95 0.31 3.75E-06 0 -41,822 -42,456 -169 787 9.9 -85.8 -9.2 -73.7 -131 -4,712
98 0.87 0.33 2.77E-06 0 -41,825 -42,457 -170 786 9.7 -85.9 -10.1 -74.1 -131 -4,711
99 0.94 0.30 8.16E-07 0 -41,816 -42,461 -169 797 9.9 -85.2 -9.7 -73.7 -131 -4,705
100 0.96 0.28 8.85E-07 0 -41,816 -42,454 -166 787 10.3 -85.5 -7.9 -73.1 -131 -4,712
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