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EXECUTIVESUMMARY
This analysis assesses the southwest Pacific silky shark (Carcharhinus falciformis) stock in
theWestern andCentral PacificOcean (WCPO). This is the third a empt at undertaking
an assessment of Pacific silky sharks, with one previous a empt covering the entire
Pacific (Clarke et al. 2018a), and the other for the WCPO area only (Rice2013b).

There are no target fisheries for silky sharks in the WCPO, and they are caught as
bycatch in longline and purse seine fisheries. Since 2015 all silky sharks caught in
fisheries managed by the Western and Central Pacific Fisheries Commission (WCPFC)
are required to be released (WCPFC 2013). While silky sharks have been caught in
Pacific fisheries since their inception in the 1950s, they have only been reported in catch
records since the 1990s (Brouwer et al. 2023, Neubauer et al. 2023a). A catch history
is required to be estimated prior to an assessment being undertaken because of the
unreliability of both logsheet and observer data, due to: the use of generic reporting
codes prior to 2015; the lack of logsheet reporting of bycatch data; and, poor and
inconsistent (in time and space) observer coverage for most flags in the Pacific Ocean.
However, general data improvements in recent years, along with the availability of
biological data and the successful previous stock assessments led Brouwer and Hamer
(2020) to conclude that a data rich assessment should be undertaken for this stock.

This assessment took a multi-model approach to assessing silky shark in the WCPO,
resulting from large uncertainties in the underlying data and difficulties with fi ing of
integrated stock assessments for sharks generally. In an effort to understand overfishing
risk to silky shark based on different lines of reasoning, a range of models were
applied, with varying degrees of complexity and with different data requirements,
including a fully integrated stock assessment in Stock Synthesis, and three alternative
assessments: length and age structured assessment model (LAM), dynamic surplus
production model (DSPM), and a length-based spatial risk assessment (SRA). These
approaches were not strictly standardised, with no a empt to use consistent priors
between them, and treating each approach as standalone to provide evidence from
independent lines of reasoning. However, with a single set of data available, data inputs
were standardised across all four assessment approaches.

Results across all assessment methods are largely in agreement that recent fishing
mortality was low with respect to biological reference points for sharks. Therefore,
while each modelling approach has limitations, we suggest that the weight of evidence
is sufficient to conclude that fishing mortality has declined substantially for silky
shark in the most recent decade, and that recent stock status is likely improving from
previous low levels. We further suggest that the dynamic surplus production models
provide the most parsimonious and robust available model for management advice.
This suggestion derives from the consistency with other outcomes, but also because of
stronger reservations about the robustness of other approaches. The stock synthesis
assessment provided a number of challenges and some issues could not be resolved.
We consider both the risk assessment and LAMmodels experimental at this stage, with
further work required to use these model for management advice.
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Main Assessment Conclusions

• The multi-model approach to assessing silky shark resulted in an uncertain stock
status, but high confidence that recent fishingmortality is below levels that would
preclude stock rebuilding.

• Based on considerations of model complexity, fit and estimation issues, we
suggest that the dynamic surplus production model be used for providing
management advice. We further suggest that the model ensemble across initial
depletion priors may be over-representing uncertainty, and we suggest output
from the intermediate assumption as a candidate model for management advice.

• The largest fishing mortality was estimated to have come from longline fisheries
capturing nearly the full size-range of silky sharks, and reductions in interactions
as a result of changes in fishing practices over the last decade may have
substantially reduced this source of mortality, allowing the stock to rebuild.

• The stock status has been improving since 2010, and the recent fishing
mortality rates are below biological reference points for the ensemble (Diagnostic
Frecent/Fcrash: 0.13 [0.01–0.25]; P(Frecent/Fcrash >1)=0; P(Frecent/Flim >1)=0).

With respect to other shark stocks with lower levels of information:

• Surplus production models should be used when composition data are problem-
atic, and risk assessments should only be used in the context of prioritisation
across species. However, alternative, data driven risk assessments could provide
an avenue to use a risk assessment approach when time-series are not sufficiently
long or reliable to estimate fishing mortality rates relative to biological reference
points.

• With non-retention measures leading to sharks and other bycatch species being
cut free from longlines, data colection may be problematic. In these cases, the
only alternative to provide estimates of risk would be methods such as EASI-
fish, which estimate risk from assumptions about fishery overlap with the species
distributions and vulnerability to fishing effort.

Given some of the fundamental uncertainties highlighted above, we recommend:

• Additional tagging should be carried out using satellite tags in a range of locations
as well as high seas areas to resolve fundamental questions about the species
interactions with local oceanography and the dynamics of ENSO. Such tagging
may help to resolve questions about the degree of natal homing and limited
mixing of the stock, as suggested by genetics. This work is currently scheduled as
part of the SRP as work theme 3 (a)vii and is due to begin in 2025 (Brouwer and
Hamer 2024), and it is recommended that CCMs prioritise this work and ensure
that satellite tagging options are included in the project specification.
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• Additional growth studies and validation of aging methods from a range of
locations could help build a be er understanding of typical growth, as well
as regional growth differences. Current growth data are conflicting, with
insufficient data to understand the underlying process. This work is currently
scheduled as part of the SRP as Project P19X11 and is due to begin in 2025
(Brouwer and Hamer 2024), and it is recommended that CCMs prioritise this
work.

• Additional genetic/genomic studies across a broader set of locations could be
undertaken to augment the tagging and existing genomics work to help resolve
the stock/sub-stock structure pa erns. To support this work, a strategic tissue
sampling program for sharks is recommended with samples to be stored and
curated in the Pacific Marine Specimen Bank. This work is currently scheduled
as part of the SRP as work theme 3 (a)xii and is due to begin in 2026 (Brouwer
and Hamer 2024), and it is recommended that CCMs maintain this project in the
current work stream.
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1. INTRODUCTION

Silky sharks (Carcharhinus falciformis) are wide ranging across the Pacific Ocean where
they inhabit coastal and oceanic waters, but are most abundant in the tropical and
subtropical waters (Bonfil 2008).

Globally, silky sharks are one of the most frequently caught sharks in tropical fisheries
either as a target, or as bycatch (Bonfil 2008). In the Western and Central Pacific
Ocean (WCPO) they are caught as bycatch in tropical and sub-tropical longline fisheries
targeting tuna, billfish and blue sharks throughout the area and they are also caught in
the purse seine fisheries of theWCPO (Brouwer et al. 2023). There are no target fisheries
for silky sharks in theWCPOand since 2015 all silky sharks caught in fisheriesmanaged
by the Western and Central Pacific Fisheries Commission (WCPFC) are required to be
released (WCPFC 2013).

Sharks, including silky sharks, have been caught in Pacific longline fisheries since their
inception in the 1950s, but they have only been reported in catch records since the 1990s
(Brouwer et al. 2023, Neubauer et al. 2023a). At that time, sharks were o en lumped
together and reported to a generic shark code (SHK). The generic shark code is seldom
used a er 2015 (Brouwer et al. 2023). These reporting issues have led to a paucity of
data on silky shark catchwhich is exacerbated by a lack of logsheet reporting of bycatch
in general, but particularly for sharks. Additionally, poor observer coverage for most
flags in Pacific Ocean longline fisheries (Williams et al. 2020) means that catch records
for this species are relatively sparse compared to the target tunas and blue sharks. The
data that do exist are inconsistent in time and space and between fleets (Brouwer et
al. 2023), suggesting the data which would usually be used in a stock assessment are
sparse. This paucity of data requires that prior to an assessment being undertaken,
catch histories need to be estimated as one cannot rely on reported or observed data
alone. Catch histories have therefore been developed for some previous assessments
(Rice 2012) and have again been a empted for this assessment (Neubauer et al. 2023a).

This paper reports on the 2024 stock assessment of silky sharks in the Western and
Central Pacific Fisheries Commission Convention Area (WCPFC-CA). This is the third
a empt at undertaking an assessment of Pacific silky sharks, with one previous a empt
covering the entire Pacific (Clarke et al. 2018b), and the other for the WCPO area only
(Rice and Harley 2013).

This report documents phase 2 of the 2024 silky shark assessment project, with phase
1 having been conducted in 2023. This is the first WCPFC shark assessment project
to be conducted over a two year period, with the aim of allowing sufficient time to
explore the issues associated with problematic data available to shark assessments, and
have these considered by Scientific Commi ee prior to an assessment being conducted.
This approach was recommended a er both the recent blue shark and mako shark
assessments (Neubauer et al. 2022, Large et al. 2022b), and was agreed at SC18.

Along with general data improvements in recent years (as well as the availability
of biological data, and the successful previous stock assessments), the results of
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investigative data work in phase 1 and the recommendations from SC19 led Brouwer
and Hamer (2020) to conclude that a data rich assessment1 should be undertaken for
this stock.

A catch data series has been estimated and CPUE indices have been developed from
multiple fleets (Neubauer et al. 2023a). These data along with estimates of growth, and
observed length data from the populationwere available as inputs to this assessment (as
part of thework in phase 1 reported to SC19). The assessment results are presented here,
but as there are no agreed reference points for sharks managed by the WCPFC, where
possible a range of metrics are provided as recommended by Brouwer and Hamer
(2020) for SC20s consideration. This report should be considered along with the data
inputs report (Neubauer et al. 2023a) and fisheries characterisationwork (Brouwer et al.
2023) that were undertaken and reported to SC19 as part of this assessment.

2. ASSESSMENT INPUTS

2.1 CPUE indices

Observer-based CPUE indices were presented in Neubauer et al. (2023a). Long-line
CPUE indices were used in Clarke et al. (2018a), as well as prior silky shark stock
assessments (Rice & Harley 2013). However, the derived indices for the respective
assessments were from different subsets of observer data (e.g., a regional CPUE
was used in Clarke et al. (2018a), which differed markedly between assessments,
and showed high inter-annual variability. Recent analyses suggest that this is likely
due to high variability in longline CPUE between different regions and observer
programmes (Neubauer et al. 2023a), all of which showed noisy CPUE with unclear
over-all trends across the WCPFC convention area. Although silky shark are thought
to show environmentally-mediated availability to fishing gear (Clarke et al. 2018a,
Lennert-Cody et al. 2019), standardisation by environmental covariates (such as
remote-sensed sea-surface temperature, chlorophyll-a or ENSO) did not standardise
longline CPUE to produce interpretable indices.

Purse-seine indices, by contrast, showed a remarkable level of consistency, especially
those derived from free-school sets (Figure 1). Despite effort being difficult to quantify
for purse-seine indices, the non-target nature of silky shark in purse seine sets provides
an argument that per-set indices may provide a reflection of silky shark abundance.
While length compositions indicate that object associated sets mainly capture small
silky shark, free-school sets catch all sizes, and with larger individuals than reported in
longline data. Standardised free-school CPUEmay therefore provide a suitable index of
total biomass (Figure 2). As noted in Neubauer et al. (2023a), purse seine CPUE prior
to 2000 is possibly biased as it largely comes from a single observer programme. In
recent years, with poor coverage within the COVID-19 years (2021 and 2022), the index
is poorly estimated and therefore these years are not included. The CPUE input for all

1Fully integrated stock assessment model using multiple sources of data including catch, effort and
biological information in a model such as MULTIFAN-CL, Stock Synthesis or similar.

2 Stock Assessment of Silky Shark in the Western and Central Pacific Ocean 2024



assessments therefore started in 2000, and ended in 2020. As a result, we defined recent
status as stock status in 2019–2020, as status for more recent years is largely based on
catch based projections (for the SS3 model).

The 2018 assessment for silky shark used a ENSO-related catchability in the model to
account for environmentally driven availability of silky shark to the regional CPUE
fleet (Clarke et al. 2018a). In comparison, we take the approach of standardising for
environmental drivers outside of the stock-assessment model. We did so by adding
environmental covariates to the CPUE standardisation (Figure 3Neubauer et al. 2023a),
which showed a strong ENSO signal present in purse-seine CPUEdata. This signalmay
be due to a longitudinal shi in distribution of target species during ENSOyears. To test
that our indiceswere robust to spatio-temporal shi s in target species and fishing effort,
we repeated our CPUE analysis with additional models using splines over longitude
and latitude by year (with year treated as a random effect), and predicting CPUE in
space and time (i.e., a spatio-temporal index; Figure 4). The la er was very similar to
the initial purse-seine index (Figure 5). In addition, the strong coherence of the index
between different observer programmes suggests that pa erns of recent increase in
CPUE are not due to the spatio-temporal extent of the fishery alone.

2.2 Length compositions and stock structure assumptions

Li le is known about the stock structure of silky sharks in the Pacific Ocean. Initial
studies based on mitochondrial DNA markers found differences between eastern
and western Pacific stocks (Galván-Tirado et al. 2013), and there is some evidence
to support multiple management units across the Pacific and the WCPFC, where
nuclear markers yielded significant population structure between five regions and
mitochondrial markers supported most of these differences. In addition, life history
studies appear to corroborate this finding of stock structure, showing demographic
differences between populations in Taiwan, PapuaNewGuinea, and the Central Pacific
(Oshitani et al. 2003, Joung et al. 2008, Grant et al. 2018). However, sampling variability
and study design may at least partly confound findings of demographic variability
(Grant et al. 2018), and tagging studies have shown wide-ranging movement across
national jurisdictions and international waters (Hutchinson et al. 2019, Francis et al.
2023).

Due to the standardisation effect on CPUE, especially with regards to ENSO variability,
it was not reasonable to assume that the length-composition of the standardised index
(i.e., index fleets in the model) ought to be the same as that of the catches. Maunder
et al. (2020) suggested that composition data for index and capture fisheries should be
separately specified, and selectivity estimated separately for each type of model fleet.
This allows for temporal variability in catch to be resolved via time-varying selectivity,
whereas a standardised index should correspond to a single selectivity.

We separated length compositions for purse seine fleets (object associated and free-
school) into those of capture fleets and index fleets. The former used predicted
compositions based onmodel-based scaling employed inNeubauer et al. (2023a). These
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compositions estimate the effect of covariates on compositions on the basis of observed
length frequencies, and then predict the capture length frequencies for unobserved
effort to derive a length composition for total captures.

For index fisheries, we repeated this modeling approach, however, we included the
same standardising variables as for the standardised CPUE index. Notably, we
included effects formonth, year, area (based on a 10-degree grid), observer programme-
code, area and observer programme interactions with year, and an effect for ENSO
variability (meiv2). The ENSO effect was formulated as two-dimensional spline
over meiv2 and bins, using 5 knots across meiv2 and 10 knots across bins. The
spline coefficients were estimated as random effects within brms (Bürkner 2018),
and are therefore drawn towards a common mean of a linear effect unless data are
sufficiently informative to suggest a more flexible form is required. Standardised
length compositions corresponding to indices could then be derived by predicting the
compositions of standardised catch and effort data used in CPUE models.

The LF scaling model used for catch was:

tot_by_bin ~ offset(log(n)) +
(1 | bin) +
(1 | bin:area) +
(1 | bin:yy) +
(1 | bin:mm) +
(1 | bin:area:yy) +
(1 | bin:flag_id) +
(1 | bin:flag-id:yy),

where tot-by-bin is the total observations by length bin, modeled with a Poisson error
distribution, n is the total observations across length bins in a stratum, and all factors
are included as interactions with length bins. The correspondingmodel used for CPUE
was:

tot_by_bin ~ offset(log(n)) +
(1 | bin) +
(1 | bin:area) +
(1 | bin:yy) +
(1 | bin:mm) +
(1 | bin:area:yy) +
(1 | bin:program_code) +
(1 | bin:program_code:yy) +
t2(meiv2, bin, k = c(5, 10)).

Input weights for compositions in the stock assessment were calculated as the trace
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of covariance matrix across bins per year. This ensures that the relative uncertainty
between compositions is correctly represented.

The la er model was used to standardise for ENSO by se ing the meiv variable to
zero (i.e., no ENSO influence) and predicting from the year effects only. Models
were implemented using the ComPoM (Composition models using Poisson factorised
Multinomial regression; Neubauer & Webber, in prep).

The model showed that length compositions were strongly influenced by the ENSO
effect as measured by the meiv2 index (Figure 6). For free-school sets, positive ENSO
conditions were associated with the presence of larger sharks in purse-seine sets,
whereas during months of negative ENSO conditions, small individuals were present.
A similar, albeit more uncertain pa ern was observed for sharks caught in object
associated sets.

The resulting effect was a strong standardisation on length compositions for index
fisheries, especially for free-school sets (Figure 7). Due to the over-all restricted range of
sizes seen in object associated sets, the standardisation effect for object-associated sets
was smaller (Figure 8).

2.3 Catch assumptions

Fisheries interactions were reconstructed between 1995 and 2022 using an ensemble of
spatial GLMM models (Neubauer et al. 2023a) that included effects for oceanographic
predictors as well as targeting and total effort per stratum (5x5 degree grid, flag, year,
month). Interaction estimates for longline andpurse-seinewere combinedwith amodel
for annual discard rates per flag (Figures 9, 10), which was used to produce scenarios
of total fishing-induced mortality. Due to high discard uncertainties, especially before
increased observer coverage in the 2010s, we considered the possibility of high and
low discards alongside the base assumption of the median discard estimate from the
discard model (Figures 11, 12, 13, 14). Post-release mortality was included at a rate of
15% in the calculations of total fishing-related mortality for long-line fisheries (Francis
et al. 2023), and was applied at a rate of 85% for purse-seine fisheries (Hutchinson et al.
2015).

We only considered median estimates of interactions and discard fate. Uncertainty in
modeled predictions of reconstructed catch, discards and post-release mortality was
considered to be relatively small compared to over-all trends in catch and CPUE, and
fundamental uncertainties about productivity-related parameters were thought to be
more important for over-all model outcomes. We did, however, include a scenario
of high and low initial equilibrium catch to reflect uncertainty of pre–1990s catch in
estimates, as these remain highly uncertain. Our base assumption was that catches in
years prior to the reconstructed catches were lower, and that catches increased with
an expansion in longline fishing effort in the later 1990s and 2000s. Full exploration of
fishing mortality, other catch and discard scenarios could be tested in the future.
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3. REFERENCEPOINTS
Clarke and Hoyle (2014) and Zhou et al. (2018) evaluated methods to derive reference
points for elasmobranchs in the Western and Central Pacific Ocean (WCPO). However,
to date, there are no formally agreed reference points for sharks in the WCPO. Recent
assessments of oceanic whitetip shark, for example, compared fishing mortality to
Flim as a tentative limit reference point for sharks, and to Fcrash, the fishing mortality
that would lead to extinction in the long-term. If one assumes a simple Schaefer
surplus production model, then Fcrash = Rmax, the maximum population growth rate
(intuitively, a population cannot be sustained if fishing removes more individuals than
the population can maximally produce), and Flim = 0.75Rmax. Because the versions
of these reference points as used in the integrated assessment were approximated from
integrated stock assessment runs, we use a subscript AS to show that these are not
derived from Rmax, but from the yield curve estimated in Stock Synthesis. Unlike for
blue shark, which have higher productivity than many other shark species, we did not
apply alternative reference points used for target fisheries.

4. STOCKSYNTHESISASSESSMENTMETHODS

4.1 Model setup

Themodel used Stock Synthesis (Version V.30.22.1; Methot et al. 2021). We used Pacific
specific parameters where possible (Clarke et al. 2015). CPUE data were included from
1995 (when suitable CPUE data became available) up to and including 2020. Models
were run from 1995 to 2022, and outputs were analysed with respect to stock status in
2022.

4.1.1 Growth

Growth assumptionswere based onOshitani et al. (2003). We note that previous studies
used growth estimates from Joung et al. (2008), but the la er study was based on a
smaller sample in a small geographic area off the coast of Chinese Taipei, and found
slower growth and larger asymptotic size. A size-at-birth was inferred to be near 50 cm
for both males and females based on growth studies as well as measured lengths in
tropical tuna fisheries. Growth variability was parametrised as a mixture of a CV for
length-at-age (fixed at 0.085) with a constant standard deviation of 5 cm added to reflect
variability observed at age zero (presumed age-0 silky shark have been observed as
small as 30–35 cm). We assumed a maximum age of about 25 years, with females
maturing at about 5-6 years old (Oshitani et al. 2003).

4.1.2 Naturalmortality

Natural mortality was set to 0.18 in previous assessments (Rice andHarley 2013, Clarke
et al. 2018b), citing work by Cortés (2002). However, while a range of 0.17-0.21 was
cited, that same study also included a second sub-population with estimatedM of 0.1-
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0.15. Using ameta-analytic approach based on growth (assumingK of 0.148, andL∞ of
216.4 cm fork length) and longevity (assuming longevity of 30 years) assumptions lead
to an estimated median M of 0.21 with a lognormal SD of 0.08 under an input CV of
0.2 (Figure 15; based on h ps://connect.fisheries.noaa.gov/natural-mortality-tool/ Cope
and Hamel 2022). We used this value to construct a prior, but given lower estimates
found in Cortés (2002), we increased the SD of the lognormal prior from 0.08 to 0.3.

4.1.3 Reproductive output and recruitment

Stock recruitment assumptions for sharks have been problematic due to the low
fecundity ofmany species. The low fecundity leads to a high vulnerability to fishing for
many species, and it remains unclear howwell stock-recruitment assumptions made in
standard stock-recruitment relationships (SRR) for bony fishes, with o en millions of
eggs per female, translate to shark species. Taylor et al. (2013) suggested that standard
stock-recruit relationships such as the Beverton-Holt model can make unreasonable
assumptions about pre-recruit survival at lowbiomass (i.e., lead to survival greater than
1), especially if pre-recruit survival is high, a condition that is likely for many sharks.
These authors proposed a survival-based stock recruit (SBSR) relationship as a three-
parameter model with a shape parameter controlling the shape of the stock recruitment
relationship. With a shape parameter β < 1, the model can emulate the shape of the
Beverton-Holt (BH) SRR, whereas a shape of β > 1 leads to an over-compensatory SRR,
with maximum recruitment at intermediate stock sizes.

Previous shark assessments in the WCPFC have employed the survival relationship
for blue shark, for example (Neubauer et al. 2021, ISC 2018), deriving parameters for
the function based on simulations run in the context of a Beverton-Holt (BH) model,
and translating to corresponding parameters for the SBSR model. Other models have
assumed BH SRRs, largely for convenience as it is somewhat easier to reflect on the
associated steepness parameter than about the joint effects of the SBSR shape and the
second parameter (the zfrac) which, loosely, determines the rate of density-dependent
increase in survival as the stock is depleted (i.e., the strength of density dependence).
In the context of the present model, however, we found that applying a BH SRR led
to estimates of survival of >1 in some years, and led to highly unstable models with
poor diagnostics. In addition, the BH model is essentially equivalent to a model with
a low value for the shape parameter (β < 1; Taylor et al. (2013)), which assumes
that density dependence is greatest near stock collapse, leading to an assumed high
resilience at very low stock size, but limited density dependence at larger stock sizes.
This is likely unrealistic for sharks if cannibalism and intra-specific competition are
important. Lastly, models a empting to estimate the beta-parameter using priors with
a prior median of 1 (i.e., giving equal prior weight to BH-like models with β < 1 and
over-compensatory models with β > 1 consistently estimated β > 1, with preliminary
Bayesian analyses (albeitwith poormixing performance forMCMC) pointing to β ≈ 1.5
as a lower bound for β. We a empted both models with estimated β as well as
using fixed values to ensure that uncertainty in the location of peak recruitment was
considered.
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4.1.4 Selectivity

We employed flexible selectivity assumptions for capture fisheries, reflecting the
idea that they likely encounter different components of the stock from year to year,
depending on oceanographic and fishing conditions. The flexibility in selectivity allows
the model to remove the correct catch composition from the population. By contrast,
the index fishery for the CPUE index was specified using a single selectivity that does
not vary over time (Maunder et al. 2020).

For capture fisheries, we used a spline selectivity with 4 knots (longline and purse-
seine), while assuming full selectivity for all sizes on average for the free-school purse-
seine fleet. For all capture fisheries, we used a 2D auto-regressive prior (Xu et al.
2019) across length bins and years, with the first year for longline held fixed at the
mean selectivity to allow for estimation of initial fishing mortality conditional on mean
selectivity (otherwise random variation in year one is confounded with initial fishing
mortality). We used the 2D-ARpriorwith a fixed auto-correlation of 0.3 and a standard-
deviation of the log of deviations of 1, 1.5, and 2 for longline, associated purse-seine
and free-school purse-seine, respectively. Although these standard deviations can (in
theory) be tuned, we found that it was necessary to fix this deviation at a large number
to mitigate issues with MCMCs (see below).

For the associated purse-seine index, the selectivity from the capture fishery was
mirrored to the index fishery. However, this index was not used for fi ing and served
for visual inspection only. For the free-school index, we used a spline selectivity
with 6 knots, but no time-variation. All selectivity parameters were given minimally
informative normal or lognormal priors to improve MCMC performance, and ensure
parameters cannot hit bounds during sampling as this can result in poor sampling.

4.1.5 Diagnosticmodel

As opposed to other recent shark stock assessments, which used model ensembles to
integrate over key uncertainties in data and parameters (Neubauer et al. 2022, ISC 2024),
we took an approach of a empting to integrate over key parameter uncertaintieswithin
the diagnostic model, and only addressing structural (in the sense of using different
likelihoods) or data uncertainties for a range of uncertainties. Simulations developed
forNeubauer et al. (2023b) suggested that thismaybe a preferable approach, rather than
a empting an ensemble across fixed values of key parameters, as itmaintains important
correlations and avoids fixed parameter combinations that are unlikely a posteriori (a
priori unlikely combinations can be accounted for by using multivariate priors with
appropriate prior correlation). It is worth noting that this approach was feasible due to
contrast in catch history (declining catch in recent years) and a corresponding increase
in the CPUE index (Magnusson 2016).

For the diagnostic model, we fixed beta at 2.69, the estimate from a MAP run aiming to
estimate beta. The la er run presented a number of divergent iterations duringMCMC,
and was therefore not considered as a diagnostic model.
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Priors Our diagnostic model used vaguely informative priors for all parameters to
aid estimation andMarkov ChainMonte Carlo. Specifically, we used an informed prior
on natural mortality (median 0.2, CV 60%). A slightly domed beta-prior for zfrac was
employed to reflect that this parameter is unlikely to be near the bounds of zero or 1 in
reality. A relatively wide normal prior (mean 8, SD 4) was used for the log of unfished
recruitment ln(R0).

Initial fishing mortality Equilibrium catch was set to 120 000 individuals, which
corresponds to an assumption that catchwas at the lower end of estimated catches in the
mid 1990s prior to the expansion of the longline effort observed in the WCPFC during
the late 1990s and early 2000s. We estimated initial F by assuming the population is at
equilibrium with mortality from the longline fleet. In an a empt to provide minimal
curvature (information) to the model to aid estimation of initial fishing mortality, we
set a log-normal normal prior with mean 0.1 and CV of 65%.

MCMC While most initial models and some sensitivities were run using MAP
estimates only, uncertainty for the diagnostic model and key sensitivities were
estimated using full Bayesian inference, using the No-U-Turn sampler as implemented
for ADMB (Monnahan & Kristensen 2018). We ran eight chains with different random
seeds, and used 500 iterations for adaptation; these iterations were subsequently
discarded as burn-in. Due to the complexity of the selectivity assumptions and
parameter correlations, we had to use adaptation based on the dense covariance matrix
in order to minimise divergent iterations, rather than the diagonal of the covariance
matrix (the default). Divergent iterations arise when the sampler cannot adequately
explore certain regions of parameter space due to the shape of the posterior surface,
leading to potentially biased outcomes.

To diagnose the divergences, we ran a logistic regression against all parameters to
understand the link between numerical values for each parameter and divergences.
This diagnostic suggested that divergences were related to estimation of selectivity
parameters, and specifically the 2D-AR structure, with random deviates from themean
selectivity consistently being the best predictors of divergent transitions. It is therefore
likely that these failures to sample the parameter space largely influence the fit to length
data.

Whilewewere able to derive a diagnosticmodelwithout divergences, the samewas not
true for all sensitivities, and we therefore used sensitivities to understand the extent
of structural uncertainty, without explicitly integrating this uncertainty into a model
ensemble. This said, modelswith fewdivergent iterations appeared to give very similar
outcomes to the diagnostic model without divergences. While it is clearly undesirable
tomaintainmodelswith potential bias, it appears likely that this bias isminimal relative
to uncertainties that persist with respect to data and life-history inputs for sharks.

All models were checked to ensure that R̂ values were close to 1 and effective sample
size for management quantities was >500.
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4.1.6 Dataweighting

Data weighting followed Francis (2011), first fi ing a smoother through the CPUE
index, and calculating the expected CV for CPUE from this fit on the basis of the SD
of the residuals (Figure 16). The la er was found to be near 0.18, and the input SE
for CPUE was therefore set to this level. Weights for length frequencies were adjusted
iteratively, however, this adaptation was stopped a er three iterations as the calculated
weights did not stabilise. This behaviourmay be due to the use of the 2D-AR selectivity
influencing the calculation of weights.

4.1.7 Diagnostics

We used retrospective analysis, using 5 peels, to understand how recent data changes
the estimated stock depletion and fishingmortality levels. In addition, we used profiles
for M, ln(R0) and beta to gain an understanding of the influence of data and model
assumptions (such as initial catch) on natural mortality and stock recruitment.

4.1.8 Sensitivities

Data weighting Due to conflicts between CPUE and length data with regards to
mortality and stock size, aswell as the dubious performance of the Francis re-weighting
method, we employed a sensitivity to halve the assumed standard error for the CPUE
index, and set all length-composition weights to 1 (i.e., 5-80 times lower than a er re-
weighting), to understand the relative influence of these data.

Alternative values for beta The shape of the stock-recruit function is inherently
uncertain. Estimates from a full MCMC estimation run for beta suggested a range of
2-5 for this parameter under low catch assumptions, with a central estimate of 2.69. We
therefore ran three alternative models with beta fixed at 1.5 and 4 in addition to model
runs with beta = 2.69.

Initial catch We ran all options for beta across low and high initial catch assumptions.
For low catch, we set catch to the lowest figure estimated for the first 5 years of predicted
catch (120 000 individuals), whereas for high catch, we doubled this figure.

Selectivity Alternative models were a empted with a fixed selectivity (i.e., not a 2D
AR time-varying selectivity) for the longline fleet. An alternative run with no time-
varying selectivity was run to confirm that the 2D-AR selectivity is indeed to blame for
divergent iterations. While this run showed poor fits to length data and implausible
outcomes (an initial biomass nearB0 with nearly no depletion), this run confirmed that
without time-varying selectivity, no divergences occur.
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5. ALTERNATIVEASSESSMENTSMETHODS

5.1 Length and age structured assessmentmodel

5.1.1 Background

Conventional length-based age-structured models (Fournier et al. 1998, Methot Jr &
Wetzel 2013) o en overlook the cumulative impacts of length-dependent processes on
a population. For instance, if large individuals are selectively removed by fishing, the
surviving populations will become dominated by slower-growing individuals. In most
age-structured models, as the population transitions from one age class to the next, it
is typically assumed to be independent of the length distribution (i.e., the population
is partitioned into age classes, and the length distribution within each age class is
assumed to be constant). Although some age-structured models have considered
partitioning fish of the same age into different growth groups (platoons) to account for
fishing-induced selection (Taylor & Methot Jr 2013), this approach requires additional
assumptions about partitioning to determine how each platoon distributes across
length classes. Unlike such age-structured dynamics, length-structured dynamics
can directly account for the cumulative impacts of length-dependent processes on
population dynamics without additional assumptions about partitioning.

The cumulative impacts of length-dependent processes can be substantial, particularly
for specieswith low fecundity and latematuration, such as sharks. The removal of large
individuals can have more severe effects on population growth rates than in species
with high fecundity and earlymaturation. Moreover, in shark assessments, information
on age structure is typically unavailable, rendering age-structured dynamics no
more beneficial than length-structured dynamics, aside from the ability to track
the age structure of the population. Combining length-based dynamics with age
structure can provide a more realistic representation of population dynamics by
incorporating the cumulative impacts of length-dependent processes while tracking
the age structure. This motivated us to develop a length- and age-structured model
(LAM) that incorporates these cumulative impacts while maintaining the population’s
age structure.

The model was developed in Stan (Stan Development Team 2018) and based on
previous research on length-based age-structuredmodels (Quinn et al. 1998, Kim 2022),
where the cohort-specific length distribution was used to calculate length-dependent
mortality rates for each age class over time. Our LAM is similar to these previous
models, but the major difference is that a vector of length bins for each age class and
time step is explicitly used to describe the transition of the population between age,
length, and time steps through a matrix equation.

5.1.2 Model structure

We largely retained the structure of submodels (e.g., growth, maturity, weight-
at-length, and stock-recruitment relationship) from the Stock Synthesis models to
maintain consistency with their biological assumptions. Only the model structure
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unique to the LAM is described here. Prior distributions for all biological parameters
are the same as those used in the diagnostic cases of the Stock Synthesis models, except
for the CV of the growth variability parameter, which was fixed in the Stock Synthesis
models but is estimated in the LAM. The technical details of these components are
described in the appendix.

The length and age-structured dynamics are described by the following matrix
equation:

Nt,a =


Rt for a = 0

Ga−1St−1Nt−1,a−1 for 0 < a < A

Ga−1St−1Nt−1,a−1 + St−1Nt−1,a for a = A

, (1)

where Nt,a is the number of fish at age a in year t, represented as a vector of length
classes. Rt is the recruitment vector, Ga is the growth transition matrix for age a, St is
the survival matrix in year t, which is a function of length-dependent fishing mortality
and length-independent natural mortality, and A is the plus group age.

The key component of the model is the age-specific growth transition matrix Ga, which
allows transitions between length and age classes. The growth transition matrix is
calculated based on the von Bertalanffy growth function and growth variability for
each age class, using the same parameters (and no additional parameters) as in the
Stock Synthesis models. The details of the growth transition matrix are also described
in the appendix.

5.1.3 Selectivity

Length-dependent selectivity was modelled using an exponential logistic function (see
pa ern 25 in the Stock Synthesismanual v3.30.17), except for the free-school purse-seine
fleet:

Seli =
exp(p3 · p1 · (peak− Li))

1− p3 · (1− exp(p1 · (peak− Li)))
(2)

where Seli is the selectivity for length bin i, Li is the length of fish in length bin i
(i.e., midpoint), p1 is the ascending rate, p2 is the parameter to adjust the peak of the
selectivity curve, p3 is the descending rate, andpeak = min(Li)+p2·(max(Li)−min(Li)).

For the free-school purse-seine fleet, the selectivity was modelled using a logistic
function. The logistic selectivity function, where two parameters indicate the length
at 5% and 95% selectivity rather than the conventional 50% and 95% selectivity, se ing
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reasonable bounds for the selectivity curve to aid in model convergence, is given by:

Seli =
19

19 + exp
(
log(361) · Li−L95

L5−L95

) , (3)

where L5 and L95 are the length at 5% and 95% selectivity, respectively.

All selectivity parameters were estimated in the model with bounded logit-normal
priors, where the logit-transformed parameters follow a normal distribution with a
mean of 0 and standard deviation of 1.6, to formweakly informative priors. Reasonably
wide bounds were set for the selectivity parameters (see Table 3).

Similarly to our exploration with Stock Synthesis models, we also tested 2D-AR
structures for time-varying selectivity with LAMs. As with the Stock Synthesis models,
the 2D-AR structure rendered the LAM model unstable and it did not converge, with
divergent transitions in theMCMC chains. Therefore, only time-invariant, fleet-specific
selectivity was considered in the LAMs.

5.1.4 Initial fishingmortality

Our preliminary analyses indicated that the model was sensitive to the initial fishing
mortality that determines the equilibrium population size in the first year. We
a empted to estimate the initial fishing mortality in the model, but model convergence
was not achieved. Therefore, we fixed the initial fishingmortality at different levels as a
sensitivity analysis to determine the impact of the initial fishing mortality on the model
results. The initial fishing mortality was fixed at 0.05, 0.1, and 0.15.

5.1.5 Catch-conditionedmodel

Catch data were assumed to be without error, requiring LAMs to internally estimate
the instantaneous fishing mortality rate for each fleet. A Newton-Raphson method
was implemented to internally search for the fishing mortality rate that matched the
observed catch. Wevalidated theNewton-Raphson algorithmby comparing themodel-
predicted catch for each fleet with the corresponding observed catch.

5.1.6 MCMCsettings anddiagnostics

We ran 10 chains with different random seeds, and used 400 iterations for adaptation;
these iterations were subsequently discarded as burn-in, and the remaining 400
iterations were drawn as samples from each chain. We assessed convergence using
the Gelman-Rubin statistic, trace plots, and effective sample size. We used the same
convergence criteria as the Stock Synthesis models, where the Gelman-Rubin statistic
R̂ values were close to 1 and effective sample size for management quantities was >500.
We also visually inspected the trace plots to ensure that the chains mixed well.
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5.2 Dynamic surplus productionmodel

As length frequency data are highly temporally variable, and spatio-temporal coverage
is highly skewed over time, we sought to check trends found with the integrated
assessment model against simpler models, namely dynamic surplus production
models. The la er can be straightforwardly fi ed to CPUE time series, and we applied
the Schaefer surplus production model implemented in the bdm R package (Edwards
2017) to aggregated catch across fisheries and CPUE from the free-school purse-seine
CPUE time series, used in the integrated assessment model.

Neubauer et al. (2019) provided context for the application of dynamic surplus
production models (DSPM) to sharks in the WCPFC, and other recent assessments
have applied these models when the available information lead to difficulties with
integrated stock-assessment models (ISC 2024). DSPM are fi ed based on state-
space equations (McAllister & Edwards 2016, Froese et al. 2017) and do not require
equilibrium assumptions that make traditional approaches to surplus production
assessments difficult to justify (Bonfil 2005). Examples of packages that implement
DSPMs are JABBA (“Just Another Bayesian Biomass Assessment”; Winker et al. 2018)
and BDM (“Bayesian biomass dynamics model”; Edwards 2017). As such, the DSPM
operates similarly to integrated assessments, where recruitment essentially functions
as a process error term. The DSPMs tend to use an index of abundance (usually
CPUE) to constrain the time series of abundance. Although productivity is usually
estimated within DSPMs, it is useful to also constrain productivity via an informative
prior (Edwards 2017).

We used a classic Schaefer production model implemented in the BDM package
(although other hybrid production functions can be used with this R package). The
population dynamics are parameterised in terms of the relative depletion (xt = Nt/K),
with relative harvest Ht also expressed in relative terms (Ht = Ct/K):

xt+1 = xt + g(xt)−Ht (4)
g(xt) = Rmaxxt (1− xt) . (5)

5.2.1 Priors for dynamic surplus productionmodels

Population growth Rmax was calculated from methods in Pardo et al. (2018) based on
the Euler-Lotka equation (see also Zhou et al. 2018), adjusted for survival to age at first
maturity (Pardo et al. 2016). Estimating Rmax serves a dual purpose here: it can act as
a reference point for methods that cannot estimate stock productivity independently
(e.g., risk assessments), but can also act as a prior for a DSPM for which Rmax is the
productivity parameter.

Life history input values for the Euler-Lotka equation were compiled from ranges and
point estimates reported in Clarke et al. (2015) and recent stock assessment reports
(Clarke et al. 2018b). Specifically, growth rate K was taken as 0.148 with sufficient
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variability to encompass uncertainty and potential bias in estimates life-history values
(Grant et al. 2018, Figure 17) for the simulated inputs, and for the resulting value of
Rmax (Figure 18). When only ranges were reported, the distributions were constructed
to encompass those ranges as extreme quantiles (i.e., near the 5th and 95th percentile).

We also integrated over methods to derive natural mortality in the simulation
procedure. Specifically, we used methods described in Jensen (1996) (age-at-maturity
based), Hewi and Hoenig (2005) (maximum age based), and Pardo et al. (2016)
(expected life-span derived), by simulatingRmax from the inputs under these mortality
assumptions and combining the outputs. This led to a broader distribution for Rmax

thanwould be obtained if one considered a singlemethod to estimate natural mortality.

Priors for the carrying capacity, K, and initial population depletion in 1995 were
formulated as vague log-normal distributions, encompassing scenarios of high initial
depletion as well as high initial biomass (i.e., > B0). In order to ensure that these
priors made sense in the context of observed catch, we simulated from the model
using the prior for Rmax, a wide prior for carrying capacity and and initial depletion
([0.01;0.6], and applied the catch to obtain a prior predictive/pushforward distribution
for recent depletion. The obtained recent depletion values were then subset to values
between 0.05% and 100% of carrying capacity, and only prior draws which led to
these outcomes were retained (Figure 19). We note here that, due to the peaked and
steeply declining catch history in recent years, the model invariably retained parameter
combinations that led to high a priori current status and log over-fishing risk (Figure
19). We nevertheless used these values to estimate the parameters of a log-normal prior
distributions forRmax,K and initial depletion. We subsequentlymanipulated the prior
for initial depletion to investigate the sensitivity of themodel tomis-specification of this
prior. We fi ed the model based on three sets of priors for the initial depletion level,
with sensitivities assuming higher and lower levels of a priori initial depletion in 2000
(multiplying or dividing the prior mean of initial depletion by a factor of two). The
process error standard deviation was fixed at 0.05.

Catchwas summed across predicted purse-seine and long-line catches, as this appeared
most appropriate for the assumption inherent in dynamic surplus production models
that the population indexed by the CPUE index is fully vulnerable and affected by the
specified catch.

5.2.2 Implementation

All estimation was done within the BDM package, with Markov Chain Monte Carlo
(MCMC) in the underlying Bayesian estimation so ware Stan (Stan Development
Team 2018) used to estimate parameters. We ran the MCMC for 110 000 iterations,
discarding the first 10 000 iterations as burn-in, and keeping 1000 samples from each
of 4 chains. All model were checked to ensure that R̂ values were <1.01, and did not
show any divergent iterations. Retrospectives were run with 5 peels, and Mohn’s rho
and predictive coverage were calculated as the proportion of the posterior for year y
that is contained within the predictive distribution for that year from the retrospective
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model ending in year y − 1.

5.3 Length-based spatial risk assessment

Spatial Risk Assessments (SRAs) incorporate spatially detailed relative abundance and
effort information (vulnerability) and life-history (susceptibility). Neubauer et al. (2019)
reviewed the utility of spatial risk assessments in the context of an application to oceanic
whitetip shark. While we provide a brief description of this topic here, more detail and
references can be found in Neubauer et al. (2019).

Briefly, spatial risk assessment approaches calculate fishingmortality and sustainability
risk, o en expressed as a risk-ratio comparing fishing mortality (F) to a life-history-
derived sustainability threshold. These methods are typically employed when no
reliable catch time-series can be derived. They therefore use recent catch data, avoiding
the need for complete historical catch records or assumptions about catch completeness
or CPUE data accuracy.

To compensate for the lack of temporal contrast, SRAs employ two main strategies.
The first strategy involves pre-se ing constraints on either current population size and
relative abundance information. For some species, like seabirds and certain marine
mammals, estimates may come from censuses or surveys. Genetic methods can also
provide population size estimates, though these o en involve significant assumptions
or uncertainties. When dealing with regional stocks of wider-ranging populations,
researchers may use spatial density data to estimate the relevant subpopulation or
consider the impact of regional fishing on the entire population.

The second strategy assumes known gear efficiency. Methods such as SAFE and
EASIfish can directly estimate fishing mortality conditional on assumptions of the
spatial scale of gear impacts. This approach treats fishing effort as a survey, scaling
estimated densities in fished areas to the overall habitat (i.e., akin to a swept-area
approach for scaling trawl survey catch-per-unit-area (CPUA) to a total biomass).

By contrast to models that drive estimates of risk based on assumptions about
gear efficiency, statistical risk assessment methods estimate population size or gear
efficiency directly from spatial catch and effort data, conditional on gear-affected area
assumptions. This method, exemplified by the e-SAFE approach, has advantages
over CPUE trend-based estimates as it only requires assuming that current spatial
CPUA reflects species distribution. A crucial parameter in this framework is the
gear-affected area, which scales density estimates to total population size. While this
area may be easier to determine for some gear types (e.g., trawls), these assumptions
are far more challenging for other gear types like longlines and purse-seine, where
effectiveness depends on gear characteristics (longline), search efficiency (purse-seine),
environmental conditions, and species behavior.

In summary, while spatial quantitative risk assessments can estimate fishing mortality
and risk using recent catch and effort data, in the absence of information on total
population size and spatial abundance maps, they rely on strong assumptions about
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gear efficiency and the area affected by each unit of fishing effort. Given this
constraint, many authors have highlighted that spatial risk assessments are best
suited to understand between-species differences in vulnerability and potential risk,
as opposed to deriving risk for any single species ( Neubauer et al. 2019, Griffiths et al.
2019b).

Here we propose an alternative hybrid method that is based on another class of data-
poor assessments, namely those based on compositions (Ault et al. 2019, Chong et al.
2020). We combine a length-composition-based estimator of fishing mortality (Hordyk
et al. 2015) with the e-SAFE spatial risk assessment method to jointly estimate relative
abundance in space, relative gear efficiencies for longline and purse-seine set type,
and fishing mortality. The la er is derived from recent length composition data, while
other quantities are estimated fromCPUA. This decomposition allows us to decompose
the total fishing mortality into spatial impacts and impacts by gear of fleet, which
is a useful feature of spatial risk assessments when aiming to prioritise conservation
efforts. However, rather than being driven by assumptions, these impacts are estimated
statistically within the model. While we demonstrate the feasibility of this approach,
further work will be required to develop the approach into a more generally applicable
tool.

5.3.1 Model description

We start with the description of an N-mixture model for decomposing spatial bycatch
data into density (i.e., defining spatial overlap between fishing gear and abundance)
and gear efficiency (describing the vulnerability of the species). This decomposition
is common in spatial risk assessment methods (Griffiths et al. 2019b, Neubauer et al.
2019), and allows for a ribution of fishing mortality and risk to individual components
of effort such as gears, fleets or spatial units (noting that in SAFE or EASI-Fish the
gear efficiencies are assumed rather than estimated as is done here). The model can
be wri en as:

ni,k ∼ P (hi,kaDi, ϕ), (6)
Ci,k ∼ B(ni,k, Qk), (7)

where ni,k is the abundance of silky shark in the gear-affected area, hi,k is the number
of observed effort units (i.e., hooks, sets) in area i for fleet k, and a, is the affected area
per gear. The parameter Di = Ni/Ai is the density (numbers per grid area) of silky
shark in grid i. The model can be considered a generative model: the number of sharks
available per observed spatial unit of effort (i.e., the area affected by a unit of effort, e.g.,
a single hook or set) for each fleet in each grid cell i is random and follows a Poisson
(P ()) distribution with mean Da

i = aDi = aNi/Ai, scaled by effort hi,k. The catch for
each fleet k in grid cell i is a binomial (B) draw given a specific fleet’s gear efficiency
Qk.

For the purpose of this demonstration, fleets were defined as longline, object-associated
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purse-seine and free-school purse-seine, though more detailed gear breakdowns may
be desirable for longline gear. Although different set types may affect a, we subsumed
this effect into the gear-efficiency parameterQ andmodeled a single gear-affected area.
We modelled Q as:

log
(

Q

1−Q

)
= βQX + ωflag + ζflag-gear (8)

The parameter X is a design matrix with contrasts for set type, with coefficients βQ
estimated for both effects. Flag-gear (ζflag-gear) measure differences between operational
fishing gear deployments by different vessel-flags - this effect was treated as a random
effect.

The spatial density of silky sharks was modelled as logDa
i = µD + f(SSTi) + f(CHLi +

f(dCoast
i )) + s(Lati, Loni,Month), where µD is the mean density per unit of effort

and f() is a smooth (spline) function of sea-surface temperature (SST), chlorophyll-
a (CHL) and distance to coast (dCoast) in grid i. s() is a spatial residual spline over
latitude, longitude and month, the la er treated as a random effect. The overall model
differs from the catch-reconstruction model used in Neubauer et al. (2023a) in that
the abundance and capture process are explicitly separated. This separation allowed
extrapolation of shark density beyond fished grid cells. We used a 5-degree grid which
allows for extrapolation of observed capture rates per cell to the full (unobserved) effort.

For the estimation, it is possible to explicitly integrate over the latent abundance process
(the Poisson component of the model above), yielding a Poisson model P (hi,kD

a
i Qk)

(e.g., Ra ery 1988). The expected number of individuals Ni in grid i is then a−1AiD
a
i .

To account for the overdispersion of captures, we used a three-parameter version of
the negative-binomial (NB) distribution (see Tremblay-Boyer & Neubauer 2019, for
detail) instead of the Poisson distribution. The NB model is commonly interpreted
in terms of overdispersion (e.g., aggregation of individuals) relative to a Poisson
distribution (randomly-distributed individuals in space). The NB model used here has
two additional parameters (compared to the Poisson): an overdispersion parameter
(ϕ) and an exponent ν that describes how overdispersion varies with the mean of the
distribution. We therefore get:

Ci,k ∼ NB(hi,kD
a
i Qk, ϕ, ν) (9)

and

ˆCFULL
i,k ∼ NB(hFULL

i,k Da
i Qk, ϕ, ν), (10)

the la er describing the predicted catch across the full (unobserved) effort dataset.

The definition of current abundance Ncurr =
∑

iNi =
∑

i a
−1AiD

a
i implies that it is

possible to estimate the current abundance Ncurr in principle. However, this estimate
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is reliant on an estimate of the gear-affected area. For this reason, the estimation of
Ncurr has the same limitations as the scaling of survey estimates of biomass to a total
biomass estimate. Although the estimation ofNcurr provides amethod for not requiring
knowledge of gear efficiency Q and the distribution of the focal species a priori, this
method does not remove all unknowns from the estimation of N .

If estimation ofNcurr is not the key focus, then it is possible to work backwards from an
estimate of fishing mortality or harvest rate to estimate gear affected area and spatial
and fleet specific impacts. Typically, a harvest rate is derived by summing estimated
fatal interactions across space

∑
i,k

ˆCFULL
i,k ·Sk (where Sk is the survival rate for fleet k;

the product of the discard rate and the post-release survival), and dividing by estimated
abundance Ncurr (Neubauer et al. 2019). Here we used the same post-release survival
as for the stock assessment. The harvest rate can be easily decomposed into individual
rates by doing the sum of estimated captures over discrete fleets or spatial areas.

As illustrated in Neubauer et al. (2019), the derived harvest rate is directly scaled by
the assumption of gear affected area, which is difficult to derive for the main tuna
gear types, such as longline and purse-seine. By introducing a more direct estimator of
total fishing mortality from another commonly available data-source – namely length
frequency data collected by observers, we can directly estimate a harvest rate, and use
the spatial model described above to decompose the impact spatially, accounting for
uncertainty in spatial distribution of the species (Di) and relative gear efficiencies (Qk),
as well as spatial overlap. This method does not require a time-series, but uses recent
data only. Due to the integrated nature of the model, data weighting becomes an issue,
and we currently only explore somewhat ad-hoc weightings to give the length data
comparable weight to the observed interactions (i.e., a weight of 1000).

We used the method described by Hordyk et al. 2015, which jointly estimates the
length-based spawning potential ratio (LB-SPR) and the ratioF/M aswell as selectivity
(assumed logistic), using assumptions of von Bertalanffy growth parameters (k,L∞ and
growthCV) and naturalmortality (typically input asM/k, derived frommeta-analysis;
Prince et al. 2015). Likemost composition-basedmethods, the LB-SPRmethod assumes
that the stock is at equilibrium with current fishing mortality, an assumption that may
not be correct if fishing mortality is changing rapidly. Especially for long-lived species,
this will lead to a lag between assessed status and fishing mortality. For a detailed
mathematical description of the model, the reader is referred to Hordyk et al. 2015.

We used alternative values forM , and published values for k, as used in the integrated
stock assessment. Selectivity is estimated using informed priors. The LB-SPR model
was coded in Stan and integrated estimation was performed to directly estimate the
gear-affected area from the LB-SPR estimate of fishing mortality. For this, fishing
mortality was transformed to a harvest rate, and a vague gamma(1,1) prior was placed
on fishing mortality. Other priors were vague (e.g., regression parameters for gear
effects), or used brms default priors for standard deviations and splines, namely
student-t priors (Table 1).

We tested themodel against data from 2020 (base), 2019 and 2018, aswell as sensitivities
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Table 1: Priors employed in the hybrid length-based spatial risk assessmentmodel.

Parameter Notation Prior

Fishing mortality F Gamma(1,1)
Regression coefficients βQ Normal(0,100)
Density Intercept µD Normal(0,100)
Spline linear βspline Normal(0,100)
Spline non-linear sdsspline Student-t(3,0,4.4)
Random effects sdRE Student-t(3,0,4.4)
Selectivity L50 Log-normal(log(50), 0.5)
Selectivity L95 Log-normal(log(20), 0.5)

to growth (increasing growthCV,L∞ by 20%) andnaturalmortality assumptions. Input
data consisted of observed interactions (same as for catch reconstructions for sharks
based on observer catch rates) as well as catch scaled length compositions (i.e., capture
fishery compositions used in the Stock Synthesis assessment). Our base assumption for
natural mortality was 0.16, based on an intermediate value cited in (Cortés 2002). As
we assume a higher prior in the stock assessment, we ran a sensitivity with a prior of
M=0.2.

The model was implemented in Stan, and run using MCMC for 500 iterations a er
discarding 500 iterations as burn-in for each of 8 chains. Due to long run-times and
large size of outputs, we only kept a total of 500 samples from the posterior distribution.
However, convergence and mixing were reasonable and we achieved effective sample
sizes of close to 500 for most parameters. We used posterior predictive checks as well
as residual analysis to confirm that the model provided a good fit to data.

6. ASSESSMENTRESULTS

6.1 Stock synthesis assessment (diagnosticmodel runs)

6.1.1 Model fits

Thediagnosticmodel run showed reasonable fit to lateCPUE, but predictedCPUEprior
to the recent increase did not fit well, notably fi ing a slightly increasing trend when
CPUEwas flat or slightly declining in early years (Figure 20). The residuals reflected the
model’s propensity to fit through the index rather than follow the concave shape of the
CPUE index (Figure 21), with correspondingly high standard deviation of normalised
residuals (SDNR), which should be around 1 a er reweighting of length compositions.

The model produced a relatively good fit to over-all length composition data (Figures
22). In addition, trends in mean length were temporally aligned with CPUE trends
(Figure 23) except in length compositions for longline data, whichwere down-weighted
substantially relative to other compositions. It is evident from the mean length trends
that the compositions are highly variable, especially the catch-scaled capture fishery

20 Stock Assessment of Silky Shark in the Western and Central Pacific Ocean 2024



compositions; as a result, the model required time-varying selectivity with large
fluctuations in selectivity for purse seine capture fisheries to produce acceptable fits,
especially to free-school purse seine length frequencies (Figures 24–28, Figure 29).
Another notable feature was that the standardised index fishery compositions for the
free-school purse seine index showed markedly lower variation, with larger mean
lengths and more consistent trend that aligned with CPUE, and was reasonably well
fi ed by the model (although model fits were somewhat more extreme than variation
seen in the compositions).

6.1.2 Profiles

Negative log-Likelihoodprofiles ofR0 suggested that the lower boundofR0was largely
driven by the compositions data, while the upper bound was given by the CPUE index
(Figure 30). Log-Likelihood profiles for natural mortality showed a similar trade-off
between composition and index likelihoods (Figure 31). The stock recruit parameter
betawas strongly constrained at the lower bound by the initial catch assumption (Figure
32; with low beta values leading to higher catch). We repeated the profile with the high
catch assumption, and at this point the lower bound becomes a lot less well defined - a
slow gradient is given by the trade-off between index and length data.

6.1.3 Estimation uncertainty fromMCMC

Most MCMCs for the Stock Synthesis models were deemed not usable due to a high
number of divergent iterations. Our diagnostic model was the onlymodel that ranwith
nearly no divergences (2 divergent iterations remained a er burn-in). We assumed
that the potential bias due to poorly explored regions of parameter-space was likely
minor, as it appeared to occur with the 2D-AR selectivity deviations. TheMCMC traces
for key quantities appeared acceptable (Figure 33), and the resulting posteriors were
consistent between 8 chains, with low R̂ (Figure 34, Table 2). We therefore judged this
model reasonable for exploration of trajectories of biomass and fishingmortality trends.
However, due to our inability to obtain other reasonable models using full MCMC, we
only used this model to explore uncertainty in the diagnostic case.

6.1.4 Estimated stock recruit relationship

The stock recruit relationship of the diagnostic base model can be compared to the
alternative beta assumptions using estimated values for pre-recruit survival and zfrac
(Figure 35). At beta = 2.69, the diagnostic model, pre-recruit survival remains high
across a wide range of depletion levels from 0 to 0.5, before dropping steeply towards
relatively low (∼0.1) survival at high stock biomass. When beta is increased to 4,
this plateau of high survival is slightly lower, but extends to higher biomass levels.
Conversely, at beta = 1.5, the relationship between depletion and pre-recruit survival is
near-linear. The corresponding stock-recruit functionsmirror these differenceswith the
function for beta = 1.5 showing less doming in the stock-recruit function. We a empted
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to fitmodelswith beta <1, but thesewere highly unstable anddid not appear to converge
to a global minimum for the negative log-likelihood.

Together with estimated recruitment deviations (Figure 35), the estimated pre-recruit
survival showed a slowly increasing trendmirroring an increasing trend in recruitment
deviations. A er 2014, the trend in recruitment reverses, with a steady decline.

6.1.5 Model population trajectory -diagnostic case

The model suggested an over-all increase in fishing mortality up to the mid 2010’s
(Figures 37, 36), driven largely by an increase in longline and object-associated purse
seine catches (Figure 38). Recent fishing mortality was estimated to have declined
sharply since 2011, to levels well below FMSY, from levels exceeding Fcrash (the fishing
mortality that would lead to population collapse in the long term). Despite increasing
trends in F , the diagnostic model estimated a slow and steady increase in biomass
over this period (Figure 39) — due to the steadily increasing trend in recruitment
deviates (Figure 35) — from an initial biomass estimated to have been around 30%
of unfished biomass (Figure 39). The population was estimated to have rebuilt
rapidly from 2014, once fishing mortality rates declined below FMSY levels (Figures 37).
Good recruitment in 2012-2014, coupled with expected recruitment above unfished
recruitment at intermediate depletion levels (Figure 35), led to an estimated stock
rebuild to near unfished levels in recent years (Figure 39).

6.1.6 Retrospective patterns

Retrospective pa erns were high for biomass related quantities, such as stock status
(Figure 40), with initial relative biomass estimated to be high and near unfished
levels when taking out 5 years from the estimation. Adding successive years then
sees the biomass status drop to near current estimates for subsequent retrospective
peels, albeit with very high uncertainty about stock status. With additional years of
data, the stock depletion level increases slightly, though remains within confidence
bounds of previous retrospective peels, suggesting that prior uncertainty correctly
captures plausible future states over recent years. Although all pa erns are within
uncertainty intervals, these pa erns suggest that biomass estimates are only just
beginning to stabilise with the addition of recent data. The retrospective pa ern and
recent stabilisation of estimates is mirrored in fits to CPUE and the estimate of unfished
average recruitment R0 (Figure 40), with the peel that removes 5 years from estimation
leading to poor CPUE fits. Fishing mortality related pa erns were stable from peel 4 to
recent estimates, as were fits to CPUE (Figure 40).

6.1.7 Sensitivities

Sensitivities over data weights showed very close outcomes for all three options, with
higher CPUE weights leading to slightly lower stock status throughout the simulation,
but similar current depletion near estimated unfished biomass levels (Figure 41). Lower
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LFweights had a similar, if slightly more pronounced effect, with a slightly lower over-
all stock status. Estimated fishing mortality levels were very close, as were CPUE fits,
which differed only for most recent years, with higher CPUEweight models producing
a slightly be er fit (Figure 41).

Model runs over a grid of options for beta and initial catch assumptions showed more
variable outcomes than seen from data weighting (Figure 42). Models with low beta
(1.5) had lower over-all status, while models with high beta (4) had the highest status
and lowest over-all depletion levels. Higher catch levels and higher beta led to higher
estimated initial and current stock status. Estimated fishing mortality rates followed a
similar pa ern, with highest F estimated for lower assumed equilibrium catch levels.
CPUE fits appear similar across models.

6.1.8 Ensemble over beta and initial catch

Give that uncertainties about beta and initial catch appeared to capture the range of
uncertainties associated with available model runs, we used draws from a multivariate
log-normal distribution to construct an unweighted ensemble over this grid. The log-
normal simulation approach was used here as alternative models in the grid had poor
MCMC sampling with a relative large number of (>5%) of divergences indicating that
the sampler could not adequately explore the posterior distribution.

The ensemble mirrored the range of model outcomes for the respective sensitivities
(Figure 43), with recent (2019–2020) stock status showing a reasonable amount of
uncertainty, whereas fishing mortality estimates were consistently below FMSY and
well below potential limit reference points (Figure 44).

6.2 Alternative assessments

6.2.1 Length and age structured assessmentmodel

All LAM models converged well, with no persistent trends in the trace plots (Figures
45-50), no divergent transitions throughout the MCMC chains, and R̂ values close
to 1 (less than 1.02). The fits to the observed length compositions were generally
satisfactory (Figures 51-55), except for the length frequencies collected from free-school
sets, where the last two decades show bimodality with a high spike in larger groups
(Figure 51). Although length frequency fits between sensitivity runs with different
initial fishing mortality rates did not show significant differences, CPUE fits displayed
small variations in the first and last five years (Figure 56). Specifically, lower values
of Finit tended to be influenced more by the initial data points compared to higher
values ofFinit. The exactmatch betweenmodel-predicted catches and observed catches
verified the internal calculation of fishingmortality rates through the Newton-Raphson
algorithm that we implemented for the model (Figure 56).

Stock status trends over time from all threemodels showed increasing trends, similar to
both the Stock Synthesis models and dynamic surplus production models (see panels
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in the first row of Figure 60). As expected, the initial starting stock level changed with
the initial fishing mortality rate. The model with the lowest initial fishing mortality
rate (Finit = 0.05) showed the highest stock status, whereas the model with the highest
initial fishing mortality rate (Finit = 0.15) showed the lowest stock status. Median
fishing mortality rates for all three models were below Flim across all years, but the
model with the highest initial fishing mortality rate showed some years (between 1999
and 2012) with fishing mortality rates above FMSY (see panels in the second row of
Figure 60). For all three models, the longline fleet showed the highest fishing mortality
rates, followed by purse-seine object-associated sets and purse-seine free-school sets
(see panels in the third row of Figure 60). The model with the highest initial fishing
mortality rate showed the highest fishing mortality rates for all three fleets.

Estimated selectivity for all three models was almost identical, except for the longline
fleet, where the model with the lowest initial fishing mortality rate showed a slightly
lower selectivity for larger fish than the highest initial fishing mortality rate model
(Figure 57). The estimated length-at-age distributions for all three models were also
similar, resulting in similar pa erns of age compositions over time across all three
models (Figure 59). Although the overall trends in the three models were similar,
marginal posterior distributions for the key parameters differed significantly. Higher
initial fishing mortality rates resulted in lower estimates of unfished recruitment R0

and natural mortalityM , and higher estimates of zfrac, whereas the opposite was true
for the model with the lowest initial fishing mortality rate (Figure 58). The model with
the lowest initial fishing mortality rate showed the largest uncertainty in the estimates
of zfrac, but other parameters showed similar uncertainty across all three models. The
parameter for growth variabilityCV2 showed almost identical estimates across all three
models.

Based on the Majuro plots, the stock status in the recent two years (2019–2020)
underwent lower fishing mortality rates than the corresponding FMSY across all three
models (Figure 61), but stock levels varied across models. The highest initial fishing
mortality rate model showed the lowest stock status, around 25% of its unfished status,
whereas the lowest initial fishing mortality rate model showed the highest stock status,
around 90% of its unfished status.

6.2.2 Dynamic surplus productionmodel

Dynamic surplus production models converged rapidly, and showed good MCMC
mixing for all key parameters (Figure 62), and good convergence diagnostics and
effective sample size (Table 5, Figure 63).

Dynamic surplus production models were largely in agreement with the integrated
assessment in terms of recent stock trajectories as well as fishingmortality rates relative
to proposed reference points(Figure 64). The model fi ed the CPUE series well, but as
for the integrated assessment, the modeled population trajectory did not quite capture
the slight decline observed in the early part of the time-series, but managed to capture
trends in recent CPUEmore accurately (Figure 65). The estimated process error by year
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showed a similar pa ern to the estimated recruitment deviations from the integrated
stock assessment.

Retrospective pa erns were observed for biomass (Mohn’s ρ = 0.30) and harvest
rate (ρ = −0.43). However, these were largely due to the model gaining new
information from the recent increase in CPUE (Figure 66): Initial estimates of biomass
were higher and highly uncertain; with recent reductions in fishing mortality and
corresponding increase in CPUE, the model updates its estimate of depletion, fishing
mortality and productivity. Nevertheless, the uncertainty in early years includes
updated trajectories, with high predictive coverage of around 95% confirming that the
posterior distribution of each new year in the retrospectives is 95% contained within
the predictive distribution from the previous fit (Table 4).

The model estimated the stock to be slightly more productive than the integrated
assessment did, with harvest rates only approaching, but not surpassing F [crash].
Conversely, recent depletion levels were estimated to be lower than those estimated
from the integrated stock assessment across all three scenarios of initial depletion:
the base assumption led to an estimated status in 2020 of 48% (95% CI: 26%–77%) of
unfished abundance, with alternative depletion priors leading to estimates of 20% (95%
CI: 10%–35%) for a prior suggesting a lower initial abundance, and 67% (95% CI: 39%–
100%) for a model with a priori high initial stock status in 1995 (Table 5, Figure 67).

6.2.3 Length-based spatial risk assessment

The hybrid spatial risk assessment converged well and produced satisfactory MCMC
diagnostics, despite the low number of retainedMCMC draws (Table 6, Figure 68). Fits
to observed interactions were good (Figure 69), with no clear trend in residuals both
globally, by gear, and spatially (Figures 69, 70). Fits to length compositions across years
were deemed satisfactory (Figure 71), but uncertainty did not capture the variability in
the input LFs. The la er were highly variable, and 2018 showed the best fit to length
compositions.

Although composition fits did not vary much between sensitivities (Figure 71),
estimates for key quantities differed between years and sensitivities (Figure 72). The
statistics of the sampling distribution (negative binomial parameters nu and phi)
changed between years, whereas the estimated harvest rate was slightly higher in 2018
and 2019 than in 2020. Models with higher weight showed lower variance in the
estimated harvest rate, but showed the same mean harvest rate. Assuming a higher
M led to an estimate of lower harvest rates, whereas assuming a larger L∞ led to an
estimate of higher harvest rates; the growth CV did li le to influence the results.

Predictions in space-based total effort (Figure 73) showed marked inter-annual spatial
changes in harvest rates (Figure 74), reflecting variable effort, but also variable
estimated distributions (Figure 75). In 2018 and 2019, the distribution was estimated
to be strongly skewed towards Papua New-Guinea and the Solomon Islands, whereas
in 2020, abundance hotspots were estimated to be further eastward and towards higher
latitudes.
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Decomposing the harvest rates into gear types showed that the highest harvest rates
are due to object-associated purse-seine sets (Figures 76, 77), which o en fish in areas
of high density in western equatorial waters. Consequently, the total harvest rate from
this gear-type was estimated to be nearly twice that of longline and free-school sets.
The estimated F/Fcrash was just over 0.5, with a probability of near 15% that F exceeds
Fcrash (Table 7), with a risk just over 25% for 2018 and 2019. Only with an assumption
of larger L∞ does the risk increase to >50% (Figure 77).

6.3 Model comparison

Stock status (SSBrecent/SSB0), measured as recent (2019–2020) relative depletion, was
highly variable across models, with mean estimates ranging from 0.44 (95% CI: 0.10–
0.96) for an ensemble across dynamic surplus production model assumptions of initial
depletion, to 0.76 (0.45–0.98) for the diagnostic stock synthesis model (Tables 8,9; Figure
78). Uncertainty about recent relative depletion across the range of models was high,
especially across ensembles of models where initial fishing mortality could not be
reliably estimated from data and had to be formulated as a prior (dynamic surplus
production) or set explicitly (length and age basedmodel). For the diagnostic case of the
dynamic surplus production model, for example, uncertainty was still relatively high
(0.22–0.82), but excluded extreme outcomes seen in the ensemble over initial conditions.

Fishing mortality was consistently estimated to be below possible limit reference
points with high probability. Only the length-based risk assessment suggested a
probability of fishing mortality exceeding Fcrash of >5%. The length and age based
models had the lowest estimated recent fishing mortalities (Diagnostic Frecent/Fcrash:
0.04 [0.01–0.10]; P(Frecent/Fcrash >1)=0), with dynamic surplus production (Diagnostic
Frecent/Fcrash: 0.13 [0.02–0.24]; P(Frecent/Fcrash >1)=0) and Stock Synthesismodels (Dia-
gnostic Frecent/Fcrash: 0.38 [0.26–0.54]; P(Frecent/Fcrash >1)=0) providing intermediate
estimates. Ensemblemodels had, as expected, higher uncertainty than single diagnostic
models. However, this increase in uncertainty was not as marked for fishing-mortality
related quantities as for stock status estimates.

7. DISCUSSION

Our assessment took a multi-model approach to assessing silky shark in the Western
and Central Pacific Ocean. The approach resulted from large uncertainties in the
underlying data and difficulties with fi ing of integrated stock assessments for sharks
generally. We therefore a empted a range of models with varying degrees of
complexity and with different data requirements in an effort to understand overfishing
risk to silky shark based on different lines of reasoning. We consciously did not
standardise approaches strictly across models — meaning we did not a empt to use
consistent priors between assessments — treating each approach as standalone and
providing evidence from independent lines of reasoning. However, data inputs were
standardised across assessments as we had a single set of data available from our prior
analyses of available data for silky shark (Neubauer et al. 2023a).
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Our results across all assessment methods were largely in agreement that recent fishing
mortality was low with respect to possible limit reference points for sharks. Therefore,
while each modelling approach has limitations, we suggest that the weight of evidence
is sufficient to conclude that fishing mortality has declined substantially for silky
shark in the most recent decade, and that recent stock status is likely improving from
previous low levels. We further suggest that the dynamic surplus production models
provide the most parsimonious and robust available model for management advice.
This suggestion derives from the consistency with other outcomes, but also because of
stronger reservations about the robustness of other approaches. Most importantly, the
stock synthesis assessment provided a number of challenges that could not be resolved
sufficiently to consider these models robust. We consider both the length-based risk
assessment and LAMmodels experimental at this stage, with further work required to
use these model for management advice.

Usually, an integrated assessment is preferred when sufficient data are available
(Neubauer et al. 2019). However, we were concerned by the difficulties with fi ing
highly variable length compositions and the associated deficiencies with MCMC. The
divergences we observed for integrated models were due to the flexible selectivity
employed to fit length compositions. Without this flexibility, the model could not
fit composition data, and led to estimates of li le depletion across the full time-
series, which did not appear believable. While the model appeared to converge
well under MAP, the No-U-Turn (NUTS) sampler provides a useful tool in the form
of divergences for diagnosing difficult posterior shapes that limit or bias accurate
estimates of uncertainty. As such, the divergences may be seen as a sign of potential
model mis-specification (Gelman et al. 2020), but it may also be a sign of a complex
model that is difficult to sample from. In either case, however, these sampling
difficulties suggest that the model requires further work to resolve these issues.

The slight increase in spawning biomass seen in the integrated model over the first 20
years of the time-series are not reflected in CPUE, and we could not derive a model
where the stable or declining trend in early CPUE could be be er fi ed. Even models
with higher weight on CPUE failed to lead to be er fits of early CPUE. This may be
due to deficiencies in the CPUE itself, or due to model mis-specification. For example,
it is possible that life-history estimates used in the assessment are not representative
due to sampling variability or bias (Grant et al. 2019). Growth specifically has been
reported to be slower at higher latitudes (Joung et al. 2008), and may vary spatially
and over time. Spatio temporal variation is obvious in catch-rates and lengths of silky
shark caught across all fleets, and the influence of ENSO conditions is consistent across
models for CPUE and compositions. Whether these relationships are the reflection of
growth differences according to oceanographic conditions, or if it relates to migrations
of different age classes, is poorly understood.

Mis-specification of variability in growth could be a partial cause of the poor fit of the
integrated model in some years of the time series, as it largely determines the length
distribution of the population. This argument was a key reason for our development
of a length-and-age structured model in this assessment. Although the complexity of
the LAMs was not well supported by the current information on LFs and CPUE data,
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we believe that the model provides a useful avenue of research towards incorporating
cumulative impacts of fishing pressure. The LAM we developed for this assessment
uses the same number of parameters as the Stock Synthesis models, but provides a
be er representation of population dynamics, naturally incorporating the cumulative
impact of fishing pressures on the length distribution of the population. This impact
could be particularly important for long-lived and late-maturing species like sharks.
Another advantage of the LAM is its ability to be easily extended to include both age-
and length-dependent processes, where changes in each component depend on each
other in a more natural way. For example, if both length- and age-dependent natural
mortality need to be included (e.g., higher predation pressure on smaller individuals
and higher senescence on older individuals), an age-specific survivorshipmatrix can be
used in the LAM. Here, the diagonal elements represent the length-dependent natural
mortality for each age class, while the overall scaling of the matrix represents the age-
dependent naturalmortality. Such extensionswouldmake the LAMamore flexible and
powerful tool, as it can also be used for performing simulation testing or developing
priors for simpler models.

In a fully length-structured model—where fishing-induced changes in length distribu-
tion are naturally reflected in themodel—productivity is evenmore dependent on such
variability. We initially a empted to estimate the two parameters (CV1 and CV2) gov-
erning growth variations when fi ing the LAMs, but fixing one of the parameters to
a constant value—particularly CV1, which determines the variability in length of the
recruitment age class—was necessary to achieve convergence. When the selectivities
were all assumed to be dome-shaped, using more flexible selectivity forms, the model
struggled to estimateCV2, even thoughCV1 was fixed. This is likely due to the fact that
fi ing the LFs was largely explained by the flexible selectivity form, and the growth
parameters were not well identified. More information on variability in growth would
be needed to determine which selectivity form is most appropriate, and to estimate the
growth parameters more accurately.

More generally, the strong standardisation of indices and lengths by the ENSO index
suggests that there is an important process that is not currently well represented in our
models. The importance of this process was previously highlighted by Lennert-Cody
et al. (2019), but li le is known about the reason or significance of this process,
and we a empted to standardise all index fishery data to account for impacts of
ENSO. However, this may not be sufficient to eliminate process error arising from
ENSO-driven migrations and/or unresolved stock structure. Genomic data suggested
strong population structure (Derek W. Kra and Bowen 2018), and oceanographic
conditions could be related to ontogenetic movements of separate stocks. Tagging data
gave conflicting results between regions (Francis et al. 2023), with some long range
movements in equatorial individuals and local within region movements at higher
latitude. A key problem is that tagging studies are not replicated in time and space,
and therefore provide li le information to resolve spatio-temporal processes.

The surplus production model integrates over processes that impact composition data
by assuming that the population reflected by the index is fully selected across time,
and therefore do not need to resolve availability of lengths classes. This is supported
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by the standardised length compositions showing much slower variation with slight
early declines, and recent increases in mean lengths suggest that the standardised
compositions reflect a consistently selected population. In addition, silky shark appear
vulnerable from age 0, suggesting that full selection of size classes is a reasonable
assumption. However, by not needing to resolve the catch composition, the model
circumvents the need for a large number of parameters and complexity, and is able to
fit CPUE be er than the integrated model.

The recent increases in CPUE provide information to models about stock productivity
and correspondingly adjust exploitation and depletion levels prior to the increase. It
is well understood that stock assessment models generally require information from
contrast in fishingmortality and biomass indices in order to estimate stock productivity
(Magnusson 2016). As more of this information becomes available, the model will
update estimates of productivity, which naturally leads to retrospective pa erns in
assessments. We argue that these pa erns are to be understood as a learning process
in the case of the present model, rather than a sign of model mis-specification, and that
retrospective pa erns need to be evaluated in the context of individual data andmodels
in order to interpret them. Conversely, the information provided by the CPUE index to
the model places an onus on CPUE being an informative measure of relative biomass.
The high degree of consistency across all observer programs of the free-school purse-
seine index, in conjunction with the non-target nature of the fishery, provides strong
evidence that the index is measuring a large-scale and coherent pa ern, and that the
information is the best source of abundance and productivity information available.
Together with declining estimated catch, the index therefore appears an appropriate
choice to drive model estimates and learning.

While the dynamic surplus production model considers only the catch and index
as data, the risk-assessment approach developed here used composition information
alongside spatial catch rates (CPUA) and ignores CPUE. Given the complexity of
composition information for silky shark this might appear a difficult proposition, and
future iterations of this work could test if it is more appropriate to use standardised
length compositions for this task. If compositions are highly variable, then pooling
across years may be desired, to ensure that an average composition is reflected in
the estimates of fishing mortality. Given the variability in available compositions it
was difficult to judge if fits to length data in the spatial model were adequate. In
addition, given the spatial variation in captures between years, estimates of underlying
compositions varied between years, but it was difficult to gaugewhether such estimates
are reasonable given inter-annual variation in oceanography-driven distribution of
silky sharks, or if this variability simply reflects sampling error. Nevertheless, the
relative consistency of estimates of risk for recent years (higher F for 2018 and 2019,
declining risk from 2019–2020) reflect inferences made from CPUE, and suggest
the method has some merit when length-compositions reflect broad-scale fishing
mortality. The link to spatial and fleet-specific impacts provides a useful avenue to
test management options.

While the risk assessment provided a way to apply a method that does not require
a long time series of inputs, future applications should explore integrating the model
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across years of available data to ensure that between year variation in density and length
are handled appropriately (e.g., catchability could be considered constant between
years, while density varies). This would provide a more robust way to include
inter-annual variability, while minimising the potential for between-year sampling
variation to swamp signals of impact. In addition, the models could be applied
in a more explicit grid across uncertainty in demographic parameters; like stock
assessments, the methods are sensitive to natural mortality assumptions and growth
inputs. Nevertheless, we suggest that the length-based method provides a method to
apply a hybrid spatial risk assessment that does not require time-series data, yet is still
applied in a statistical context that captures uncertainty and estimates key underlying
parameters such as population density and catchability in a model-base framework.
While the present application should be seen as a proof of concept, it could be extended
and improved for a broader application to species for which length composition data
is recently being collected, and which cannot be assessed. It also allows the application
of a risk assessment framework to single-species applications, a task that is generally
discouraged for most risk assessment frameworks (e.g., Hordyk and Carruthers 2018,
Griffiths et al. 2019a) as estimates for individual species are o en driven by assumptions
rather than data.

Overall, our findings from applying a range of model types to silky shark data
suggest that methods with lower data requirements hold promise for species where
composition data are problematic. This is the case for many bycatch species, and
sharks such as shortfin mako where large individuals do not appear in catches, likely
due to dome-shaped selectivity (Large et al. 2022a, ISC 2024). Notably, ISC 2024 also
proposed a dynamic surplus production model for north Pacific shortfin mako. Over-
all, our exploration across models support recommendations made at SC15 regarding
the use of alternative assessment methods for sharks (Neubauer et al. 2019). Notably,
Neubauer et al. (2019) suggested that surplus production models should be used
when composition data are problematic, and risk assessments should only be used
in the context of prioritisation across species, but were problematic for any single
species. However, in the present study we suggested that alternative, data driven risk
assessments could provide an avenue to use a risk assessment approach when time-
series are not sufficiently long, or reliable, to estimate fishing mortality rates relative
to biological reference points. However, the method relies on composition data and,
with non-retention measures leading to sharks and other bycatch species being cut free
from longlines, it may prove difficult to get useful amounts of data across a number of
species. In that case, methods such as EASI-fish (Griffiths et al. 2019b), which estimate
risk from assumptions about fishery overlap with bycatch species distributions and
vulnerability to fishing effort, may be the only alternative to provide estimates of risk.

In summary, acrossmethods, we found consistent evidence that recent fishingmortality
is low relative to conservation reference points, driven by recent declines in fishing
mortality from longline fisheries. Although the exact stock status in terms of relative
depletion remains unclear and strongly dependent on assumptions about initial
status, catch or fishing mortality, recent fishing mortality estimates are remarkably
consistent across methods and sensitivities, suggesting that fishing mortality has
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declined sufficiently to allow for a substantial increase in the population. The estimated
decrease in fishing mortality and increase in populations coincides with non-retention
measures coming into effect across all fisheries. Although post-release mortality is
estimated to be high from purse seine fisheries (Hutchinson et al. 2015), the largest
fishing mortality was estimated to have come from longline fisheries capturing nearly
the full size-range of silky sharks, and reductions in interactions as a result of changes
in fishing practices over the last decade may have substantially reduced this source of
mortality, allowing the stock to rebuild.

In conclusion, we suggest the dynamic surplus productionmodel as a reasonablemodel
to base management advice on. We further suggest that although the uncertainty
about absolute stock status is high across assumptions for initial depletion priors
(Stock status SSBrecent/SSB0: 0.10 – 0.96), the estimates of recent fishing mortality
relative to biological reference points are consistent across models (the ensemble shows
minimally higher uncertainty than the diagnostic case) and provide a sufficient basis for
management advice. On this basis, we conclude that stock status has been improving
since 2010, and that recent fishing mortality rates are below biological reference points
for the ensemble (Diagnostic Frecent/Fcrash: 0.13 [0.01–0.25]; P(Frecent/Fcrash >1)=0;
P(Frecent/Flim >1)=0).

7.1 MainAssessmentConclusions

• The multi-model approach to assessing silky shark resulted in an uncertain stock
status, but high confidence that recent fishingmortality is below levels that would
preclude stock rebuilding.

• Based on considerations of model complexity, fit and estimation issues, we
suggest that the dynamic surplus production model be used for providing
management advice. We further suggest that the model ensemble across initial
depletion priors may be over-representing uncertainty, and we suggest output
from the intermediate assumption as a candidate model for management advice.

• The largest fishing mortality was estimated to have come from longline fisheries
capturing nearly the full size-range of silky sharks, and reductions in interactions
as a result of changes in fishing practices over the last decade may have
substantially reduced this source of mortality, allowing the stock to rebuild.

• The stock status has been improving since 2010, and the recent fishing
mortality rates are below biological reference points for the ensemble (Diagnostic
Frecent/Fcrash: 0.13 [0.01–0.25]; P(Frecent/Fcrash >1)=0; P(Frecent/Flim >1)=0).

With respect to other shark stocks with lower levels of information:

• Surplus production models should be used when composition data are problem-
atic, and risk assessments should only be used in the context of prioritisation
across species. However, alternative, data driven risk assessments could provide
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an avenue to use a risk assessment approach when time-series are not sufficiently
long or reliable to estimate fishing mortality rates relative to biological reference
points.

• With non-retention measures leading to sharks and other bycatch species being
cut free from longlines, data colection may be problematic. In these cases, the
only alternative to provide estimates of risk would be methods such as EASI-
fish, which estimate risk from assumptions about fishery overlap with the species
distributions and vulnerability to fishing effort.

Given some of the fundamental uncertainties highlighted above, we recommend:

• Additional tagging should be carried out using satellite tags in a range of locations
as well as high seas areas to resolve fundamental questions about the species
interactions with local oceanography and the dynamics of ENSO. Such tagging
may help to resolve questions about the degree of natal homing and limited
mixing of the stock, as suggested by genetics. This work is currently scheduled as
part of the SRP as work theme 3 (a)vii and is due to begin in 2025 (Brouwer and
Hamer 2024), and it is recommended that CCMs prioritise this work and ensure
that satellite tagging options are included in the project specification.

• Additional growth studies and validation of aging methods from a range of
locations could help build a be er understanding of typical growth, as well
as regional growth differences. Current growth data are conflicting, with
insufficient data to understand the underlying process. This work is currently
scheduled as part of the SRP as Project P19X11 and is due to begin in 2025
(Brouwer and Hamer 2024), and it is recommended that CCMs prioritise this
work.

• Additional genetic/genomic studies across a broader set of locations could be
undertaken to augment the tagging and existing genomics work to help resolve
the stock/sub-stock structure pa erns. To support this work, a strategic tissue
sampling program for sharks is recommended with samples to be stored and
curated in the Pacific Marine Specimen Bank. This work is currently scheduled
as part of the SRP as work theme 3 (a)xii and is due to begin in 2026 (Brouwer
and Hamer 2024), and it is recommended that CCMs maintain this project in the
current work stream.
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10. TABLES

10.1 Stock synthesis assessment
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Table 2: Estimates and associated uncertainty estimated using MCMC for model parameters and
derivedquantities for the2024diagnosticmodel for silky shark. SD: Standarddeviation,MAD:median
absolutedeviation,credible intervals(5%and95%), the R̂convergencediagnostic(shouldbeasclose
as possible to 1.00) and the Effective Sample Size (ESS).

Variable Mean Median SD MAD 5% 95% R̂ ESS

Objective function 1799.90 1799.65 25.75 26.16 1758.32 1842.15 1.00 1600.30
SSBrecent/SSB0 0.97 0.97 0.06 0.06 0.86 1.06 1.00 1268.64
FInit 0.12 0.12 0.01 0.01 0.11 0.14 1.00 887.93
ln(R0) 6.46 6.46 0.17 0.17 6.20 6.75 1.00 1313.56
M 0.16 0.16 0.01 0.01 0.14 0.18 1.00 1052.85
zfrac 0.66 0.66 0.03 0.03 0.61 0.71 1.00 412.19

40 Stock Assessment of Silky Shark in the Western and Central Pacific Ocean 2024



10.2 Alternative assessments

10.2.1 Length and age-structuredmodel

Table3: Lower and upper bounds for the parameters of the exponential logistic and logistic selectivity
functions. The three parameters for exponential logistic selectivity (i.e., p1, p2, and p3) are defined
in Equation (2), and the two other parameters for logistic selectivity (i.e., L5 and L95) are defined in
Equation (3).

Exponential logistic Logistic
p1 (or L5) (0.02, 1) (30, 90)
p2 (or L95) (0.1, 0.8) (90, 150)
p3 (0.001, 0.5)

10.2.2 Dynamic surplus productionmodel

Table 4: Predictive coverage: proportion of the posterior distribution for year y.

Year Coverage

Harvest rate Depletion

2016 0.96 0.96
2017 0.95 0.98
2018 0.95 0.93
2019 0.93 0.98
2020 0.94 0.96
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Table 5: Parameter estimates and derived quantities for different model runs with alternative
prior assumptions about initial depletion (start_N). SD: Standard deviation, MAD: median absolute
deviation, credible intervals (5% and 95%), the R̂ convergence diagnostic (should be as close as
possible to 1.00) and the Effective Sample Size (ESS).

Model Variable Mean Median SD MAD 5% 95% R̂ ESS

Catch (Post exp.) start_N /1 Nrecent/N0 0.47 0.45 0.16 0.15 0.25 0.75 1.00 4086.99
Catch (Post exp.) start_N /2 Nrecent/N0 0.19 0.18 0.08 0.07 0.09 0.34 1.00 3874.09
Catch (Post exp.) start_N /0.5 Nrecent/N0 0.66 0.64 0.19 0.19 0.39 0.99 1.00 4133.79
Catch (Post exp.) start_N /1 Urecent 0.02 0.01 0.01 0.01 0.00 0.04 1.00 4024.12
Catch (Post exp.) start_N /2 Urecent 0.03 0.02 0.01 0.01 0.01 0.05 1.00 3930.20
Catch (Post exp.) start_N /0.5 Urecent 0.01 0.01 0.01 0.01 0.00 0.03 1.00 3992.99
Catch (Post exp.) start_N /1 log(K) 17.48 17.35 0.86 0.76 16.31 19.08 1.00 4021.97
Catch (Post exp.) start_N /2 log(K) 17.81 17.74 0.68 0.64 16.79 18.99 1.00 4069.84
Catch (Post exp.) start_N /0.5 log(K) 17.62 17.45 0.95 0.92 16.33 19.39 1.00 3962.46
Catch (Post exp.) start_N /1 q 4.41 4.10 1.65 1.44 2.35 7.45 1.00 4074.09
Catch (Post exp.) start_N /2 q 11.88 11.03 4.86 4.24 5.64 20.98 1.00 4015.21
Catch (Post exp.) start_N /0.5 q 2.90 2.73 0.97 0.85 1.71 4.66 1.00 4016.86
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10.2.3 Length-based spatial risk assessment

Table 6: Estimates and associated uncertainty for model parameters and derived quantities for the
basemodel of the hybrid length-based spatial risk assessment. SD: Standarddeviation,MAD:median
absolutedeviation,credible intervals(5%and95%), the R̂convergencediagnostic(shouldbeasclose
as possible to 1.00) and the Effective Sample Size (ESS).

Variable Mean Median SD MAD 5% 95% R̂ ESS

µD 42.3 37.1 22 22.2 16.1 84.9 0.992 546
QLL 0.000282 0.000228 0.000179 0.000141 9.34e-05 0.000648 1.01 449
ϕ 3.89 3.88 0.0767 0.0745 3.76 4.02 0.997 560
ν 0.8 0.799 0.0195 0.0183 0.771 0.834 1.01 479
Harvest-rate 0.09 0.0894 0.00915 0.00839 0.0757 0.106 0.999 532
Gear-affected area 1.34e+03 1.15e+03 677 730 501 2.6e+03 0.995 526
QPS−ASSOC 5.93 5.92 0.422 0.412 5.29 6.64 1.02 389
QPS−UNASSOC 4.59 4.6 0.421 0.404 3.87 5.25 1 443

Table 7: Estimates of risk for sensitivities run for the the hybrid length-based spatial risk assessment.

Sensitivity Median F /Fcrash P (F > Flim) P (F > Fcrash)

base (2020) 0.569 0.29 0.147
2018 0.746 0.495 0.276
2019 0.725 0.472 0.261
LF weight x 10 0.574 0.29 0.146
L∞ x 1.2 1.05 0.8 0.543
M = 0.2 0.315 0.0762 0.0421
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10.2.4 Model Comparison
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Table8: Estimatesofmanagementquantities(stockstatusasSSBrecent/SSB0, andfishingmortality
(F) relative to indicators (FMSY) and possible limit reference points Flim, Fcrash) across models
and subsets within models (diagnostic vs ensemble), arranged by model type. P(>RP) refers to
the probability that themetric (status, fishing mortality) is above the respective indicator (B0, FMSY,
Flim,Fcrash). SS3: Stock Synthesis 3, DSP: Dynamic surplus production, LAM: Length and age based
model, SRA: spatial length-based risk assessment.

Model Subset Metric Mean SD Median 2.5% 25% 75% 97.5% P(>RP)

SS3 Ensemble SSBrecent/SSB0 0.75 0.14 0.77 0.45 0.55 0.90 0.98 0.01
SS3 Ensemble Frecent/FMSY 0.65 0.16 0.63 0.38 0.47 0.84 1.01 0.03
SS3 Ensemble Frecent/Flim 0.44 0.11 0.43 0.26 0.32 0.57 0.69 0.00
SS3 Ensemble Frecent/Fcrash 0.33 0.08 0.32 0.19 0.24 0.43 0.52 0.00
SS3 Diagnostic SSBrecent/SSB0 0.76 0.07 0.76 0.63 0.67 0.84 0.89 0.00
SS3 Diagnostic Frecent/FMSY 0.74 0.14 0.73 0.52 0.59 0.90 1.05 0.05
SS3 Diagnostic Frecent/Flim 0.51 0.09 0.50 0.35 0.40 0.61 0.71 0.00
SS3 Diagnostic Frecent/Fcrash 0.38 0.07 0.37 0.26 0.30 0.46 0.54 0.00
DSP Ensemble Nrecent/N0 0.44 0.24 0.42 0.10 0.16 0.74 0.96 0.02
DSP Ensemble Urecent/UMSY 0.54 0.26 0.56 0.06 0.19 0.84 1.01 0.03
DSP Ensemble Urecent/Ulim 0.18 0.09 0.19 0.02 0.06 0.28 0.34 0.00
DSP Ensemble Urecent/Ucrash 0.13 0.07 0.14 0.01 0.05 0.21 0.25 0.00
DSP Diagnostic Nrecent/N0 0.47 0.15 0.45 0.22 0.30 0.64 0.82 0.00
DSP Diagnostic Urecent/UMSY 0.52 0.24 0.53 0.08 0.21 0.80 0.97 0.02
DSP Diagnostic Urecent/Ulim 0.17 0.08 0.18 0.03 0.07 0.27 0.32 0.00
DSP Diagnostic Urecent/Ucrash 0.13 0.06 0.13 0.02 0.05 0.20 0.24 0.00
SRA Ensemble (All models) Frecent/Flim 1.13 1.13 0.85 0.28 0.47 1.74 3.70 0.39
SRA Ensemble (All models) Frecent/Fcrash 0.85 0.85 0.64 0.21 0.35 1.31 2.77 0.23
SRA Diagnostic (2020) Frecent/Flim 1.12 1.03 0.86 0.42 0.54 1.64 3.49 0.38
SRA Diagnostic (2020) Frecent/Fcrash 0.84 0.77 0.65 0.31 0.40 1.23 2.61 0.20
LAM Ensemble Frecent/Flim 0.07 0.05 0.07 0.01 0.02 0.13 0.17 0.00
LAM Ensemble Frecent/Fcrash 0.05 0.03 0.05 0.01 0.01 0.09 0.12 0.00
LAM Ensemble Frecent/FMSY 0.13 0.08 0.13 0.02 0.04 0.24 0.30 0.00
LAM Ensemble SSBrecent/SSB0 0.48 0.28 0.43 0.07 0.17 0.88 1.09 0.06
LAM Diagnostic (Intermed FInit) Frecent/Flim 0.06 0.04 0.05 0.01 0.02 0.10 0.14 0.00
LAM Diagnostic (Intermed FInit) Frecent/Fcrash 0.04 0.02 0.03 0.01 0.01 0.07 0.10 0.00
LAM Diagnostic (Intermed FInit) Frecent/FMSY 0.11 0.07 0.09 0.02 0.03 0.19 0.26 0.00
LAM Diagnostic (Intermed FInit) SSBrecent/SSB0 0.47 0.21 0.46 0.12 0.22 0.74 0.92 0.01
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Table9: Estimatesofmanagementquantities(stockstatusasSSBrecent/SSB0, andfishingmortality
(F) relative to indicators (FMSY) and possible limit reference points Flim, Fcrash) across models
and subsets within models (diagnostic vs ensemble), arranged by indicator. P(>RP) refers to the
probability that themetric(status, fishingmortality) is above the respective indicator(B0,FMSY,Flim,
Fcrash). SS3: Stock Synthesis 3, DSP: Dynamic surplus production, LAM: Length and age based
model, SRA: spatial length-based risk assessment.

Model Subset Metric Mean SD Median 2.5% 25% 75% 97.5% P(>RP)

SS3 Ensemble SSBrecent/SSB0 0.75 0.14 0.77 0.45 0.55 0.90 0.98 0.01
SS3 Diagnostic SSBrecent/SSB0 0.76 0.07 0.76 0.63 0.67 0.84 0.89 0.00
DSP Ensemble Nrecent/N0 0.44 0.24 0.42 0.10 0.16 0.74 0.96 0.02
DSP Diagnostic Nrecent/N0 0.47 0.15 0.45 0.22 0.30 0.64 0.82 0.00
LAM Ensemble SSBrecent/SSB0 0.48 0.28 0.43 0.07 0.17 0.88 1.09 0.06
LAM Diagnostic (Intermed FInit) SSBrecent/SSB0 0.47 0.21 0.46 0.12 0.22 0.74 0.92 0.01
SS3 Ensemble Frecent/FMSY 0.65 0.16 0.63 0.38 0.47 0.84 1.01 0.03
SS3 Diagnostic Frecent/FMSY 0.74 0.14 0.73 0.52 0.59 0.90 1.05 0.05
DSP Ensemble Urecent/UMSY 0.54 0.26 0.56 0.06 0.19 0.84 1.01 0.03
DSP Diagnostic Urecent/UMSY 0.52 0.24 0.53 0.08 0.21 0.80 0.97 0.02
LAM Ensemble Frecent/FMSY 0.13 0.08 0.13 0.02 0.04 0.24 0.30 0.00
LAM Diagnostic (Intermed FInit) Frecent/FMSY 0.11 0.07 0.09 0.02 0.03 0.19 0.26 0.00
SS3 Ensemble Frecent/Fcrash 0.33 0.08 0.32 0.19 0.24 0.43 0.52 0.00
SS3 Diagnostic Frecent/Fcrash 0.38 0.07 0.37 0.26 0.30 0.46 0.54 0.00
DSP Ensemble Urecent/Ucrash 0.13 0.07 0.14 0.01 0.05 0.21 0.25 0.00
DSP Diagnostic Urecent/Ucrash 0.13 0.06 0.13 0.02 0.05 0.20 0.24 0.00
SRA Ensemble (All models) Frecent/Fcrash 0.85 0.85 0.64 0.21 0.35 1.31 2.77 0.23
SRA Diagnostic (2020) Frecent/Fcrash 0.84 0.77 0.65 0.31 0.40 1.23 2.61 0.20
LAM Ensemble Frecent/Fcrash 0.05 0.03 0.05 0.01 0.01 0.09 0.12 0.00
LAM Diagnostic (Intermed FInit) Frecent/Fcrash 0.04 0.02 0.03 0.01 0.01 0.07 0.10 0.00
SS3 Ensemble Frecent/Flim 0.44 0.11 0.43 0.26 0.32 0.57 0.69 0.00
SS3 Diagnostic Frecent/Flim 0.51 0.09 0.50 0.35 0.40 0.61 0.71 0.00
DSP Ensemble Urecent/Ulim 0.18 0.09 0.19 0.02 0.06 0.28 0.34 0.00
DSP Diagnostic Urecent/Ulim 0.17 0.08 0.18 0.03 0.07 0.27 0.32 0.00
SRA Ensemble (All models) Frecent/Flim 1.13 1.13 0.85 0.28 0.47 1.74 3.70 0.39
SRA Diagnostic (2020) Frecent/Flim 1.12 1.03 0.86 0.42 0.54 1.64 3.49 0.38
LAM Ensemble Frecent/Flim 0.07 0.05 0.07 0.01 0.02 0.13 0.17 0.00
LAM Diagnostic (Intermed FInit) Frecent/Flim 0.06 0.04 0.05 0.01 0.02 0.10 0.14 0.00
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Figure1: CPUE standardisation effects for free-school purse-seine sets by observer-program. Each
row of plots corresponds to the addition of a variable, starting with a model that includes observer-
program-year interactions. In each row, the posterior median and credible interval is shown for the
updatedmodel, posteriormedians for the year effect from sub-models are shown for comparison.
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Figure 2: Purse-seine CPUE index by set-type. Shown is the posterior median and 95% credible
interval for the year effect, standardised for regional trends and environmental variables.
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Figure 3: Influence of NINA4 (miev2) index on catch-rates in observed free-school purse-
seine sets, with positive influence showing years where the over-all catch-rate in the model was
standardised downward by the corresponding amount to account for influences of environmental
conditions. Influence is shown in colour as a multiplier on average catch rates, with circle size
corresponding to the amount of effort entering themodel.
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Figure 4: Spatial predictions from the spatio-temporal CPUE derived from a CPUE standardisation
model for silky shark including a spatio-temporal spline over longitude, latitude and year. The spatio
temporal index is derived by predicting across a consistent domain.
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Figure 5: Spatio-temporal CPUE derived from a CPUE standardisationmodel for silky shark including
a spatio-temporal spline over longitude, latitude and year. The spatio temporal index is derived by
predicting across a consistent domain.
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Figure 6: Presence of size classes in the purse-seine catch for free-school and object-associated
schools as a function of themultivariate ENSO index (meiv2).
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Figure 7: Comparing length frequencies (LFs) for catch (top) and the CPUE index (bottom) for
free-school purse-seine.
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Figure 8: Comparing length frequencies (LFs) for catch (top) and the CPUE index (bottom) for
object associated purse-seine.
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Figure 9: Observed (boxplots for within-flag variability within year) and predicted (posterior mean
line and 75% (dark shade) and 95% (light shade) credible intervals) discard rates by flag for longline
interactions with silky shark. The size of the points on the line indicates the number of records, with
lineswithout representingmodel predictions
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Figure 10: Observed (boxplots for within-flag variability within year) and predicted (posteriormean
lineand75%(darkshade)and95%(light shade)credible intervals)discard ratesbyflagandset-type
for purse-seine interactions with silky shark. The size of the points on the line indicates the number of
records, with lineswithout representingmodel predictions
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Figure 11: Predicted total fishing related mortality from longline fisheries by flag, including 15% post
releasemortality for live-discarded silky shark. Interactions refer to the posterior median (50%) and
90th percentile (90%) of the predicted catch from the observer catch rate model. Low, median and
high discard scenarios refer to the 25%, 50%(median) and75%discard estimates.
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Figure 12: Predicted total fishing related mortality from purse-seine fisheries by flag, including 85%
post releasemortality for live-discarded silky shark. Interactions refer to the posteriormedian (50%)
and 90th percentile (90%) of the predicted catch from the observer catch rate model. Low, median
and high discard scenarios refer to the 25%, 50%(median) and75%discard estimates.
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Figure 13: Predicted total fishing relatedmortality from longline, including 15% post releasemortality
for live-discarded silky sharks. Interactions refer to the posterior median (50%) and 90th percentile
(90%) of the predicted catch from the observer catch rate model. Low, median and high discard
scenarios refer to the 25%, 50% (median) and 75% discard estimates. All discard estimates were
applied at flag and latitudinal stratum level to overall interactions.

0

50

100

150

1995 2000 2005 2010 2015 2020

Year

M
ea

n 
m

or
ta

lit
y 

(in
 th

ou
sa

nd
 in

di
vi

du
al

s)

Scenario

Catch (Post exp.)
Low Disc. (Post exp.)
Mean Disc. (Post exp.)
High Disc. (Post exp.)
High Catch (90%)
Low Disc. (90% Int)
Mean Disc. (90% Int)
High Disc. (90% Int)

Figure 14: Predicted total fishing related mortality from purse-seine, including 15% post release
mortality for live-discarded silky sharks. Interactions refer to the posterior median (50%) and 90th

percentile (90%) of the predicted catch from the observer catch rate model. Low, median and high
discard scenarios refer to the 25%, 50% (median) and 75% discard estimates. All discard estimates
were applied at flag and latitudinal stratum level to overall interactions.
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Figure 15: Meta-analytic prior for M using an assumed input CV of 30%, with colours representing
individual life-history based estimators of naturalmortality (Cope andHamel 2022).

Figure 16: Fitted LOESS smoother with a span of 0.7, resulting in a residual SD of 0.17.
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Figure17: Input values forRmax simulations for silky shark, basedonparameter values reported in the
literature (vB, vonBertalanffy).
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Figure 18: Simulated distribution overRmax for silky shark using distributions over input parameters
shown in Figure 17.
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Figure19: Summaryofpriorpredictivesimulationsforsilkysharkshark. Toprow: Simulatedpopulation
trajectories (in terms of relative abundanceNt/K) coloured by the value of the draw from the prior
distribution of Rmax. For each simulation trajectory, a set of values for carrying capacity, initial
depletion, and Rmax were drawn from their prior distribution, and the median estimated catch from
the catch reconstruction was applied. A subset of 1000 trajectories is shown on the left hand side,
anda subset of 1000 trajectories from thefiltered set(after applying constraints oncurrent depletion
relative to1994). Thecorrespondingdraws fromthepriordistributionof stock size in1994are shown
(2nd row) for the original prior and the constrained (filtered) prior. The prior distribution over stock
status corresponding to the unconstrained prior (left) and the constrained prior (right) is shown in
the third row. The constrained prior can be thought of as a joint Bayesian prior over parameters and
current stock status in the simple surplus productionmodel, and therefore implies a constrained prior
forRmax and overfishing risk (last row; overfishing risk in terms ofFcurr/Fcrash = Fcurr/Rmax).
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11.1 Stock synthesis assessment
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Figure 20: Observed (grey dots) vs. predicted (blue line) CPUE on the log-scale for index longline
fleetsunder thediagnosticcase,withvertical lightgreybandsshowingthe95%credible interval foreach
year index.
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Figure 21: Residuals for CPUE indices from two longline fleets under the diagnostic case.
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Figure 22: Observed (grey bars) vs. predicted (coloured line) catch-at-length for each fleet
aggregated over all years for the diagnostic case.
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Figure23: Temporal trend in theobserved(navypoints)vs. predicted(red line)catch-at-length for
each fleet for the diagnostic case. The grey bands cover the 95%quantile range for the observations.
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Figure 24: Observed (grey bars) vs. predicted (coloured line) catch-at-length by year for the
longline capture fleet in the diagnostic case.
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Figure 25: Observed (grey bars) vs. predicted (coloured line) catch-at-length by year for the
object-associated purse-seine capture fleet in the diagnostic case.
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Figure26: Observed(grey bars) vs. predicted(coloured line) catch-at-length by year for the free-
school purse-seine capture fleet in the diagnostic case.
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Figure 27: Observed (grey bars) vs. predicted (coloured line) catch-at-length by year for the
object-associated purse-seineCPUE index fleet in the diagnostic case.
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Figure28: Observed(grey bars) vs. predicted(coloured line) catch-at-length by year for the free-
school purse-seineCPUE index fleet in the diagnostic case.
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Figure 29: Mean estimated (or fixed) selectivity (yellow) and annual deviation estimated by a two-
dimensional auto-regressive process for the longline capture fleet (top-left), free-school purse-
seine capture fleet (top-right), object-associated purse-seine (shared selectivity for capture and
index fleets; bottom left), and free-school purse-seineCPUE index fleet (bottom-right).
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Figure 30: Relative change in log-likelihood for different values ofLN(R0), for the total likelihood and
contribution by each component.

0.05 0.10 0.15 0.20

0
20

40
60

80
10

0
12

0
14

0

M

C
ha

ng
e 

in
 −

lo
g−

lik
el

ih
oo

d

Total
Length data
Index data
Recruitment
Total without prior

Figure 31: Relative change in log-likelihood for different values of M , for the total likelihood and
contribution by each component.
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Figure 32: Relative change in log-likelihood for different values of beta, for the total likelihood and
contribution by each component.
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Figure 33: Posterior MCMC traces for RO and natural mortality (M), the stock-recruit parameter
zfrac, and initial fishingmortalityF , derived from8 independentMCMCchains (coloured lines).
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Figure 34: Posterior densities of RO and natural mortality (M), the stock-recruit parameter zfrac,
and initial fishingmortalityF , derived from8 independentMCMCchains (coloured bars).
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Figure35: Estimated stock recruit relationship at different levels of fixed beta: Expectedpre-recruit-
survival (top left) and expected recruitment (top right) with associated 95% credible intervals;
recruitment deviations and realised pre-recruit survival in the diagnostic case with 95% credible
intervals estimated byMCMC.
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Figure 36: Fishing mortality by fleet estimated for the diagnostic case over the time-span of the
assessment.
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Figure 37: Posterior densities of Fishingmortality F, with posterior percentiles indicated by the colour
fill. The posterior distribution of fishingmortality atMSY (FMSY) is shown in green, point estimates of
Flim andFcrash are given in orange and red, respectively.
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Figure 38: Retained catch by fleet in biomass and numbers.
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Figure 39: Posterior densities of stock status (SB/SBO), with posterior percentiles (90%, 95% and
99%) indicated by the colour fill.
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Figure 40: Retrospective patterns of relative spawning biomass, fishing mortality, CPUE fits and
unfished biomasswith estimated uncertainty levels.
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Figure 41: Comparison of relative spawning biomass, fishing mortality, CPUE fits and unfished
biomass size for the 2024 diagnostic case and alternative data weighting options, with estimated
uncertainty levels from stock synthesis.
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Figure 42: Comparison of relative spawning biomass, fishing mortality, CPUE fits and unfished
biomass size for the 2024 diagnostic case and alternative options for beta (stock recruit shape) and
initial catch, with estimated uncertainty levels from stock synthesis.
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Figure 43: Catch, fishing mortality, recruitment, spawning biomass and depletion trajectories for an
ensemble formed by models over an (unweighted) grid of fixed beta options and initial catch, with
uncertainty estimated using Monte Carlo draws from amultivariate log-normal based on the Hessian
matrix estimated in SS3.

85 Stock Assessment of Silky Shark in the Western and Central Pacific Ocean 2024



Figure 44: Majuro plots for recent (2019–2020) stock status based on an ensemble formed by
SS3 models for silky shark over an (unweighted) grid of fixed beta options and initial catch in the
WCPFC. The top row shows outcomes for the base scenario, whereas the bottom row shows the
outcomes across all three assumptions of initial depletion. Left hand plots show the stock trajectory,
with uncertainty shown for themost recent year in the analysis (2022),whereas theplot on the right-
hand side show individual draws from the posterior distribution(s) for recent (2019–2020) years
with CPUE.
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11.2 Alternative assessments

11.2.1 Length and age structured assessmentmodel

Figure 45: MCMC trace plots for biological and selectivity parameters from a length and age-
structured model with an initial fishing mortality rate (Finit = 0.05). Selx,x denotes selectivity
parameters (not selectivity values for each length bin). The first subscript indicates the fleet type,
and the second denotes the parameter. For example, Sel1,1 is the first parameter of selectivity for the
longline fleet, which is p1 of the exponential logistic (see Equations (2) and (3) for more details about
the parameters). The order of the fleet types and parameters are the same as those in Figure 57 and
Table 3.
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Figure 46: MCMC trace plots for biological and selectivity parameters from a length and age-
structured model with an initial fishing mortality rate (Finit = 0.1). Selx,x denotes selectivity
parameters (not selectivity values for each length bin). The first subscript indicates the fleet type,
and the second denotes the parameter. For example, Sel1,1 is the first parameter of selectivity for the
longline fleet, which is p1 of the exponential logistic (see Equations (2) and (3) for more details about
the parameters). The order of the fleet types and parameters are the same as those in Figure 57 and
Table 3.
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Figure 47: MCMC trace plots for biological and selectivity parameters from a length and age-
structured model with an initial fishing mortality rate (Finit = 0.15). Selx,x denotes selectivity
parameters (not selectivity values for each length bin). The first subscript indicates the fleet type,
and the second denotes the parameter. For example, Sel1,1 is the first parameter of selectivity for the
longline fleet, which is p1 of the exponential logistic (see Equations (2) and (3) for more details about
the parameters). The order of the fleet types and parameters are the same as those in Figure 57 and
Table 3.
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Figure48:MCMC traceplots for recruitment deviaitions froma length andage-structuredmodelwith
an initial fishingmortality rate (Finit = 0.05).
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Figure49:MCMC traceplots for recruitment deviaitions froma length andage-structuredmodelwith
an initial fishingmortality rate (Finit = 0.1).
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Figure50:MCMC traceplots for recruitment deviaitions froma length andage-structuredmodelwith
an initial fishingmortality rate (Finit = 0.15).
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Figure 51: Fitted results for length frequency distributions in proportion for the longline capture fleet
from 1995 to 2021. The black line represents the observed data. Each color indicates the sensitivity
analysis results for different initial fishing mortality rates (Finit = 0.05, 0.1, and 0.15). Shades
represent 95% credible intervals.
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Figure 52: Fitted results for length frequency distributions in proportion for the object-associated
purse-seine(PS-Obj. Assoc.) fleet from1995to2022. Theblack line represents theobserveddata.
Each color indicates the sensitivity analysis results for different initial fishing mortality rates (Finit =
0.05, 0.1, and 0.15). Shades represent 95% credible intervals.
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Figure 53: Fitted results for length frequency distributions in proportion for the free-school purse-
seine (PS-Free School) fleet from1995 to 2022. The black line represents the observed data. Each
color indicates the sensitivity analysis results for different initial fishing mortality rates (Finit = 0.05,
0.1, and 0.15). Shades represent 95% credible intervals.
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Figure 54: Fitted results for length frequency distributions in proportion for the object-associated
index fleet (CPUE-Obj. Assoc.) from 1998 to 2020. The black line represents the observed data.
Each color indicates the sensitivity analysis results for different initial fishing mortality rates (Finit =
0.05, 0.1, and 0.15). Shades represent 95% credible intervals.
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Figure55: Fitted results for length frequencydistributions inproportion for the free-school indexfleet
(CPUE-Free School) from 1998 to 2020. The black line represents the observed data. Each color
indicates the sensitivity analysis results for different initial fishing mortality rates (Finit = 0.05, 0.1,
and 0.15). Shades represent 95% credible intervals.
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Figure 56: Fitted results to CPUE and catch using a length and age-structuredmodel with sensitivity
analysis on initial F . The top panel shows the index of abundance with error bars indicating 95%
uncertainty intervals, and the fitted results of sensitivity analysis for different initial fishing mortality
rates (F = 0.05, 0.1, and 0.15) represented by lines and shaded areas (95% credible intervals). The
bottom panel depicts the actual catch (in 1,000 individuals) by fleet: Longline (LL), free-school
purse-seine (PS-Free School), and object-associated purse-seine (PS-Obj. Assoc.). Different
markers indicatemodel-predictedcatches frommodelswithdifferent initialF values(circle for0.05,
square for 0.1, and diamond for 0.15), assuming no error in catch.
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Figure 57: Selectivity curves for different fleets and initial fishing mortality rates (Finit = 0.05, 0.1,
and0.15)usinga lengthandage-structuredmodel. Thecolumns representdifferent length frequency
data the model fitted to: Longline capture fleet (LL), object-associated purse-seine capture fleet
(PS-Obj. Assoc), free-school purse-seine fleet (PS-Free School), object-associated index fleet
(CPUE-Obj. Assoc), and free-school indexfleet(CPUE-FreeSchool). The rows represent different
initial fishing mortality rates. The solid lines represent the median selectivity, and the shaded areas
represent the 50%(darker shade) and95%(lighter shade) credible intervals.
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Figure 58: Marginal posterior density distributions for key parameters from a length and age-
structuredmodel with different initial fishingmortality rates (Finit = 0.05, 0.1, and 0.15). Each color
represents a different initial fishingmortality rate. The black line represents the prior distribution.
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Figure 59: Probability and proportion distributions by length and agewith sensitivities on initial fishing
mortality rates (Finit = 0.05, 0.1, and 0.15) estimated using a length and age-structuredmodel. The
top row shows the probability of length at age, with different colors representing different ages from
0 to 24+. The bottom row shows the proportion of different age groups over time, with shaded areas
representing the 50%(darker shade) and95%(lighter shade) credible intervals.
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Figure 60: Time series plots illustrating the sensitivity analysis of different initial fishingmortality rates
(Finit = 0.05,0.1, and0.15)ontheSpawningStockBiomass(SSB/SSB0),fishingmortality(F/year),
fleet-specific fishingmortality (F/year), and recruitment deviations. The top row shows the relative
SSB, the second row shows the overall fishing mortality with reference points Fcrash, Flim, and FMSY.
The third row illustrates fishing mortality rates by fleet: Longline (LL), object-associated purse-
seine (PS-Obj), and free-school purse-seine (PS-Free). The bottom row depicts the recruitment
deviations. Shaded areas represent 50%(darker shade) and95%(lighter shade) credible intervals.
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Figure 61: Majuro plots for silky shark assessments with a length and age-structured model with
sensitivities on initial F (Finit = 0.05, 0.1, 0.15, respectively). The first column shows stock status
(SSB/SSB0) trajectories over time, with error bars for the recent (2019-2020) stock status level
indicating95%uncertainty intervals. Thesecondcolumnshows the individualdraws fromtheposterior
distributions for recent (2019-2020) years. The reddish color gradient indicates Flim and Fcrash
relative to FMSY. The horizontal dashed line represents F/FMSY = 1, and the vertical dashed line
representsSSB/SSB0 = 1.
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11.2.2 Dynamic surplus productionmodel

Figure 62: MCMC traces for derived parameters (harvest rate, risk of population collapseF/FCrash)
and selectedestimatedparameters(initial depletion, carrying capacityK, intrinsic population growth
Rmax and relative depletion) for different model runs with alternative prior assumptions about initial
depletion.
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Figure 63: Marginal posterior densities for derived parameters (harvest rate, risk of population
collapse F/FCrash) and selected estimated parameters (initial depletion, carrying capacity K,
intrinsic population growthRmax and relative depletion) for differentmodel runswith alternative prior
assumptions about initial depletion.
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Figure 64: Fitting of catch-per-unit-effort (CPUE) data using a dynamic surplus productionmodel
with independent model runs for each CPUE indices (dark shading, inter-quartile; light shading, 95%
credible interval). Top row: Predicted CPUE with input CPUE (points) and observation error (inter-
quartile range). Middle row: Time series of fishing mortality relative to the FCrash (red) and Flim =
0.75 ·FCrash (orange)asestimated in thedynamicsurplusproductionmodel. Bottomrow: Estimated
relative depletion (relative to unfished abundanceK). The stock was not unfished in the first year of
the time-series, and each column shows an alternative prior assumption about initial depletion.
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Figure 65: Standardised residuals for CPUE fits by initial depletion assumption.
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Figure 66: Retrospectives for harvest rate and biomass depletion for the base initial depletion
assumption used for the dynamic surplus productionmodel for silky shark.
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Figure 67: Majuro plots for recent (2019–2020) stock status based on the dynamic surplus
production model for silky shark in the WCPFC. The top row shows outcomes for the base scenario,
whereas the bottom row shows the outcomes across all three assumptions of initial depletion.
Left hand plots show the stock trajectory, with uncertainty shown for the most recent year in the
analysis (2020), whereas the plot on the right-hand side show individual draws from the posterior
distribution(s) for recent (2019–2020) years.
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11.2.3 Length-based spatial risk assessment

Figure 68: MCMC traces for key parameters in the hybrid length-based spatial risk assessment.
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Figure 69: Posterior predictive draws (ribbon) and “rootogram” showing the histogram of observed
datashiftedon they-axis tomeet theprediction, therebyshowing residualsalong thex-axis(i.e., bars
ending above the x-axis show a negative residual and vise-versa.)
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Figure 70: Posterior predictive histograms of observed versus predicted (yrep) interactions by gear
(1: longline; 2: Object-associated purse-seine; 3: free-school purse-seine) and residuals from the
hybrid length-based spatial risk assessment plotted against standardised longitude and latitude.
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Figure 71: Fits (line (posterior median) and ribbon (95% credible intervals) for length frequencies
used in the hybrid length-based spatial risk assessment to estimate fishingmortality.
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Figure 72: Posterior densities for key model parameters, with the base scenario highlighted with the
thick black line.
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Figure 73: Effort by gear (top: longline; middle: Object-associated purse-seine; bottom: free-
school purse-seine)used topredict spatial captures andharvest rate. Only effort fromthe2020year
is shown.
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Figure 74: Estimated harvest rate and uncertainty from the hybrid length-based spatial risk assess-
ment of silky shark by year, for 2018(top), 2019(middle) and2020(bottom).
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Figure 75: Estimated relative density and uncertainty from the hybrid length-based spatial risk
assessment of silky shark by year, for 2018(top), 2019(middle) and2020(bottom).
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Figure 76: Estimated harvest rate and uncertainty from the hybrid length-based spatial risk assess-
ment of silky shark by gear (top: longline; middle: Object-associated purse-seine; bottom: free-
school purse-seine).
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Figure 77: Estimated total harvest rate by gear (top) and associated risk estimated across years and
sensitivities (for 2020).
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11.2.4 Model Comparison
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Figure 78: Estimates of management quantities (stock status as SSBrecent/SSB0, and fishing
mortality (F) relative to indicators (FMSY) and possible limit reference points Flim, Fcrash) across
models and subsets within models (diagnostic vs ensemble). P(>RP) refers to the probability that
themetric (status, fishingmortality) is above the respective indicator (B0,FMSY,Flim,Fcrash). SS3:
Stock Synthesis 3, DSP: Dynamic surplus production, LAM: Length and age-structured model, SRA:
Spatial length-based risk assessment.
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APPENDIXA TECHNICALDETAILSOFTHELAM

A.1 Survivalmatrix

The survivalmatrix, St, is a squarematrixwith length I , where I is the number of length
bins. The survival matrix is defined as

St =


S1,t 0 · · · 0
0 S2,t · · · 0
...

... . . . ...
0 0 · · · SI,t

 , (A-1)

where Si,t is the survival probability of a fish in length bin i at year t. The survival
probability is calculated as

Si,t = exp

−M −
∑
f

Fi,t,f

 , (A-2)

where M is the natural mortality rate, and Fi,t,f is the fishing mortality rate for fish in
length bin i at year t of fishing fleet f .

A.2 Recruitment vector

The recruitment vector, Rt, is a vector with length I , where I is the number of length
bins. The recruitment vector is defined as

Rt = R̃t ·


π1|r
π2|r
...

πI|r

 , (A-3)

where R̃t is the total recruitment at year t and πi|r is the probability of a fish being in
length bin i at age of recruitment r.

For the length distribution of the initial age group πi|r, a normal distribution is assumed
with the mean length at age of recruitment, µr, and the variance of the length at
recruitment, σ2

r . The probability of a fish being in length bin i at age of recruitment
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is defined as

πi|r =


∫ Li+w/2
0 f(L|µr, σ

2
r ) dL for i = 1∫ Li+w/2

Li−w/2 f(L|µr, σ
2
r ) dL for 1 < i < I

1−
∫ Li−w/2
0 f(L|µr, σ

2
r ) dL for i = I

, (A-4)

where Li is the midpoint of length bin i, w is the length bin width, µr is the mean
length at age of recruitment, σ2

r is the variance of the length at recruitment, and f(·) is
the normal probability density function.

A.3 Growth transitionmatrix

The age-specific growth transition probability matrix, Ga, is a square matrix with
dimension I×I , where I is the number of length bins. The growth transition probability
matrix is defined as

Ga =


G1|1,a G1|2,a · · · G1|I,a
G2|1,a G2|2,a · · · G2|I,a
...

... . . . ...
GI|1,a GI|2,a · · · GI|I,a

, for r ≤ a < A, (A-5)

where Gj|i,a is the probability that a fish in length bin i at age a will grow to length
bin j at age a + 1. The growth transition probability, Gj|i,a, is modelled as a normal
distributionwithmean L̄i,a+1 and variance σ2

a+1, where L̄i,a+1 is the expected length for
fish in length bin i a er one growth increment and σ2

a+1 is the corresponding variance:

Gj|i,a =


0 for j < i∫ Lj+w/2
0 f(L|L̄i,a+1, σ

2
a+1) dL for j = i∫ Lj+w/2

Lj−w/2 f(L|L̄i,a+1, σ
2
a+1) dL for j > i

1−
∫ Lj−w/2
0 f(L|L̄i,a+1, σ

2
a+1) dL for j = I

, for r ≤ a < A (A-6)

A.4 Growthmodel

The expected length for fish in length bin i a er one growth increment, L̄i,a+1, was
derived by reparameterizing the von Bertalanffy growth model. The expected length,
L̄i,a+1, is defined as

L̄i,a+1 = L∞ · (1− ρ) + ρ · Li , (A-7)
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where L∞ is the asymptotic length, ρ is the brody growth coefficient (i.e., exp(−k),
where k is the von Bertalanffy growth coefficient), and Li is the midpoint of length bin
i.

A.5 Growth variability

The variance of the expected length growth, σ2
a+1, was assumed to be a function of the

mean length at age a, which follows the two-parameter growth variability model used
in the Stock Synthesis so ware (Methot Jr & Wetzel 2013, Methot et al. 2021):

σa = µa ·
(
CV1 +

(
µa − Lmin

Lmax − Lmin
· (CV2 − CV1)

))
, (A-8)

where µa is the mean length at age a, CV1 and CV2 are the coefficients of variation for
growth variability at the minimum and maximum lengths, and Lmin and Lmax are the
minimum and maximum lengths, respectively.

The mean length at age a, µa, is calculated using the von Bertalanffy growth model:

µa = L∞ · [1− exp(−k · (a− a0))], (A-9)

where a0 is the theoretical age at which fish are of zero length.

A.6 Length-at-agedistribution

Length-at-age distributions under equilibrium conditions (i.e., πi|a, defined as the
probability of a fish being in length bin i at age a) with varying levels of length-
dependent mortality across length bins can be calculated using the growth transition
probability. This property is useful for understanding the impact of length-dependent
mortality on the length-at-age distribution in relation to the growth traits of a fish
population.

This equilibrium distribution can be calculated by multiplying the age-specific growth
transition probability Gj|i,a with the corresponding length-at-age distribution πi|a and
the total mortality rate, Zi = M + Fi. Then, summing over all length bins i to obtain
the length-at-age distribution in the next age class πj|a:

πj|a =

∑I
i=1 πi|a−1 · exp(−Zi) ·Gj|i,a−1∑J

j=1

∑I
i=1 πi|a−1 · exp(−Zi,a−1) ·Gj|i,a−1

, for r < a ≤ A, (A-10)

where Zi,a is the total length-dependent mortality rate for fish in length bin i, and the
denominator of the equation normalises the distribution to sum to 1. This process is
repeated iteratively with j = i until a = A to obtain the length-at-age distribution
across all age classes defined in the model.
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