
 
 

 

 

 
SCIENTIFIC COMMITTEE 

TWENTIETH REGULAR SESSION 
 

Manila, Philippines 
14 – 21 August 2024 

 

Spatial Structure and Regional Connectivity of South Pacific Albacore Tuna in the WCPO 
and EPO 

WCPFC-SC20-2024/SA-IP-04 
 

1 August 2024 
 
 
 
 
 
 
 

 
 
 
 

Jed Macdonald1, Giulia Anderson1, Kyne Krusic-Golub2, François Prioul3, Charles 
Cuewapuru3, Malo Hosken1, Vanille Barthelemy1, Taiana Raoulx4, Peter Grewe5, Simon 

Nicol1 and Afaiture Panapa4  

 

 

 

 

 

 
1 Oceanic Fisheries Programme (OFP), Pacific Community (SPC), Noumea, New Caledonia 
2 Fish Ageing Services, 28 Swanston St, Queenscliff 3225, VIC, Australia 
3 Adecal Technopole/Service du parc naturel de la mer de Corail et de la pêche, Noumea, New Caledonia 
4 Moana Nui Development/Directorate of Marine Resources, Papeete, French Polynesia 
5 The Commonwealth Scientific and Industrial Research Organisation, Australia 
 



2 
 

Executive Summary 
 
Responding to a recommendation in the 2021 south Pacific albacore assessment presented to SC17, a 

two-phase study was initiated to improve knowledge on the population structure of the stock across 

the western and central Pacific Ocean (WCPO) and eastern Pacific Ocean (EPO).  

The study takes a holistic approach, using genetic markers coupled with analyses of otolith shape and 

otolith microchemistry to explore evidence for population differentiation. The specific aims are to i) 

help inform decisions on the spatial structure for the 2024 assessment (Teears et al. 2024), along with 

other supporting analyses (Potts et al. 2024), and ii) help guide sampling strategies and analytical 

pipelines for the current south Pacific albacore close-kin mark-recapture (CKMR) project (WCPFC 

Project 100c – SPC-OFP and CSIRO 2024). This Information Paper presents results from Phase 1 of the 

study, involving a broad-scale comparison between the western WCPO (New Caledonia) and the 

western EPO (French Polynesia).  

Analyses of otolith shape and genetic data from sexually mature individuals captured within the New 

Caledonian EEZ (n = 55) and the French Polynesian EEZ (n = 55) during November 2022 both support 

the existence of population differentiation between the two sampling locations. Furthermore, genetic 

data from an additional 38 individuals captured from New Caledonian waters in June 2022 indicate 

seasonal stability in the New Caledonian population genomic signature over at least a five-month 

period from June through November (2022). Thus, seasonal variation cannot explain the genetic 

differentiation observed between fish collected from New Caledonia and French Polynesia. 

These results align with movement rate estimates from SEAPODYM used in the 2024 assessment, and 

together with other lines of evidence, lend support to the 2-region spatial structure adopted this year. 

That said, questions remain around the precise location of the longitudinal division in the south Pacific 

albacore stock; specifically, if this lies within the WCFPC-CA ‘overlap’ region, now part of sub-regions 

1D and 1F, or further west or east? And does this division persist latitudinally?  

To address these questions, we recommend follow-up work be undertaken on south Pacific albacore 

population structure. This work could include completion of Phase 1 analyses and refinement of a 

Phase 2 design that involves finer-scale sampling across the WCPO and further east into the EPO.  

 
 
We invite SC20 to: 

• Note the Phase 1 results presented in this paper. 

• Support the 2024 PAW recommendation for follow-up studies of south Pacific albacore population 

structure, including completion of the otolith microchemistry component of Phase 1 and 

refinement of a Phase 2 design, that:  

i) incorporates finer-scale, structured sampling across the WCPO and further east in the EPO;  

− We note that PAW 2024 highlighted the opportunity for EPO sampling by members 

that operate vessels in that jurisdiction.  

− We invite SC20 to encourage those members to participate in the necessary sample 

collection, as well as request SPC-OFP to liaise with the IATTC to enable opportunities 

for collaborative sample collection. 

ii) combines empirical and modelled data from a variety of sources where available; and 

iii) explores intrinsic and environmental mechanisms that might give rise to the observed 

population structure. 
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• Recognise the value of multiple lines of evidence, as presented here, to:  

i) help inform decisions on spatial structure in tuna stock assessments (sensu Hamer al. 

2023); and  

ii) help inform CKMR sampling designs and analytical pipelines for WCPFC Project 100c. 
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Background 
 

The representation of spatial structure in stock assessment models can have a strong influence on 

model outputs and subsequent management advice (Hilborn et al. 2003; Cadrin 2020, 2023). Theory, 

empirical examples and simulation testing indicate that correctly specifying spatial processes can 

improve model accuracy (Porch et al. 1998; Punt 2019), help align a model’s regional boundaries with 

biology (Cadrin et al. 2014), improve forecasts on how stocks might respond to various management 

and environmental change scenarios (e.g. Bell et al. 2018) and reduce socio-economic risks associated 

with overharvesting or eroded spatial population structure (Ciannelli et al. 2013).  

Ideally, all available data on the biological and fishery-related factors relevant to a particular species 

or stock are gathered and contribute to decisions on the preferred spatial structure for a given 

assessment (see Moore et al. 2020a, b; Hamer et al. 2023). These data can come from a variety of 

sources informative at different scales. For example, genetic and genomic data can offer inference on 

population structure at evolutionary timescales (e.g. Grewe et al. 2015; Pecararo et al. 2018; 

Bravington et al. 2016, 2021). Tag-recapture data (Williams et al. 2018), otoliths (Macdonald et al. 

2013; Duncan et al. 2018; Artetxe-Arrate et al. 2021), muscle stable isotopes (Lorrain et al. 2020), 

parasites (Moore et al., 2019), meristics, fatty acids and morphometrics (e.g. methods based on length 

frequency analysis) (Lennert-Cody et al. 2010; Xu et al. 2023; Potts et al. 2024) act at the scale of a 

fish’s lifetime and can contribute to continued advancements in population dynamics and simulation-

based models (e.g. SEAPODYM – Senina et al. 2020; Ikamoana – Scutt Phillips et al. 2018). Fishery catch 

data can provide an intra- and inter-generational perspective (Glaser et al. 2011, 2014; Hamer et al. 

2023). Combining inference from multiple data types is seen as good practice to uncover population 

structure in marine fishes (e.g. Brophy et al. 2020; Taillebois et al. 2021) and this would seem a prudent 

path towards improving estimates of movement and mixing rates for tropical tunas (Moore et al. 

2020b). This information could then be used to guide the selection of candidate spatial structures for 

the assessment model (Hamer et al. 2023).  

In the case of south Pacific albacore (Thunnus alalunga), while the limited tagging data available do 

highlight individuals’ capacity to undertake long-range latitudinal and longitudinal movements across 

the south Pacific (Williams et al. 2015, Figure 2 in Castillo-Jordán et al. 2021), analyses of genetic 

markers (e.g. Takagi et al. 2001; Montes et al. 2012; Anderson et al 2019, but see Laconcha et al. 2015), 

otolith microchemistry (Macdonald et al. 2013), growth variability (Williams et al. 2012; Farley et al. 

2021) and gonad development (Farley et al. 2013) are indicative of population differentiation between 

the western and easternmost regions of the WCPFC Convention Area (WCPFC-CA) and between the 

western and central Pacific Ocean (WCPO) and eastern Pacific Ocean (EPO). These results are 

supported by the latest SEAPODYM solutions for south Pacific albacore that estimate limited exchange 

of individuals between the WCPO and the EPO (see Senina et al. 2020; SHOU, ANCORS and SPC 2024; 

Teears et al. 2024). That said, most empirical studies to date have been constrained by a lack of spatial 

and temporal resolution and/or structured sampling. And, as highlighted in the review by Moore et al. 

(2020a), substantial uncertainty remains around the scale of longitudinal movements of south Pacific 

albacore within the WCPO, and the degree of connectivity between WCPO and EPO populations.  

This uncertainty around longitudinal movement dynamics led to recommendations from the 2018 pre-

assessment workshop (PAW) to investigate a new spatial structure for the 2018 south Pacific albacore 

stock assessment to simplify the previous model while retaining biological realism (Pilling and Brouwer 

2018). Consequently, the 8-region structure spanning the area of the WCPFC-CA south of the equator 

used in the 2015 assessment (Harley et al. 2015) was simplified to a 5-region structure in 2018 (see 

Tremblay-Boyer et al. 2018a, b). The 2021 stock assessment presented to SC17 (Castillo-Jordán et al. 
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2021) made a further simplification to a 3-region structure with no longitudinal breaks within the 

WCPFC-CA and represented the first attempt at a fully spatially structured assessment for south Pacific 

albacore spanning both the WCPO and EPO. It noted: 

“The most influential uncertainty of those considered in this assessment was the assumption 

related to movement of fish among the model regions. Further research on albacore movement and 

population mixing across the entire south Pacific should be a priority. Given the difficulty of tagging 

albacore, genetic and otolith-based approaches are recommended.”  

It also noted: 

“… the development of the Close Kin Mark Recapture (CKMR) methods that can provide 

information on population scale and stock structure, along with other fishery-independent 

information on uncertain biological processes, and we strongly recommend that this approach is 

considered for south Pacific albacore …” 

In response to these recommendations, a two-phase study was initiated to better define the 

population structure of south Pacific albacore across the WCPO and EPO. The study takes a 

multidisciplinary approach using population genetics coupled with analyses of otolith morphology and 

otolith microchemistry, building on previous work that used genetic or otolith-based techniques in 

isolation (e.g. Williams et al. 2012; Macdonald et al. 2013; Anderson et al. 2019). The specific aims are 

to i) help inform decisions on the spatial structure for the 2024 Pacific-wide south Pacific albacore 

assessment (Teears et al. 2024), along with other supporting analyses (Potts et al. 2024), and ii) help 

guide sampling strategies and analytical pipelines for the south Pacific albacore CKMR project (WCPFC 

Project 100c - Bravington et al. 2021; SPC-OFP and CSIRO 2024).  

This Information Paper briefly outlines the study design and presents results from the first phase of 

the work. 

 

Study design 
 

The study comprises two phases designed to provide inference at different spatial scales: 

Phase 1. Broad-scale comparison 
Aims to explore evidence for broad-scale population structure in south Pacific albacore within the 

WCPFC-CA, specifically between the western WCPO (New Caledonia) and the western EPO (French 

Polynesia).  

Phase 2. Finer-scale comparison 
The Phase 2 design is partially contingent upon Phase 1 results. It involves finer-scale sampling across 

a larger geographic area that covers the core region of south Pacific albacore catch in the WCPO and 

EPO. The results derived from Phase 2 will help pinpoint where any east-west division lies 

geographically, as well as adding information to our understanding of latitudinal movement dynamics 

of potential value for CKMR sampling designs. 

Sample collection and analysis for the genetics and otolith shape components of Phase 1 are now 

complete, and we focus on these aspects in the remainder of the paper.  
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Methods 
 

Sample collection 
During November 2022, SPC staff, working in collaboration with fisheries agencies, fishing companies,  

and the observer and port sampling programmes in French Polynesia (FP) and New Caledonia (NC) 

collected muscle tissue samples (for high-throughput genomic analyses) and sagittal otoliths (for 

ageing and morphological and chemical measurements) from 110 sexually mature albacore tuna (fork 

length range: 80 to 105 cm) captured in each of the FP (n = 55) and NC (n=55) EEZs, within a one-

month time window (Figure 1).  This sampling protocol was designed to minimise the potential for i) 

ontogenetic variation in otolith morphology and/or chemical composition to confound any spatial 

variation that may be present, and ii) confounding temporal variation in genetic and otolith markers 

with any spatial variation that may be present. An additional 38 muscle tissue samples were collected 

in New Caledonian waters in June 2022 (Figure 1). We included these in our genetic sequencing efforts 

to provide an out-group during analyses and to assess seasonal effects on the genetics results. 

Figure 1. Capture locations for south Pacific albacore in French Polynesian (FP) and New Caledonian 
(NC) EEZs during June and November 2022. Enlargements of the sampling areas in FP (top right) and 
NC (bottom right) waters are shown, with circle size in these maps scaled to reflect the sample size per 
capture location (see black circles at top right for reference).   
 
Muscle tissue samples from fish captured in New Caledonian waters were collected at sea by fisheries 

observers aboard longline vessels. Fish were sampled on the dorsal musculature just anterior and 

ventral to the first dorsal spine immediately following capture, using a 3 mm diameter, single-use, 

medical grade biopsy punch tool (Robbins Instruments). This produced a ~3 × 5 mm tissue sample per 

fish. Tissue samples were expelled into a sterile 2-ml vial of RNAlater and stored at −4°C or colder. Each 

sampled fish’s head was then removed and tagged with a cable tie containing a unique ID number 

before being stored at -20°C or colder for the remainder of the trip. This allowed the tracking of 

individual fish from vessel to port in Noumea, where the otoliths were extracted, cleaned of adhering 

tissue and stored dry in labelled vials. In French Polynesia, all fish were sampled in port in Papeete, 

Tahiti, immediately following unloading from longline vessels. Muscle tissue collection and storage 

followed the same procedures as for New Caledonia. Otoliths were removed using the drilling method 



7 
 

(https://youtu.be/jbyp_V6C1C0?si=Khfn9Hjs5wjb0tq4) and were cleaned and stored as described 

above. 

 

Otolith shape analysis 
Otolith shape analysis is a well-established approach to uncovering patterns of connectivity and 

structure in fish populations and has been applied successfully on albacore in the northeast Atlantic 

(Duncan et al. 2018). We refer readers to Campana and Casselman (1993) and Vignon (2015) for 

reviews of the mechanisms but note that otolith morphology can be influenced by genetics Cardinale 

et al. 2004; Vignon and Morat 2010), the environmental conditions experienced throughout life (Hüssy 

2008; Berg et al. 2018) and intrinsic processes like somatic growth and feeding history (Hüssy 2008; 

Denechaud et al. 2020). Several methods have evolved to describe otolith shape. Outline analysis 

quantifies the boundary shape of the otolith which can be viewed as the lifetime manifestation of the 

processes mentioned above. We used outline analysis here, requiring only a high-resolution image of 

each otolith in order to make statistical comparisons of the outlines.  

We selected one undamaged otolith per fish (either left or right), photographed the whole otolith 

under reflected light, sulcus facing down, and measured its mass to the nearest 100 µg. The otolith 

was then sectioned transversely through the primordium and the fish’s age estimated by counting 

annual growth increments on the resulting thin section. This resulted in age estimates spanning 3 to 

11 years across all sampled individuals. Next, we selected fish aged between 4 and 8 years (NC: n = 31; 

FP: n = 35) as these age classes were the best represented at both sampling locations. Otolith images 

were first rotated to a standard position, rostrum facing left, and data collected on each otolith’s 

dimensions and outline using the ‘shapeR' package (Libungan and Pálsson 2015) in R version 4.3.1 (R 

Core Team 2023). We measured the maximum length, maximum width, area and perimeter of each 

otolith, hereafter referred to as ‘shape measurements’, and detected the outline using the 

‘detect.outline’ function (Claude 2008). To remove size-induced bias, otolith area was normalized to 

be equal to 1 in all otoliths. We then acquired 64 independent Wavelet coefficients to describe the 

otolith’s outline by conducting a discrete Wavelet transform on equally spaced radii using the 

‘wavethresh’ package (Nason 2022). All shape measurements and Wavelet coefficients were 

standardised by otolith mass to remove the allometric growth effect on otolith shape. Those showing 

a significant interaction (at α = 0.05) between age class and otolith mass or between sampling location 

and otolith mass based on analysis of covariance (ANCOVA) were omitted automatically. This step left 

either three or four shape measurements and 57 Wavelet coefficients for analysis. 

To visualise otolith shape variation among age classes and between the two sampling locations (i.e. NC 

and FP) we used boxplots of shape measurements, reconstructions of mean otolith outlines derived 

from Wavelet coefficients and ordination results from principal component analyses (PCAs) run in the 

'vegan' package (Oksanen et al. 2022). We then tested for an effect of estimated fish age on otolith 

shape within each sampling location using constrained ordination (i.e. canonical analysis of principal 

coordinates – CAPs) in ‘vegan’ and applying an ANOVA-like permutation test to assess the significance 

of constraints (in this case, fish age) using 1000 permutations. Next, we tested for an effect of sampling 

location on otolith shape, again using CAP and applying the same permutation test. Finally, we 

assessed classification accuracy of individuals to their sampling locations in FP and NC based on otolith 

shape using discriminant analyses of principal components (DAPC) in the 'adegenet' package (Jombart 

2008) and random forest (RF) classifiers built in the ‘randomForest’ package (Liaw and Wiener 2002). 

The RF hyperparameters were optimised during preliminary tuning, including the ‘ntree’ argument 

which we set to 500 across all models. The PCA, CAP, DAPC and RF analyses were run on three different 

datasets: 1) shape measurements alone, 2) Wavelet coefficients alone and 3) shape measurements 

https://youtu.be/jbyp_V6C1C0?si=Khfn9Hjs5wjb0tq4
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and Wavelet coefficients combined. The analytical pipeline is summarised in Figure 2 and full R code 

and data to rerun the analysis is available on request. 

 

Figure 2. Analytical pipeline for otolith preparation, age estimation and shape analysis. Otolith B22 474 
from a 94 cm fork length (UF) south Pacific albacore estimated to be 5 years old is shown for 
illustration. 
 

Genetic analysis 
Genetic samples were sequenced using high-throughput DArTseq protocols by Diversity Arrays 

Technology, which initially identified over 121,000 loci. The raw dataset was subjected to multiple 

cycles of quality filters. A fully technical description of the filtering process is available in the Appendix, 

but in short, we present results from two datasets. The ‘primary’ dataset includes 6756 datapoints per 

fish, representing locations from across the genome which were sequenced with very high confidence 

across all sampled fish. The ‘secondary’ dataset was further vetted for locations in the genome that 

carry uncommonly high divergence between FP and NC samples collected in November 2022 (as 

measured through FST outlier analyses and disregarding the auxillary sample group during the selection 

process) to distil patterns of population structure that are otherwise lost in the primary dataset due to 

the large number of datapoints. The secondary dataset uses 128 datapoints per fish.  

The primary dataset was submitted to heterozygosity assessments (which provide population health 

metrics and are values upon which any other analyses are built) and pairwise comparisons of allele 

frequencies (which produce single values to quantify degree of difference in genetic signatures 

between sample groups) using the ‘DartRverse’ family of packages and StAMPP in R. Various clustering 

analyses (which employ different assumptions and metrics to reorganise samples into ‘logical’ groups 

based on their genetic information) were employed including STRUCTURE, Admixture, and 

Discriminant Analyses of Principal Components (DAPC, same as is applied to otoliths). Due to its highly 

selective nature, the secondary dataset was not submitted to heterozygosity assessments, but was 

submitted to all pairwise and clustering analyses. An additional clustering analysis, StockR, was only 

applied to the secondary dataset because its algorithm is well designed for marine species but does 

not include an explicit recommendation for the best number of clusters to report.  Again, a full 

technical description of the genetic analyses can be found in the Appendix.  
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Results 
 

Otolith shape analysis 

Effects of fish age on otolith shape 

We detected only subtle differences in otolith shape among age classes for 4- to 8-year-old south 

Pacific albacore within each sampling location based on standardised shape measurements (Figure 

A1B) and reconstructions of mean otolith outline per age class from Wavelet coefficients (Figures A1A). 

These differences were not statistically significant (at α = 0.05) for all three datasets (Table 1). The PCA 

plots in Figure 3C further illustrate the lack of pattern among age classes within sampling locations for 

all three datasets. Based on these findings. we deemed it appropriate to pool samples from fish aged 

4 to 8 within each location for the spatial comparisons between FP and NC.  

 
Table 1. Results from analysis of variance (ANOVA)-like permutation tests of otolith shape variation 
among age classes within sampling locations, and between sampling locations (when all age classes 
were pooled within locations). We used 1000 permutations to assess the significance of constraints. 
d.f. = degrees of freedom; Variance = variance among levels of the constraint; values for Sum of Squares 
denoted with an *; F = pseudo F-value (Oksanen et al. 2022).  
 

Tested constraint Sampling 
location 

Dataset d.f. Variance / Sum 
of squares* 

F p 

Age 
Residual 

FP Shape 
measurements 

4   
30   

0.491 
2.066  

1.782   0.118 

 FP Wavelet 
coefficients 

4    
30 

5.556*  
30.141 

1.383   0.102 

 FP Combined 
 

4 
30 

0.654 
2.953 

1.662   0.112 

 NC Shape 
measurements 

3 
27 

0.338 
7.081 

0.430 0.760 

 NC Wavelet 
coefficients 

3 
27 

3.479* 
31.795 

0.702 0.803 

 NC Combined  3 
27 

0.421 
0.1408 

0.4655 0.780 

Sampling location 
Residual 

- Shape 
measurements 

1 
64 

0.096 
2.946 

2.084 0.126 

 - Wavelet 
coefficients 

1 
64 

1.833* 
65.220 

1.798 0.080 

 - Combined 1 
64 

0.124 
3.950 

2.011 0.093 

 

Effects of sampling location on otolith shape 

With reference to Figure 3, we see that FP and NC otoliths differed in standardised length and 

perimeter, with NC samples consistently smaller in these dimensions (Figure 3B). The reconstructions 

of mean otolith outline revealed most of the variation among sampling locations to be between 135° 

and 170° along the dorsal otolith edge near the rostrum (Figure 3B). The ordination plots (Figure 3C) 

showed no strong patterns between the two sampling locations along the first two principal 

components for all three datasets, though the permutation test results (Table 1) do suggest a degree 

of statistical differentiation between sampling locations driven primarily by variation in Wavelet 

coefficients. This differentiation is also evident in the density distributions plotted along the first 

discriminant function of the DAPC run on each dataset (Figure 4). 



10 
 

 

 
 
Figure 3. Visualisation of otolith shape variation between sampling locations in FP and NC. A) Box plots 
summarising the distribution of standardised shape measurements per sampling location. Thick black 
horizontal lines are the median values for each box and the lower (Q1) and upper (Q3) quartiles (box 
limits) are shown. Upper whiskers represent the smaller of the maximum value of the variable and 
Q3 + 1.5 × interquartile range, and lower whiskers the larger of the minimum value of the variable and 
Q1 - 1.5 × interquartile range. B) Mean reconstructed otolith outline for each sampling location. 
Numbers refer to angles in degrees. C) Ordination plots describe variation along the first two principal 
components (PCs) for the three different datasets used. The variance explained by each PC is shown 
on the axes. The numbers in the ordination plots reflect the age estimate from counts of annual 
growth increments on a thin section of the same otolith. In all plots, samples from FP are shown in 
blue, NC in orange.  
 
 
Regarding classification accuracy, the DAPC on the shape measurements alone showed that, overall, 

68.2% of individuals were reassigned correctly to their sampling location. A leave-one-out cross 

validation (LOO-CV) procedure produced higher misclassification rates (Table 2). The DAPC run on the 

Wavelet coefficients alone returned a classification success rate of ~60%. Again, LOO-CV classification 

success was lower. When we combined the shape measurements and Wavelet coefficients, LOO-CV 

classification success improved to 63.6%. ‘Out-of-bag’ estimates of classification success on 36.8% of 

the data held out from training the RF classifiers were similar to the DAPC estimates (Table 2). For both 

DAPC and RF models, samples from FP were always more accurately classified than NC samples. 
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Figure 4. Density distributions for each sampling location along the first discriminant function derived 
from DAPCs run on each of the three datasets. Samples from FP are shown as blue tick marks on the 
rug plot, samples from NC are shown as orange tick marks.  
 
Table 2. Percentage of individuals correctly re-assigned to their sampling location based on DAPC and 
RF classifiers for each of the three datasets. ‘all data’ = classification based on all data from FP and NC; 
‘LOO-CV’ = leave-one-out cross validation; ‘OOB’ = out-of-bag; ‘FP’ = classification based on FP data 
alone; ‘NC’ = classification based on NC data alone.  
 

Classification model Shape measurements Wavelet coefficients Combined  

DAPC - all data 68 61 67 

DAPC - all data LOO-CV 59 55 64 

DAPC - FP 71 66 71 

DAPC - NC 65 55 61 

RF - all data OOB 65 52 62 

RF - FP OOB 69 57 71 

RF - NC OOB 61 45 52 

 
 

Genetic analysis 
As a reminder, genetic analyses also include an out-group collected in New Caledonia in June 2022 

(Figure 1). We therefore label our groups with the added month specificity. Namely, the primary groups 

are FP_Nov and NC_Nov, and we refer to the additional group as NC_June. We refer to the quality-

filtered, genome-wide dataset as ‘primary’ and the smaller dataset that was filtered for quality and 

informativeness as ‘secondary’. 

Heterozygosity-based assessments like observed (Ho), adjusted expected heterozygosity (He) and 

inbreeding coefficient (FIS) provide some general information about the robustness of genetic diversity 

per sample group and allow for comparisons between groups (lower diversity metrics can imply a 

smaller or less robust underlying population). Results of these analyses using the primary dataset are 

provided in Table 3. Pairwise assessment of a related heterozygosity metric, FST, which quantifies 

differences in genetic signature on a scale of 0-1, is provided in Table 4. Of key interest, FP_Nov and 

NC_Nov produced a pairwise FST value of 0.006 (adjusted p-value = 0) while the two NC samples are 

not statistically different. 
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Table 3. Heterozygosity-based metrics with standard deviation in parentheses produced using the 
primary dataset. 
 

 Ho He FIS 

FP_Nov 0.1321 (0.1196) 0.1505 (0.1343) 0.0986 (0.2238) 

NC_June 0.1343 (0.1210) 0.1511 (0.1334) 0.0903 (0.2308) 

NC_Nov 0.1302 (0.1176) 0.1491 (0.1330) 0.1028 (0.2267) 

 
 
Table 4. Pairwise FST from the primary dataset with metrics provided below the diagonal. Associated 

p-values adjusted for multiple comparisons using the Benjamini and Yekutieli (2001) method are 
reported above the diagonal. 
 

  

FST 

FP_Nov NC_June NC_Nov 

FP_Nov  --- 0 0 

NC_June 0.0052  --- 0.6892 

NC_Nov 0.0058 0.00011  --- 

 
We also applied three clustering algorithms to the primary dataset and all concurred on a 

recommended k of 1, suggesting a single population underlies all three sample groups (Figure 5). 

However, a DAPC identified enough variation to separate the two primary sample groups using 40 

principal components (Figure 6).  

 

 
Figure 5. Results from submitting the primary dataset to three clustering programs with different 
metrics for selecting the most appropriate number of underlying genetic clusters. A) STRUCTURE, 
where the recommended k is indicated by a plateau in average posterior probability (LnP(K)) and non-
convergence suggests k=1, B) ADMIXTURE, in which a minimum CV error defines the recommended k, 
and C) DAPC clustering, which recommends the appropriate k based on the lowest Bayesian 
Information Criterion (BIC) value.  
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Figure 6. DAPC on the primary genetic dataset using 40 PCs (number of PCs informed by cross-
validation) and 2 degrees of freedom 
 
Meanwhile, using the specially selected secondary dataset, heterozygosity assessments were not 

conducted but we still tested for pairwise FST (Table 5). Clustering algorithms consistently 

recommended a k of 2 (Figure 7), with subsequent assignment probability analyses (which reassign 

individuals to the theoretical genetic clusters developed by clustering algorithms) identifying at most 

three instances of specimens that did not agree with their original geographic groupings (Figure 8, 

panels A-C). Similarly, a DAPC, which visually groups individuals based on genetic similarity but is not 

driven by k-clustering, maintains a clear overlap between the two NC sample groups and distinction 

from the FP samples (Figure 8, panel D). We also note the addition of a result from StockR in Figure 8 

(panel C), which produces comparable results using underlying assumptions that are particularly well 

suited for marine species. 

 
Table 5. Pairwise FST using the secondary dataset. Values are presented as in Table 4. 
 

  

FST 

FP_Nov NC_June NC_Nov 

FP_Nov  --- 0 0 

NC_June 0.1426  --- 0.0029 

NC_Nov 0.1581 0.0086  --- 

 

Figure 7. Results from submitting the secondary dataset to three clustering programs. A) STRUCTURE, 
B) ADMIXTURE, and C) Adegenet-DAPC. Same metrics described as in Figure 5. 
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Figure 8. Individual allocations using the secondary dataset by clustering programs given k = 2. A) 
STRUCTURE, where bars represent an individual’s probability of assignment to each color-coded 
cluster, with mixed colored individuals suggesting admixture. B) ADMIXTURE, with same 
representation as STRUCTURE but constructed using different algorithms. C) StockR, multi-colored bars 
now represent probability of assignment (not mixed heritage) and colour intensity reflects confidence 
of assignment. D) DAPC using 10 principal components and 2 discriminant functions.  
 

Discussion 
 

The results from Phase 1 of the study provide strong evidence for the existence of broad-scale 

population structure in south Pacific albacore between the western WCPO (New Caledonia) and the 

western EPO (French Polynesia). Moreover, the stability detected in the New Caledonian population 

genomic signature between June and November 2022 highlights that seasonal variation cannot explain 

the spatial differentiation we observed between fish collected from New Caledonia and French 

Polynesia. While acknowledging the small sample sizes available for our comparisons, the agreement 

observed between the otolith shape and genetic results is notable, particularly as these data types 

provide inference at different temporal scales and are underpinned by different mechanisms. Taken 

together, our findings support previous interpretations of the extent of longitudinal structure present 

within the south Pacific albacore stock based upon analyses of genetic and otolith microchemistry data 

in isolation (e.g. Montes et al. 2012; Anderson et al. 2019; Macdonald et al. 2013), growth variation 

and reproductive development (Williams et al. 2012; Farley et al. 2013, 2021) and modelled movement 

estimates (Senina et al. 2020; SHOU, ANCORS and SPC 2024; Teears et al. 2024). 
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The Phase 1 sampling protocol – targeting mature south Pacific albacore of 80 cm fork length or larger 

within the same one-month window in both sampling locations – aimed to minimise potential bias 

related to ontogenetic and/or temporal variation in otolith and genetic markers that could confound 

our interpretation of geographic variation in these markers between FP and NC. Despite achieving 

these sampling objectives, the large range of ages (i.e. 3 to 11 years) estimated for our sampled fish 

necessitated a test for age effects within each sampling location as a first step in the otolith shape 

analysis. We detected only subtle differences in mean otolith outlines among age classes for 4- to 8-

year-old individuals when shape descriptors were standardised by otolith mass6, allowing data to be 

pooled across age classes within sampling locations. Importantly, subsequent spatial comparisons 

using permutation tests, DAPC and RF classifiers on the range of shape descriptors analysed were all 

in agreement, indicating a degree of differentiation between FP and NC samples. 

Otolith outlines can be viewed as life-time representations of both the intrinsic (e.g. genetics, somatic 

growth rate, fish size, feeding history) and environmental factors (e.g. temperature, depth, prey 

availability) experienced by individual fish (Cardinale et al. 2004; Hüssy 2008; Vignon and Morat 2010; 

Denechaud et al. 2020). While distinguishing the relative contribution of these factors remains 

challenging (Vignon 2015), it is increasingly recognised that allometry is a key determinant, and that 

the experienced environment can act indirectly – via dictating patterns of growth increment formation 

throughout life which in turn strongly influence otolith morphology (Campana and Casselman 1993; 

Cardinale et al. 2004; Vignon 2015; Denechaud et al. 2020).  

With these points in mind, we propose three scenarios that could potentially give rise to the variation 

we observed in shape descriptors between FP and NC and that could be further explored in a Phase 2 

of the study. The first has an environmental basis – juveniles from a single spawning stock following 

divergent migration pathways in the WCPO and EPO, traversing environment gradients different 

enough to induce some morphological differences in adult otolith outline. Yet given the genetics 

results presented herein and in previous work (Takagi et al. 2001; Montes et al. 2012; Anderson et al. 

2019), the single spawning stock hypothesis for south Pacific albacore seems highly unlikely (is not 

genetically possible). A second and more likely explanation involves two (or more) geographically 

distinct spawning groups with very limited mixing between reproductive spawning aggregations that 

are exposed to moderately different environmental forces across the lifetimes of group members, as 

enforced by local and/or regional oceanography. Third, assuming the existence of two (or more) 

spawning groups, the spatial differences we see could have a genetic basis (Cardinale et al. 2004; Berg 

et al. 2018) or arise through genetic differences mediated by differences in environmental exposure 

(Vignon and Morat 2010). 

Seeking evidence for each of these scenarios requires additional data. In particular, further work is 

required to understand oceanographic processes in the south Pacific and north Pacific Tropical Gyres, 

which bring juveniles to the New Zealand troll fishery. Moreover, there is a need to resolve the 

ecological and evolutionary connections between juveniles and adults in the EPO and mixing rates 

between eastern EPO and WCPO populations, noting that samples from juveniles in the EPO have 

historically been difficult to obtain due to lower fishing activity in that region (SHOU, ANCORS and SPC 

2024). Otolith microchemistry data may offer useful insights, generating a time-stamped, individual-

 
6 Standardisation by fish length or otolith length is commonly used to account for the allometric growth effect 
on otolith shape (see Cardinale et al. 2004; Libungan et al. 2015). Our decision to use otolith mass instead was 
driven by i) the tight relationship observed between fork length and otolith mass for our samples and ii) higher 
confidence in the accuracy of the otolith weight measurements compared with some uncertainties around some 
fork length measurements recorded in the field. We note that our results were insensitive to using either fish 
length or otolith mass for standardisation. 
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level record of environmental and physiological experience. This approach has proved informative in 

past studies of movement and mixing in south Pacific albacore (Macdonald et al. 2013). Importantly, 

it complements other empirical and simulation-based approaches (Sakamoto et al. 2019; Brophy et 

al. 2020; Taillebois et al. 2022), letting us track connections among individuals and populations at 

specific life history phases (e.g. hatching, spawning). The otolith microchemistry component of Phase 

1 is yet to be completed, and we recommend pursuing this, as well as follow-up studies like that 

outlined in Phase 2, which extends the Phase 1 design through finer-scale sampling across the WCPO 

and into the eastern EPO. Following these recommendations would have the dual benefit of informing 

on the mechanisms driving population structure across the region and guiding aspects of the CKMR 

design work. 

The Phase 1 genetic results come to a similar conclusion as the otolith shape results using different 

biological mechanisms and timescales. Namely, the data supports the presence of biologically 

important population structure between FP and NC. Although some of our evidence may seem to 

contradict this conclusion (namely clustering algorithms that support a single underlying population 

using the primary dataset) it is a matter of terminology—the presence of structure being different from 

the presence of discrete populations. The ‘primary’ dataset, which captures genome-wide 

differentiation between sample groups, still accurately separates samples by location via DAPC and 

produces statistically significant differences in group genetic signature via pairwise FST. Furthermore, 

the comparison of the two NC sample groups in both analyses quantifies the degree of stochastic 

differentiation one could expect when sampling the same (sub)population twice, which is a magnitude 

lower than FP-NC comparisons and not statistically significant. 

We also present results from the ‘secondary’ genetic dataset, which is a distillation of FST outlier 

datapoints. We emphasise the risk of misrepresenting larger trends when cherry-picking 2% of 

available datapoints and limit our interpretation to two points. First, the French Polynesian-New 

Caledonian structure reported by pairwise FST and DAPC in the primary dataset is further supported by 

the individual reassignment steps of all clustering algorithms (a step that is uninformative using the 

primary dataset, given that the recommended number of underlying populations is one). Second, due 

to the nature of FST outlier-based selection, there is an increased chance that the parts of the genome 

involved may experience adaptive pressure, such as from environmental stressors. Identifying 

environmental drivers of population structure is a very useful step towards describing the larger 

population dynamics, and the existence of loci showing outlier patterns of allele frequency distribution 

suggests it would be worthwhile to consider a follow-up study that captures environmental as well as 

geographic variation.  

These results are consistent with the literature. Our primary and secondary datasets are comparable 

to neutral and potentially adaptive datasets, respectively, in two other papers that have applied Next 

Generation Sequencing technology to Pacific albacore stocks (Anderson et al 2019, Vaux et al 2021). 

In both a west-central South Pacific comparison and North-South Pacific comparison, strong patterns 

of population structure were reported using potentially adaptive datasets, while the signal was much 

weaker using neutral datasets.  

Like the otolith shape dataset, we note that the current genetics datasets are not equipped to propose 

a complete theory about the state of population structure in the south Pacific or what the exact drivers 

are. As stated above, we therefore recommend undertaking Phase 2 of the study to more thoroughly 

explore the correlation of genetic and otolith variation with various environmental forcings. From a 

genetics standpoint, we would particularly encourage the collection of samples from still further east 

in the EPO, as a way to capture more divergent environmental conditions that may better clarify drivers 

of adaptive population structure.  
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Figure 9. Spatial structure used in the 2024 south Pacific albacore assessment. Numbers 1 and 2 
indicate explicit regions in the assessment model. The letters (A, B, etc) indicate sub-regions used for 
the definition of fisheries (redrawn from Teears et al. 2024). 

 

Do our findings support the 2024 spatial structure?  
Some discussion is also warranted on how our results align with the spatial structure chosen for the 

2024 south Pacific albacore assessment. The 2024 assessment uses a simplification of the 4-region 

structure used in the 2021 assessment (Castillo-Jordán et al. 2021) to a 2-region structure with sub-

regions defined by fisheries (Figure 9). Region 1 corresponds to the area of the WCPO within the 

WCPFC-CA from the equator to 50°S, including the ‘overlap’ region, while region 2 encompasses the 

same latitudes in the EPO, within the Inter American Tropical Tuna Commission (IATTC) Convention 

Area, excluding the overlap region (Figure 9).  

Movement between regions 1 and 2 is estimated as age and season specific. In the absence of 

informative tag-recapture data, particularly in relation to longitudinal movement rates, the 2024 PAW 

proposed the use of the SEAPODYM model to provide information on recruitment distribution and 

movement rates across life stages (Senina et al. 2020, Hamer 2024 [SC20-2024/SA-IP-01]). This plan 

was adopted in the 2024 assessment (Teears et al. 2024). In summary, SEAPODYM estimated low 

movement rates between regions 1 and 2 across all age classes, with negligible influence of season on 

these estimates. Four additional sensitivities to the movement specification were considered i) zero 

movement between the WCPO and EPO regions, and ii) lower movement (i.e. movement probabilities 

half those estimated by SEAPODYM), iii) higher movement (i.e. movement probabilities double those 

estimated by SEAPODYM) and iv) movement approximating full and instantaneous mixing of the stock. 

Sensitivities i) and iv) were not considered biologically plausible; however, these were included in the 

sensitivity runs as extreme lower and upper limits. Overall, the stock assessment results appeared to 

be robust to the movement assumption and it was deemed unnecessary to consider alternative 

movement scenarios in the final model ensemble (Teears et al. 2024). 

Our empirical findings are in line with the SEAPODYM estimates, noting that the Phase 1 sampling 

coverage only encompasses the overlap region of the EPO and not further east, whereas SEAPODYM 

estimates are calculated across the entire assessment domain. Moreover, our findings, in conjunction 

with other lines of evidence (Williams et al. 2012; Farley et al. 2013, 2021; Takagi et al. 2001; Montes 
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et al. 2012; Macdonald et al. 2013; Anderson et al. 2019; Potts et al. 2024) largely support the chosen 

2-region structure for the 2024 assessment. That said, important questions remain around the precise 

location of the longitudinal division in the south Pacific stock; specifically, if this lies within the WCFPC-

CA overlap region, now part of sub-regions 1D and 1F, or further west or east? And does this division 

persist latitudinally?  A Phase 2 of the study, incorporating finer-scale sampling across a broader region 

of the WCPO and EPO and integrating other empirical and modelled data where available, would help 

to answer these questions.  

 

Recommendations 
 
We invite SC20 to: 

• Note the Phase 1 results presented in this paper. 

• Support the 2024 PAW recommendation for follow-up studies of south Pacific albacore population 

structure, including completion of the otolith microchemistry component of Phase 1 and 

refinement of a Phase 2 design, that:  

iv) incorporates finer-scale, structured sampling across the WCPO and further east in the EPO;  

− We note that PAW 2024 highlighted the opportunity for EPO sampling by members 

that operate vessels in that jurisdiction.  

− We invite SC20 to encourage those members to participate in the necessary sample 

collection, as well as request SPC-OFP to liaise with the IATTC to enable opportunities 

for collaborative sample collection. 

v) combines empirical and modelled data from a variety of sources where available; and 

vi) explores intrinsic and environmental mechanisms that might give rise to the observed 

population structure. 

• Recognise the value of multiple lines of evidence, as presented here, to:  

i) help inform decisions on spatial structure in tuna stock assessments (sensu Hamer al. 

2023); and  

ii) help inform CKMR sampling designs and analytical pipelines for WCPFC Project 100c. 
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Appendix 
 
 

 
 
Figure A1. Visualisation of otolith shape variation among age classes in FP. (A) Box plots summarising 
the distribution of standardised shape measurements per age class. Thick black horizontal lines are 
the median values for each box and the lower (Q1) and upper (Q3) quartiles (box limits) are shown. 
Upper whiskers represent the smaller of the maximum value of the variable and 
Q3 + 1.5 × interquartile range, and lower whiskers the larger of the minimum value of the variable and 
Q1 - 1.5 × interquartile range. (B) Mean reconstructed otolith outline for each age class. Numbers refer 
to angles in degrees. 
 
 

 
 
Figure A2. Visualisation of otolith shape variation among age classes in NC. All details for A) and B) as 
in Figure A1. 
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DNA extraction and sequencing, conducted by Diversity Arrays Technology 
 
Tissue samples were provided to Diversity Arrays Technology as part of a larger sequencing effort.  
 
Genomic DNA was extracted and processed for reduced representation library construction, 
sequenced and genotyped using DArT PL’s patented protocol, DArTseq™. Some procedures were 
proprietary, but reasonably detailed descriptions are available (Sansaloni et al. 2011; Kilian et al. 2012; 
Cruz et al. 2013; Ren et al. 2015). Briefly, DNA was extracted in the DArT PL laboratory, presumably 
with a basic CTAB protocol. Purified DNA then underwent genome complexity reduction with a double 
restriction digest using methylation-sensitive restriction enzymes, which is a method DArT PL has 
previously optimised for tuna samples. Adaptors that include variable barcode sequences and Illumina 
flowcell attachment sequences were ligated to fragments. PCR amplified only mixed fragments in a 
sequence of initial denaturation at 94°C for one minute, followed by 30 cycles of 94°C for 20 seconds, 
58°C for 30 seconds, and 72°C for 45 seconds. A final extension step took 7 minutes at 72°C. Libraries 
were bulked and applied to c-Bot bridge PCR, then single-end sequenced on an Illumina Novaseq6000 
platform for 83 cycles.  
 
Raw reads obtained following sequencing were processed using DArTech PL’s proprietary analytical 
pipelines according to Kilian et al. (2012). The pipelines filter away poor-quality sequences, demultiplex 
reads, groom out singletons and other low quality tags, and eventually apply DArTsoft14 variant calling 
algorithms. SNP markers were further filtered for paralogs, low read depth and suspect call quality. 
Based on this dataset, we flagged a variety of samples that were either not relevant to the current 
analysis or did not sequence normally. The remaining raw sequencing reads were then resubmitted to 
the DArTsoft14 pipeline in order to call genotypes that are study-specific. 
 

Additional quality filtering and development of final datasets 
The final dataset provided by DArTech PL included 121105 loci and 131 samples in three sample 
groups: NC_June (37 samples taken in New Caledonian waters in June 2022), NC_Nov (47 samples 
from New Caledonia in November 2022) and FP_Nov (47 samples from French Polynesia in November 
2022). We proceeded to filter the original dataset twice. Filtering was either done manually or using 
the DartRverse package in R. Specifics about number of loci filtered at each step in either dataset are 
available in Table 1, below. 
 
The first, primary dataset removed loci based on the following quality filters thresholds calculated 
globally across all three sample groups:  

• all loci per contig except that with the highest information content 

• loci with a call rate < 95% 

• with a read depth below 12x or above 100x 

• more than 50% heterozygosity 

• minor allele count lower than 5x 

• deviation from Hardy-Weinberg equilibrium in more than one sample group after adjustment 
of associated p-values using the (Benjamini and Yekutieli 2001) correction method 

• loci in linkage disequilibrium with a correlation r2 > 0.2, also informed by metadata provided 
by DArTech after an attempt to map loci to an available bluefin tuna reference genome (part 
of the genotyping pipeline) 

 
A second dataset was created to capture loci that are FST outliers. To do this, we adjusted our filtering 
thresholds slightly to include more loci with rare alleles, which are more likely to be flagged in FST 
outlier analyses but carry higher risk of being a sequencing error. We simultaneously increased other 
quality filter thresholds to ensure we did not retain erroneous loci. Furthermore, we only considered 
samples from FP_Nov and NC_Nov to ensure selected loci were explicitly informative for this spatial 
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comparison. Once all filtering and selection processes were complete, we re-incorporated the NC_June 
data for the same loci. Specifically, we filtered based on: 

• all loci per contig except that with the highest information content 

• loci with a call rate < 95% 

• with a read depth below 15x or above 100x 

• more than 50% heterozygosity 

• minor allele count lower than 3x 

• deviation from Hardy-Weinberg equilibrium in more than one sample group after adjustment 
of associated p-values using the Benjamini & Yekutieli (2001) correction method 

• loci in linkage disequilibrium with a correlation r2 > 0.2, also informed by metadata provided 
by DArTech after an attempt to map loci to an available bluefin tuna reference genome (part 
of the genotyping pipeline)  

 
The resulting dataset was then submitted to four different programs that detect FST outlier loci.  
 

• Bayescan (Foll and Gaggiotti, 2008): combines a Dirichlet distribution model with a Bayesian 
method to estimate each’s loci’s posterior probability. It is one of the most frequently cited FST 
outlier detection programs in the literature (2886 citations at the time of writing). 

• HacDivSel, Exterme Outlier Set test (Carvajal-Rodríguez, 2017): uses a two-step GST outlier test 
that minimises false positive discovery rate in scenarios of moderate or high migration rates, 
which makes it particularly relevant to tuna.  

• Outflank (Whitlock and Lotterhos, 2015): uses a revised Lewontin-Krakauer model and was 
specifically designed to be more flexible when defining the neutral distribution of loci for a 
study. This is again helpful given the uncertain population model of tuna and demonstrated 
high neutral diversity. 

• PCAdapt (Luu et al. 2016): tests for structure by principal component analysis prior to testing 
for FST outlier loci. It is particularly geared toward identifying local adaptation as opposed to 
other drivers of adaptation and is consciously designed to handle admixed individuals, which 
are additional likely scenarios for tuna.  

 
All software programs were run using default settings, apart from specifying a false discovery rate of 
5% where applicable. Outflank and PCAdapt also allow modification of the minimum minor allele 
frequency per loci, which we specified as close to zero as each software allows, in an effort to preserve 
adaptive structure driven by rare alleles (Linck and Battey, 2019). 
 
Loci were included in the secondary dataset if they were flagged by any of the considered software 
programs. We also ran analyses using a dataset that only retained loci identified by two or more 
software programs, but this produced the same trends and suffered from reduced statistical power. 
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Table A1. loci retained at each filtering step for the two datasets, including FST outlier selection specific 
to the secondary dataset. 
 

Filter type Dataset 

 Primary Secondary 

Quality Filters 

Original 121105 121105 

Replicates per contig 61705 61705 

Call rate 19940 19566 

Read depth 15704 14948 

Heterozygosity 15627 14865 

Minor allele count 6891 6797 

Hardy Weinberg 
equilibrium 6890 6793 

Linkage disequilibrium 6756 6730 

FST outliers 

Bayescan NA 23 

HacDivSel NA 74 

Outflank NA 38 

PCAdapt NA 21 

 
While FST outlier status is often used as a proxy to identify loci that are under adaptive pressure, our 
study design using only two sample groups makes it difficult to determine what external forces might 
be associated with any flagged loci. We therefore treat this dataset more as a cherry-picked panel of 
loci to help distil otherwise very subtle patterns reported using the primary dataset. 
 

Further details about genetic analysis methods 
We provide coding details here for reproducing all genetic analyses conducted in programs. They are 
ordered as they appear in the main text. All processes run in R use v 4.2.2 (R Core Team, 2022). 

• Ho, unbiased He (reported as µHe), FIS —calculated using DartR.base package v 0.65 in R 
(Gruber et al. 2018; Mijangos et al. 2022), command ‘gl.report.heterozygosity’  

• Pairwise FST—StAMPP package v 1.6.3 in R (Pembleton et al. 2013), ‘stamppFst’ specifying 
‘nboots=10000’ 

• Pairwise FST p values—adjusted for multiple comparisions using stats package v 4.5.0 in R (R 
Core Team, 2022), command ‘p.adjust’ specifying ‘method = ‘BY’’ for the Benjamini & 
Yekutieli (2001) correction method 

• DAPC—adegenet package v 2.1.10 in R (Jombart, 2008; Jombart and Ahmed, 2011), using 
command ‘dapc’ and specifying number of principal components and discriminant functions 
interactively. Number of PC’s was informed by cross validation 

• DAPC cross validation—adegenet, using command ‘xvalDapc’ on a genind object transformed 
into a matrix (via R base command ‘tab’, specifying ‘Na.method=’mean’) and reporting 
output [6], Number of PCs Achieving Lowest MSE, as the number of PC’s to use. 

• STRUCTURE—self-contained software package v 2.3 (Pritchard et al. 2000) run in the R 
environment via package strataG v 2.5.01 (Archer et al. 2017), command ‘structureRun’ 
specifying ‘k.range=1:5, num.k.rep=5, burnin=5000,  numreps=50000’ 

• STRUCTURE k-selection—StrataG, command ‘evanno’ specifying the output of 
‘structureRun’; appropriate k value selected based on indicators recommended in (Pritchard, 
Stephens, and Donnelly 2000; Evanno, Regnaut, and Goudet 2005) namely picking the first 
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value of k to produce a plateau in value meanLnP(K) (the mean log probability of results at a 
given k value) of  and/or a spike in Δk (change in the log probability value between 
successive k’s). Failure of results to conform to expected outputs patterns for either metric 
was interpreted as support for k=1.  

• STRUCTURE visualisation—DartR.popgen v 0.3.2 R (Gruber et al. 2018; Mijangos et al. 2022) 
(wrapping functions from StrataG), command ‘gl.plot.structure’ specifying the output of 
‘structureRun’ and ‘K=2’ for the LUPS dataset. 

• ADMIXTURE—self-contained software v 1.3.0 (Alexander et al. 2009; Zhou et al. 2011), run 
via command line ‘./admixture’ specifying ‘--cv FILE.bed k|tee logk.out’ over sequential k-
values = 1-10. Cross-validation values are saved into logk.out files and retrieved to compare 
and select appropriate k based on lowest CV. 

• ADMIXTURE visualisation—First augment the ADMIXTURE output q-file for the selected k 
value (‘outfile.Q.[k]’) to include a new column 1, labelled ‘orig.pop’ and populated with the 
group name per individual. Then submit to strataG in R, command ‘structurePlot’, specifying 
‘pop.col=1, prob.col=2, sort.probs=FALSE, horiz=FALSE, type='bar', legend.position="none", 
col=rainbow(k)). 

• DAPC-k means clustering—adegenet, using command ‘find.clusters’ and interactively 
selecting to keep all available principal components and discriminant functions. Function 
returns output$Kstat with Bayesian Information Criterion values for k=1-20 and the lowest 
BIC value used to identify the most appropriate k. 

• StockR individual assignment—StockR package v 1.0.76 in R (Foster et al. 2018), 
‘stockSTRUCTURE’ run iteratively specifying K=1-5 to fit the data to between 1 and 5 
underlying populations, ‘stockBOOT’ specifying B=500 to test the confidence of individual 
assignments over 500 bootstraps, and ‘plot.stockBOOT.object’ specifying CI.width=0.95 to 
manipulate the scaling of color intensities in returned visuals. 

 

Appreciable differences between clustering programs 
As with FST outlier selection programs, there are an increasing number of software programs that 
provide genetic clustering recommendations with different sensitivities and underlying assumptions. 
We provide a few more insights into each of our selected algorithms here. Exact commands are 
provided in the section above. 

• STRUCTURE (Pritchard et al. 2000): is the most cited clustering program in the literature 
(over 38000 citations of (Pritchard, Stephens, and Donnelly 2000) at the time of writing). It 
uses a Bayesian approach and Markov Chain Monte Carlo estimation to calculate each 
individual’s probability of assignment to each cluster within a given k. Thanks to the base 
program’s popularity, a number of additional programs have been developed to improve 
interpretation and readability of the output, and compensate for a number of acknowledged 
blind spots (which leads to our incorporation of recommendations by (Evanno, Regnaut, and 
Goudet 2005)). A drawback of the program is its underlying population model assumptions, 
some of which are not well fitted to a tuna’s life history. Regardless, we choose to use the 
software for the sake of comparison with existing literature. 

• ADMIXTURE (Alexander et al. 2009; Zhou et al. 2011): uses the same basic model as 
STRUCTURE, but with a block relaxation algorithm and maximum likelihood framework to 
assign individuals to the given number of clusters (k). It is specifically advertised as a follow-
up to STRUCTURE that is much faster to run and handles admixed individuals better. 

• Adegenet (Jombart, 2008; Jombart and Ahmed, 2011): As part of conducting a DAPC, 
adegenet also provides a computation-efficient clustering approach that applies k-means 
clustering to a PCA-transformed dataset. In contrast to STRUCTURE, it does not require 
selection of a population structure model, therefore allowing for much more fluid 
applications. Although the adegenet package does also provide options to visualise 
confidence of individual assignment to their group, the software manual (Jombart and 
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Collins, 2015) warns against using this feature on data re-grouped according to clustering 
recommendations, as this would only create circular validation. We therefore only present 
the BIC results of k-means clustering and a complete DAPC scatterplot of samples in their a 
priori groups. 

• StockR (Foster et al. 2018): first employs k-means clustering similar to adegenet, followed by 
a final classification by EM-algorithm (expectation-maximum) approach and confidence in 
each individual’s assignment measured using Bayesian bootstraps. This is one of the few 
programs designed explicitly to clarify stock delineations, as opposed to identifying founder 
populations. As such, it is less prescriptive about the underlying k-value, but can reveal 
potentially relevant substructure at diverse k’s. It is therefore only reported for the LUPS 
dataset, where there is sufficient external evidence to support k=2. 
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