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Abstract 
This working paper investigates how catchability change may affect the indices of abundance used in 

Indian Ocean Tuna Commission (IOTC) stock assessments. This is an important issue for assessment 

outcomes and management advice. The paper begins with an overview of effort creep, placing it in 

context as a form of productivity increase, which allows us to learn from patterns of technological 

change in other industries. It considers methods for estimating effort creep, such as statistical analyses 

that compare catch rates between vessels with different characteristics, leading on to syntheses of 

analyses across multiple fisheries. For the particular case of tuna longline catch-per-unit-effort (CPUE), 

it examines previous work to explore factors that may affect catchability, demonstrating how the 

accumulation of changes in multiple areas can generate long-term growth in catchability. Syntheses of 

numerous effort creep studies indicate that technology creep should be assumed in all analyses 

involving time series of fishing effort, particularly if they exceed one decade of temporal coverage. 

Although index-specific estimates are often unavailable, ignoring effort creep will usually bias biomass 

estimates to be overly optimistic. Stock assessments should consider a range of scenarios regarding 

long-term catchability trends, from low to high but noting that 0% is rarely plausible. Finally, the paper 

proposes levels of effort creep to assume in both longline and purse seine CPUE indices.  

1. Introduction 
Increases in catch efficiency, or fishing power, have played a critical role in the history of fisheries 

(Gabriel et al., 2005; Scherrer and Galbraith, 2020; Squires and Vestergaard, 2013). Fishing power is a 

function of many components, including the skill and experience of the skipper and crew, and the 

technologies used to find and capture fish.  

In the context of stock assessment, effort creep can be defined as an unquantified increase in the 

average fishing power over time that disturbs the relationship of proportionality between the index 

and the stock trajectory. These changes in catchability over time can substantially affect catch-per-unit-

effort (CPUE) indices, and through them the outcomes of stock assessments. This is particularly 

important for assessments that lack abundance indices from fishery-independent surveys, which 

includes the majority of the fisheries managed by tuna regional fishery management organizations 

(RFMOs).  

There is considerable uncertainty about how to estimate effort creep, and its importance for outcomes 

has led to ongoing debate. For example, at the 2020 Indian Ocean Tuna Commission (IOTC) Working 

Party on Tropical Tunas (IOTC, 2020), participants did not reach a consensus about how to represent 
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effort creep in the skipjack stock assessment (Fu, 2020). Text was included in the meeting report that 

outlined the basis of the disagreement (see Appendix).  

Other tuna RFMOs have similar concerns. WCPFC has recommended research into methods to account 

for effort creep in CPUE standardization and/or the assessment model, associated with the bigeye and 

yellowfin tuna assessments (WCPFC, 2023), and has commissioned a scoping study into longline effort 

creep. The WCPFC scientific services provider is currently undertaking research into development and 

modelling of defensible effort creep scenarios for the skipjack stock assessment. 

This paper focuses on the implications of effort creep for stock assessment, but it also has implications 

for management, particularly associated with input controls (Kompas and Gooday, 2007; Squires et al., 

2017). Both cases hinge upon how effort is defined, but the approaches and constraints for defining 

effort necessarily differ between effort definition for input controls and indices of abundance based 

on catch per unit of effort.  

This working paper considers how cumulative fishing power has changed through time. It begins by 

taking a wider view, considering the characteristics, rates, and drivers of productivity improvements in 

a wide range of technological areas, before turning to focus on fishing. It then identifies methods used 

to estimate rates of change in fishing power. Next it considers syntheses of fishing power estimates 

from a range of fisheries. It then identifies individual factors associated with fishing power change in 

tuna fisheries, primarily focusing on longline fisheries. Finally, it looks at approaches that analysts have 

used in tuna stock assessments to address effort creep that is not included in their abundance indices.  

2. Technological improvement 
Productivity growth driven by technological progress is a key component of modern society, and 

various models have been developed to describe it. A well-known example is Moore’s law (Moore, 

1965; Moore, 1975), which predicted that the number of components on a chip would double every 

one to two years – a rate that was maintained for 50 years (Leiserson et al., 2020). Across many 

domains, technological progress (improvement in a performance metric such as output per unit of 

input) is broadly predictable using exponential growth models. Nagy et al. (2013) used a database on 

the cost and production of 62 technologies to test the ability of alternative models to predict future 

costs, finding that Wright’s law (Wright, 1936) (based on cumulative production) performed similarly 

to Moore’s law (based on time).  

Magee et al. (2016) examined 28 technological domains, found that the correlation of performance 

with time was strong in each one, and proposed that Moore’s law is fundamental to the dynamics of 

technological change.  

Farmer and Lafond (2016) provided a statistical foundation, showing that long-term trends in progress 

are random walks around an exponential in time. They studied 53 technologies to explore the 

predictability of technological progress, and developed an approach for forecasting, including 

estimates of the distribution of uncertainty. These observations support the idea that, when 

comprehensive information is missing, it is reasonable to model technology-based progress such as 

increases in fishing power as a constant rate. 

The rates of exponential improvement vary between technologies, and these characteristic differences 

tend to be maintained through time (Farmer and Lafond, 2016; Magee et al., 2016; Singh et al., 2021). 

Singh et al. (2021) used more exploratory methods to develop hypotheses about improvement rates 

across 1757 domains representing all patents in the US patent system. They found that improvement 

rates ranged from 2% to the domains with the fastest rates of improvement almost always centrally 
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dependent on software. Modularity, or low interactions among components, is a major factor affecting 

performance improvement rates (Basnet and Magee, 2016). The other important factor is differences 

in scaling laws for different domains. Scaling refers to how change in a design parameter relates to 

relative change in performance.  

Efficiency increases are also observed in industrial fisheries, and catchability change is a component of 

this increase. For our purposes, this suggests that fishing methods that are more technology-based are 

likely to maintain higher rates of improvement in fishing power, both because there are more 

independent areas in which improvements may occur, and because individual changes can have large 

scaling effects. One such fishing power component is the process of identifying where to fish, which 

increasingly involves high-tech methods such as remote sensing, sonar, statistical modeling, and 

communication networks.  

The rate at which the performance of a technology improves is a useful indicator of how important 

that technology will be in future (Hoisl et al., 2015). In the context of tuna fishing, this is reflected in 

the more rapid improvement in catchability of purse seine fishing compared to longline (Kolody, 2018; 

Torres-Irineo et al., 2014), and the increasing relative importance and value of the purse seine fishery. 

Similarly, it reflects the increasing relative importance in the Indian Ocean of fishing on FADs associated 

with echo sounders compared to free school fishing (IOTC, 2023).  

2.1. Effort creep 
The term ‘fishing power’ describes the efficiency with which vessels catch fish, defined by Beverton 

and Holt (1957) as a vessel’s effectiveness in catching animals relative to the effectiveness of a standard 

vessel.  

Fishing power tends to increase through time due to a series of adjustments in fishing practices, 

materials, technologies, knowledge, and experience. These adjustments result in higher catch rates 

than would have otherwise occurred. Of course, fishing power changes are not always increases. For 

example, catchability for a bycatch species could decline if changes to the fishery are made to increase 

the catchability of the target species. However, this is special case. The incentive for fishers is to 

increase profit, rather than the catch of any individual species, and this is usually associated with 

targeting the most profitable species.  

Effort creep is important for stock assessment because of the assumed relationship between catch 

rates (CPUE) and stock abundance. This relationship is based on the catch equation, which relates the 

number of fish in the catch, C, fishing effort, E, and the average fish population density, D, on the fishing 

grounds: 

𝐶 = 𝑞𝐸𝐷, i.e., 𝐶𝑃𝑈𝐸 = 𝑞𝐷  

where q is a fixed constant of proportionality known as the catchability coefficient and is related to the 

efficiency of the fishing gear (i.e., the proportion of the stock removed by one unit of effort). Effort 

creep progressively increases the value of q.  

The concept of ‘hyperstability’ is sometimes linked with effort creep (e.g., Ward, 2008) since both can 

cause CPUE to remain high when abundance declines. However, hyperstability (like hyperdepletion) is 

best defined as a lack of proportionality between CPUE and abundance N, such that 𝐶𝑃𝑈𝐸 = 𝛼𝑁𝛽, 

(Hilborn and Walters, 1992), which can also be expressed in terms of density D: 𝐶𝑃𝑈𝐸 = 𝛼𝐷𝛽. 

Hyperstability is associated with the 𝛽 parameter and occurs in a fishery when 𝛽 is less than 1, whereas 

catchability increase is associated with changes in the α parameter. The form of a hyperstable 

relationship between abundance and CPUE depends on the distributions of fish and fishing effort in 
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space and time, and the nature and definition of effort (Erisman et al., 2011; Harley et al., 2001; Ward 

et al., 2013). This paper focuses on effort creep, but effort creep and hyperstability can occur together. 

Effort creep is affected by how the unit of effort is defined (Scherrer and Galbraith, 2020). For example, 

if the unit of effort is the fishing day, a vessel that increases the number of sets per day will increase 

its catchability, whereas that will not be the case if the effort unit is the set. Effort creep also depends 

on how the CPUE index is prepared. Standardization may adjust for some catchability changes through 

covariates such as the vessel identifier and the gear configuration.   

2.2. The drivers of catchability increase 
Industrial fisheries experience strong incentives to increase production, but these incentives are more 

complex than simply a drive to increase CPUE. In economic terms they can be summarized as 

incentives to increase the surplus in outputs, after subtracting inputs, i.e., to maximise profits. 

Productivity is an index of output divided by an index of total input usage (Grosskopf, 1993). For the 

fishing industry the relevant output is the value of the catch, and the relevant inputs are the total costs 

associated with fishing.  

Economic incentives to increase productivity are therefore associated with more than just the CPUE. 

They are also linked to the abundances of the species caught, the values of those species, and costs of 

inputs such as fuel, crew, and interest payments. For example, despite technological advances and 

expansion of fishing throughout the world’s oceans, global production efficiency in terms of the 

tonnage of wild marine catch per watt days of fishing effort was lower in 2012 than in 1950 (Bell et al., 

2017). This was largely a consequence of stock reduction, because the increased efficiency was not 

enough to offset the global decline in fish stocks.  

Productivity growth can be separated into technical change and efficiency change (Grosskopf, 1993), 

and the same considerations can be applied to fishing power change. Efficiency represents how far an 

observation is from the frontier of technical possibility, while technical change shifts this production 

frontier. A new technology such as bird radar or monofilament mainlines may shift the production 

frontier of potential catch rates, but a period of learning is required for individuals to apply the 

technology to full effect – i.e., for fishing efficiency to increase. For example, Robins et al. (1997) found 

that, in the Australian northern prawn fishery, “installation of a GPS without a plotter led to an increase 

of 4% in relative fishing power (over boats without a GPS). During the fisher’s first year of using a 

plotter, fishing power increased by 7% over trawlers without a GPS or plotter; an additional year of 

experience with a plotter increased it to 9%; and a third year increased it to 12%.”  

One effect of this learning process is, to some extent, to smooth the rate of catchability increase and 

make it less episodic than it might otherwise be, given the intermittent nature of technology change.  

Technologies are often trialled by part of the fleet before being taken up more broadly. For example, 

in 1995 in the Japanese southern bluefin longline tuna fishery, a small number of vessels were trialling 

the use of monofilament mainline material (Whitelaw and Baron, 1995), but their use soon spread to 

the whole fleet.  

Regulation can affect technological change in fishing practices. In an extreme example of this, a study 

of the Dutch herring fisheries of the sixteenth to nineteenth centuries found almost no technological 

innovation for more than 300 years. Technical change was prevented by law (Poulsen, 2008).  

2.3. Components of catchability increase 
The effectiveness of a unit of effort in catching fish can change over time due to the adoption of new 

materials and technologies, gear modifications, fisher skill, enhanced communication / networking 
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among skippers and/or access to other information such as oceanographic data that helps locate fish 

(Hamer and Teears, 2023). These factors vary by fishery. Although there are interactions between some 

factors, it is reasonable to assume that, in general, individual factors have multiplicative effects on 

fishing power.  

Some factors are associated with equipment on vessels, such as the GPS systems, communication 

technology to share information between vessels and with fishing companies, and equipment that 

allows vessels to deploy fishing gear more rapidly and effectively (e.g., automatic baiting machines, 

more powerful winches).  

Other technological factors are not directly related to equipment on board a vessel, such as 

increasingly informative environmental data from satellites and models, and scientific progress in 

understanding the factors that affect fish distribution, which may derive from public research or from 

fishers’ interrogation of their own stored catch and effort data.  

Squires (1992) found that the most important sources of technical progress in the Pacific coast trawl 

fishery were electronics and the application of scientific (rather than craft) principles to vessel and 

equipment design and to harvesting methods.  

2.4. Implications of effort creep 
Information that is unavailable to analysts cannot be included in CPUE standardization and accounted 

for in the index. These factors, when associated with increasing fishing power, lead to indices that 

increasingly overestimate abundance through time.  

Since abundance indices are among the most important factors in determining assessment outcomes, 

effort creep can significantly affect assessment outcomes.  

Similarly, simulations to optimise management strategies and determine harvest control rules 

generally assume that indices of abundance are unbiased. Effort creep breaks the assumptions used 

to design the harvest control rules, which will diminish the performance of the management system.  

3. Methods for estimating catchability increase 
One difficulty in estimating rates of fishing power change is obtaining the necessary data (Scherrer 

and Galbraith, 2020). The details of the equipment on a vessel are often unavailable to analysts, and 

factors unrelated to vessel equipment (such as details on the quality of information available to 

fishers) are almost never available and are very difficult to quantity. Thus, estimates of fishing power 

change using most methods are biased low because they omit important factors.  

3.1. Summed contributions of individual components.  
The introduction of new equipment and upgrades to improve technology can often increase vessel 

fishing power. These effects can be estimated using generalized linear or additive models. 

Technological creep is observed in almost all such analyses, particularly if the time series of fishing 

effort exceeds ten years (Palomares and Pauly, 2019). Analyses of equipment effects require reliable 

information about the timing of equipment change across the whole fleet, in a format that can be 

linked to logbook or observer data. They are therefore usually limited in their application to fleets with 

strong administrative oversight and documentation requirements. In most cases data are only available 

for major items of equipment and omit smaller, less obvious technological improvements. These 

analyses also require contrast between vessels in use of the technology, which can be limited when 

new approaches that confer an advantage are taken up rapidly across the fleet. This is a common 

problem with natural experiments, which is why randomised designed experiments are preferred.  
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When the data needed for statistical analysis is lacking, expert opinion can be used to elicit estimates 

of the impacts of changes in the fishery on catch rates (e.g., Medley et al., 2020).  

3.2. Vessel effects 
In the absence of data on equipment, catchability change associated with vessel turnover can be 

accounted for by including a vessel identifier (e.g., the callsign) in the model. This is essentially a 

special case of the individual component approach. Vessel effects are almost always statistically 

significant in CPUE analyses and represent consistent differences in catchability (Hoyle et al., 2024). 

The contribution of this component of catchability change can be estimated by comparing CPUE index 

trends with and without the vessel id in the model (e.g., Hoyle, 2009). Vessel turnover can proxy for 

various technological effects, since newer vessels tend to be equipped from the start with more recent 

technology. Vessels are also more likely to leave a fishery if they have lower catch rates. However, this 

method tends to underestimate effort creep because it omits the catchability change associated with 

equipment changes on an existing vessel, such as upgrading or installing new technology, learning to 

use it more effectively, or obtaining information from other sources. Estimates can also be affected 

by target change, since different vessels may have different targeting strategies, and these can change 

through time. In tuna fisheries targeting multiple species, effort creep estimates using this method 

can be positively or negatively biased by the targeting behaviours of individual vessels (Hoyle and 

Okamoto, 2013).  

Operational data from Japanese longline vessels fishing in the waters of national jurisdiction of Pacific 

Island countries  were analysed to estimate effort creep associated with vessel turnover for the period 

with sufficient data for reliable estimates, 1980-1998 (Hoyle, 2009). Results by 10° square were mostly 

positive, with median values of 0.72% per year for bigeye and 0.76% for yellowfin tuna. Combined 

results for the western equatorial region with the most data, from 10° S to 20° N, were 0.47% for 

bigeye and 1.4% for yellowfin.  

Later analyses using a large database of operational data from the Japanese fleet (Hoyle and Okamoto, 

2011) also provided estimates, though these were biased low because the 24 years from 1952 to 1975 

did not include vessel effects. Nevertheless, estimates for the offshore fleet in western equatorial 

region were 0.38% and 0.98% per year for bigeye and yellowfin respectively from 10° S to 20° N, but 

higher at 0.62% and 1.3% per year when focusing on the core of the fishery between 5° S and 10° N. 

In central Pacific equatorial areas, the trends for the Japanese distant water fleet were 0.45% and 

0.2% respectively, but showed signs of instability from the 1990s, possibly linked to a rapid transition 

within the distant water fleet to monofilament mainlines and larger HBF. This transition was more 

gradual for the Japanese offshore fleet in western areas (see figures 13 & 14 in Hoyle and Okamoto, 

2011). Estimates for non-equatorial areas are considered unreliable due to low sample sizes and the 

likelihood of confounding with targeting strategies.  

In Hoyle and Okamoto (2011), all increments due to vessel effects occurred in the period 1976 to 2010 

but were averaged across 1952-2010. It is reasonable to adjust these from the longer to the shorter 

period using the equation 𝑎𝑑𝑗 = (𝑒𝑠𝑡58)
1

34 . The adjusted estimates are provided in Table 1.  

Analyses for the Indian and Atlantic Oceans (Hoyle et al., 2019a; Hoyle et al., 2019b; Hoyle et al., 

2019c) were not suitable for calculating trends in fishing power linked to vessel turnover, due to both 

confounding between the effects of vessel and cluster variables, and the effects of combining multiple 

fleets with various fishing strategies.  

Note also that including vessel effects in analyses of Japanese longline catch and effort for southern 

bluefin tuna does not change the index trend (Itoh and Takahashi, 2022).  
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Table 1: Summary of estimates of catchability increase associated with vessel turnover, taken from Hoyle (2009) and Hoyle 
and Okamoto (2011).  

Dataset Area Period Species Estimate Adjusted 

SPC-held W Pacific, median of 10x10  1980-1998 BET 0.72%  

 W Pacific, median of 10x10 1980-1998 YFT 0.76%  

 W Pacific, 10S – 20N 1980-1998 BET 0.5%  

 W Pacific, 10S – 20N 1980-1998 YFT 1.4%  

Japanese  W Pacific, 10S-20N 1976-2010 BET 0.38% 0.65% 

 W Pacific, 10S-20N 1976-2010 YFT 0.98% 1.68% 

 W Pacific, 5S-20N 1976-2010 BET 0.62% 1.06% 

 W Pacific, 5S-20N 1976-2010 YFT 1.3% 2.23% 

 

3.3. Calibration against a baseline 
Fishing power change can be estimated by comparing an index against a baseline, such as by 

comparing CPUE trends with biomass estimates from a survey or from mark-recapture experiments, 

by comparisons among gear types within a stock assessment, or by calibrating against abundance 

information from other sources such as mark-recapture experiments or composition data.  

Comparisons with surveys have the advantage that they directly compare abundance indices from 

CPUE with a theoretically unbiased index of abundance, so can include all contributions to change in 

fishing power. There are a few examples of this approach, but difficulties include the high variability of 

both types of stock abundance indices (Marchal et al., 2002). Marchal et al. (2002) compared individual 

vessel catch rates with an external survey index. Damalas et al. (2014) compared CPUE indices from 

commercial landings with experimental survey indices by species group. Harley et al. (2001) and Dunn 

et al. (2000) compared CPUE and survey estimates but used them to characterise the relationship 

between abundance and catchability, rather than changes in catchability through time. 

Relative change in fishing power between fisheries can be estimated by calibrating indices against one 

another within an integrated stock assessment. Comparing within the assessment adjusts for factors 

such as time-varying recruitment and differences in selectivity between fisheries.  

This approach has been applied to tuna assessments (Kolody, 2018) to estimate the rate of increase in 

fishing power of purse seine fisheries. Kolody refitted both the bigeye (Langley, 2016a) and yellowfin 

(Langley, 2016b) tuna assessments from 2016, each with the addition of an associated purse seine 

(PSLS)-based CPUE index. Standardized PSLS effort for the bigeye and yellowfin time series was 

obtained from the standardized skipjack CPUE time series (Katara et al., 2017) by dividing skipjack PSLS 

catch by the CPUE. This represents effort adjusted for quarter, fleet, storage capacity class, and vessel. 

Bigeye and yellowfin CPUE indices were then developed by dividing PSLS bigeye and yellowfin catch 

by the standardized PSLS effort.  

Prior to a change in methodology to a catch-conditioned approach (Davies et al., 2022), WCPO tuna 

stock assessments using MULTIFAN-CL estimated these fishing power changes implicitly for fleets 

other than the major longline fleets, by internally estimating a random walk in catchability (Kleiber et 

al., 2018).  

Other sources of abundance information in integrated stock assessments are rarely sufficiently reliable 

to provide information about catchability change. Abundance information from conventional mark-

recapture data for tunas is affected by uncertainty associated with incomplete mixing, release 

mortality, and reporting rate variation (Hoyle et al., 2015; Kolody and Hoyle, 2015; Leroy et al., 2013). 
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Information from composition data is affected by issues such as spatial size and growth variation, 

selectivity change, and sampling biases (Hoyle et al., 2021; Sampson and Scott, 2012). However, there 

is potential for data from close kin mark-recapture experiments to provide relevant information in 

future.  

3.4. Syntheses 
Comparing and combining results from multiple analyses can identify commonalities between fishing 

methods and gear effects, and permit inferences for fisheries where there are insufficient data to 

directly estimate fishing power changes. These analyses are generally based on data collected in 

logbooks or by observers.  

Eigaard et al. (2014) estimated a mean rate of increase of 3.2% per year across a range of studies. 

Palomares and Pauly (2019) reviewed 51 estimates of trends in fishing power over time, with most in 

the range of 2-4% per year. They noted a negative relationship between the period of the study and 

the estimated rate of change: annual creep rate = 13.8 x (period in years)-0.511. They suggest that this 

trend may occur because “creep factors are usually estimated and published to correct for the 

introduction of an effective new technology over a short period of time”. The estimated relationship 

implies an expected rate of 1.3% per year for studies that cover a 100-year period. Conversely, 

however, this is likely to be an underestimate because the decline in the magnitude of estimates with 

time is likely also affected by negative biases in long-term estimates (Scherrer and Galbraith, 2020). 

Long-term analyses tend to omit some types of technological progress, particularly changes due to 

adding technology to existing vessels, and the accumulation of knowledge.  

Galbraith et al. (2017) use hindcasting to show that a mean rate of technological progress across all 

fisheries at a rate of 5% per year best explains the 20th century pattern of change in fish harvest. Some 

of this increase is due to the displacement of less efficient fishing methods, rather than increased 

efficiency within individual fishing methods.  

Wilberg et al. (2009) noted that time-varying catchability is common in most fisheries, and can be 

caused by environmental, biological, and management processes as well as technological factors.  

4. Relevance for tuna fisheries 
Here individual factors are discussed that may contribute to catchability change in tuna fisheries.  

4.1. All fishing methods.  

4.1.1. Navigation 
Since the late 1970s, precise location fixes, initially from SatNav and subsequently from GPS, have 

allowed longliners to precisely locate bathymetric features such as seamounts (Ward and Hindmarsh, 

2007), where catch rates can be higher (Morato et al., 2010a; Morato et al., 2010b). More generally, 

they also allow vessels to return to areas of historic and/or recent high catch rates. When combined 

with satellite imagery, they allow longliners to find promising oceanographic features. When combined 

with communication devices, they allow vessels to inform each other about where to fish, and where 

not to fish.  

Whitelaw and Baron (1995) suggest that GPS had a major impact when introduced to the southern 

bluefin tuna fishery.  

4.1.2. Fish finding 
Japanese longliners have used echo-sounders since the early 1960s to detect the deep-scattering layer, 

tuna schools, current variation, and seamounts (Ward and Hindmarsh, 2007). Multi-directional sonar 
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has been used since the mid-1980s to locate fish aggregations. Doppler current profiles have been 

used since the late 1980s to determine currents at various depths, which helps to optimise longline 

deployment. Remote sensing has been used to locate promising oceanographic features, including SST 

imagery since the 1970s, ocean colour and sea surface height imagery to identify areas of upwelling 

and current shear. These technologies have also changed and improved through time.  

Over many decades there has been considerable public investment in understanding oceanography 

(Schwing, 2023), which has accelerated with the need to understand and predict climate change. 

Consequently, there is currently an explosion of new data about the ocean (Lubchenco and Haugan, 

2023). Large-scale oceanographic models provide publicly available information about ocean dynamics 

at increasingly fine spatial and temporal scales. Catch rates of swordfish, yellowfin, and bigeye can be 

significantly correlated with fine-scale ocean colour, sea surface temperature and distance from 

temperature fronts (Lyne et al., 2000). Similarly, catch rates of predatory fish in the north Pacific have 

been found to be positively associated with anticyclonic eddies (Arostegui et al., 2022). The skill and 

specialised knowledge of experienced fishers is an important factor contributing to fish finding, and 

science is providing new information that skilled fishers can learn to take advantage of.  

4.1.3. Communication 
Communication is an essential tool for fishing vessels. It is important for safety, but also for sharing 

information a) between vessels, b) from shore to vessel, c) from remote sensing tools to the vessel. 

Information sharing is potentially very powerful for increasing catch rates. For example, improvements 

in communication via radio were estimated to double the fishing power of Japanese purse seine 

vessels during the 1950s (Inoue, 1961). Since 1959, all Japanese longline vessels have been required 

to carry radio transceivers (Ward and Hindmarsh, 2007). Weather data have been faxed to vessels since 

the early 1980s, with information on sea surface temperatures (SST), positions of other longliners, and 

areas of current and past catches (Ward and Hindmarsh, 2007; Yamaguchi, 1989). Since the 1980s, 

there has been increasing availability and use of satellite-based communication with a range of 

improvements in technology and cost reductions.  

Communication networks increase search power, since vessels can search cooperatively and share 

information. Information sharing among vessels in the Japanese pole and line fleet used to be 

conducted by telephone, radio receiver, and fax, but smartphones are increasingly used due to the 

advance of communication networks (Wi-Fi is now available on many vessels) (Matsubara et al., 2022). 

Easy access to the fishermen’s data network allows fishermen to use a wider range of data for 

searching fishery grounds. Internet access via satellite on the high seas is increasingly available, and 

its cost is declining, e.g., Starlink.  

The Automatic Identification System (AIS) is an automated vessel tracking system, introduced in the 

1990s as a safety feature to allow ships to view marine traffic in their area and avoid collisions. Initially 

the detection range of transponders was limited to the VHF range or line-of-sight, about 10-20 nautical 

miles. However, satellites are able to receive AIS signals (S-AIS) which has greatly increased their utility. 

Deployment of satellites with this capability began in 2009 and continues to expand. This has led to 

the public distribution of S-AIS data over the internet, resulting in global real-time position data being 

viewable from anywhere in the world, often for free (e.g., www.marinetraffic.com, 

www.globalfishingwatch.org) (McCauley et al., 2016). These datasets can be supplemented by 

remotely sensed satellite imagery, and in some cases by vessel monitoring systems (VMS).  

The coverage of AIS has steadily increased, but some vessels turn off their transponders (‘go dark’), 

falsify position data, or transmit incorrect identification data (McCauley et al., 2016). In 2014 about 

71% of large fishing vessels used AIS (McCauley et al., 2016). Most Indian Ocean purse seine vessels 

http://www.marinetraffic.com/
http://www.globalfishingwatch.org/
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are likely to go dark except when close to port (Nieblas et al., 2019), given the risk of piracy in the purse 

seine fishing area. Longline vessels are more likely to use AIS (Nieblas et al., 2019), although this varies 

by flag and location (Kroodsma et al., 2022). Kroodsma et al. (2022) estimated that, in an area to the 

north of Madagascar between September 2019 and January 2020, 65% of longline fishing vessels were 

broadcasting AIS.  

A large component of fishing power is locating the fish. Vessels are increasingly able to track their 

colleagues and competitors, share information with other vessels, download remotely sensed data on 

ocean variables such as SST, ocean colour, sea surface height and ocean upwellings, obtain guidance 

from experts and modellers, and model predictions of ocean current and weather changes in the short 

and medium term. All of these factors are likely to increase fishing power.  

Technological advances provide such a large volume of information that a lot of knowledge and 

experience is likely needed to make the best use of them. The impacts on catchability of current 

advances are therefore likely to increase as they spread through the fishery from the best-resourced 

to the less advanced fleets; and will be compounded by further advances in technology and scientific 

understanding.  

4.2. Longline fishing  
Indices of abundance based on longline CPUE are the key indices used in stock assessments for bigeye, 

yellowfin, albacore, and bluefin tunas, in all oceans. Trends in these indices are among the most 

important influences on stock assessment outcomes (Hoyle et al., 2024), and catchability changes 

associated with effort creep have the potential to change those outcomes. Indices used in stock 

assessment generally start in 1952 at the earliest, so this paper will focus on potential catchability 

changes during the period 1952 to the present.  

The data used to develop longline CPUE indices come from large distant water tuna longline vessels. 

Longlines consist of a mainline carrying a series of branchlines (also called snoods or gangions) 

attached at 40–50 m intervals. Each branchline carries a baited hook. The mainline is suspended from 

buoys floating at the sea surface and carries 3000-4000 baited hooks. Longline effort is usually defined 

in terms of hooks set, so while increasing the number of hooks set is likely to increase catch per day, it 

will not itself affect the catch per hook. There may be some reduction in CPUE if only part of the 

longline occurs within a targeted feature, or if hook saturation occurs, but these are not thought to be 

important factors for tuna longline catch rates (Polacheck, 1991). The number of hooks set can also be 

associated with confounding factors such as targeting (Hoyle and Okamoto, 2013).  

Ward and Hindmarsh (2007) noted that “Pelagic longline fishers have continuously modified their 

fishing gear and practices to improve fishing power and catchability, which has altered the relationship 

between catch rates and abundance”. Technological advances include electronic devices to help 

navigate, communicate, and find target species. Synthetic materials allowed fishers to improve hooks 

and lines which increased probabilities of both hooking and landing. Satellite imagery improved search 

efficiency. Freezers increased the proportion of time spent on fishing grounds. Equipment for faster 

longline retrieval increased hooks set without affecting soak time.  

Table 1 of Ward and Hindmarsh (2007) summarises published studies that have measured variation in 

the catchability of longline fishing gear. Ward (2007) provides, in a WCPFC information paper, estimates 

of historical variation in the relative catchability and fishing power of pelagic longline fishing gear, 

applied mostly to bigeye and yellowfin tunas and blue marlin, but also considering mako shark, skipjack 

tuna, and some other species. He considers the following factors: body size (via animal movement), 

depth of gear, fishing master experience, period of hook availability, bait loss, gear saturation, gear 
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detectability (branchline material), hunger, gear competition, bait type, bite off, and fish-finding 

equipment. The peer-reviewed version of this research (Ward, 2008) notes that although the effects 

on catchability of many of these factors appear large, they are also very uncertain. While this 

uncertainty may make it difficult to use the estimates directly to adjust CPUE trends, it also (and 

perhaps appropriately) reduces confidence in CPUE indices based on standardizing longline CPUE.  

The views of Australian Fishing Zone observers working on Japanese longline vessels were canvassed 

via questionnaires and a series of discussions (Whitelaw and Baron, 1995), to help identify changes in 

equipment and fishing techniques from the 1970s to the 1990s. They investigated changes in fishing 

gear (lines, hooks, sinkers, bait throwers, radio beacons, baits), location finding techniques 

(electronics, visual observations), vessel and fleet structure (cooperation, crew, vessel design), and 

fishing practices (setting, hauling). These observations for the Japanese southern bluefin tuna longline 

fishery are also relevant for other Japanese tuna longline fisheries, in the Indian Ocean and elsewhere.  

4.2.1. Materials 
Longliners initially used natural fibres such as hemp. Synthetic materials such as kuralon were 

introduced for mainlines and branchlines in the 1960s, and began to be widely used in the 1980s (Ward 

and Hindmarsh, 2007). In some cases, wire branchlines were changed to stainless-steel, reducing 

breakage and rates of replacement. In the mid-1980s fishers began using monofilament branchlines, 

which have lower visibility to tunas than wire branchlines (Nakamura et al., 1999), and were said to 

increase catchability due to their low refractive index and high tensile strength (Kasuga, 1990; Ward 

and Hindmarsh, 2007).  

For mainlines, monofilament largely replaced kuralon during the 1990s. Kuralon mainlines (diameter 

7.9 mm) were too heavy to be sustained by a normal float when operating with more than 17 hooks 

between floats (HBF), and the change to monofilament was accompanied by a shift to higher numbers 

of HBF. The rapid increase of HBF which started around 1992 in the Indian Ocean seems to derive from 

the introduction of the new material (Okamoto et al., 2004).  

Stone and Dixon (2001) found substantially higher catchability of multiple pelagic fish species for 

branchlines of monofilament nylon compared to tarred multifilament nylon. This was a small (10 sets) 

study with alternating branchline types, but other studies have obtained similar results suggesting that 

branchline visibility (monofilament versus multifilament or wire) affects catchability (e.g., Afonso et 

al., 2012; Kasuga, 1990; Vega and Licandeo, 2009; Ward et al., 2008). Lin et al. (1997) obtained higher 

catch rates with mainlines of monofilament versus kuralon.  

The introduction of stainless-steel hooks in the 1980s increased fishing power by reducing breakage. 

In the early 1970s, Japanese tuna hooks replaced J hooks. Circle hooks were introduced in some 

fisheries in the 2000s.  

4.2.2. Bait effects 
Bait species and type can substantially affect catchability. Target species vary in their affinity for 

different baits. Japanese longliners initially used pilchard and saury, switched to frozen saury in the 

1960s and 1970s, then other species such as mackerel in the late 1970. Squid bait has been widely 

used in many areas since the 1970s. Bait use has varied between areas, presumably due to a 

combination of availability and targeting.  

Squid bait is believed to increase the catchability of bigeye tuna and swordfish. In the mid-1990s, some 

equatorial Taiwanese longliners used live milkfish, which increased catch rates of yellowfin tuna 

(Fitzgerald, 1996).  
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Loss rates vary among bait types, with higher loss rates for soft-bodied mackerel species compared to 

firmer squid, which are less likely to be removed from hooks (Ward and Myers, 2007). Bait loss also 

increases with soak time.  

Tori lines and bait casting machines reduced bait loss to birds in some fisheries, and bait casting may 

also reduce tangles during setting (Whitelaw and Baron, 1995).  

Changes in bait loss between the 1950s and 1990s have been estimated to multiply fishing power by 

up to 3 times, for all target species (Ward, 2008; Ward and Myers, 2007). Changes in the types of bait 

used by Japanese longliners may have approximately doubled bigeye catchability, while halving 

yellowfin tuna catchability (Ward, 2007).  

4.2.3. Set time  
Japanese longliners changed strategy from having all baits available at dawn, to having more available 

at dusk and at night (Ward and Hindmarsh, 2007). Expected catch rate for bigeye tuna for bait that is 

available at dawn and dusk is approximately twice that for bait available at dawn only (Ward et al., 

2004).  

4.2.4. Set depth 
Before the 1970s, Japanese sets were relatively shallow (25-170m), but depths increased (25-300m) 

in the early 1970s in both the Pacific and Indian oceans (Suzuki et al., 1977) in order to target bigeye 

tunas. The number of HBF can be an indicator of set depth but other factors are also important, both 

in characteristics of the gear (mainline tension, weights on lines, and branchline and mainline 

material), and the environment (wind and current shear) (Bigelow et al., 2006; Rice et al., 2007). 

Catchability is affected by the overlap between stock and gear distribution (Boggs, 1992). These 

relationships have been explored in CPUE standardization (e.g., Forrestal et al., 2019; Goodyear, 2016; 

Hinton and Nakano, 1996) but the data available to analysts are insufficient to reliably estimate it for 

individual sets (Maunder et al., 2006a).  

The depth distribution of bigeye tuna is affected by body size (Schaefer and Fuller, 2010), but it is not 

clear how much this pattern affects the size selectivity of different fishing gear configurations.  

Based on a mixed model fitted to observer data, Ward and Myers (2005) inferred substantial (39%) 

increase in bigeye catchability from 1950 to 1990 based on increased set depth, and a non-significant 

(1%) increase for yellowfin tuna. Similarly, Bigelow et al. (2002) estimated an increase in effective 

longline effort in the WCPO from the late 1960s to the late 1980s, primarily due to increased effort 

effectiveness with deeper sets. It is unclear how successfully CPUE analyses account for these changes 

by including HBF in the analysis, given that HBF is an inconsistent proxy for set depth.  

4.2.5. Fisher skill 
In every area of human activity there is considerable skill variation between individuals, with 

contributions from factors like local knowledge, better use of available information, and stronger 

communication networks (Hilborn, 1985; Hilborn and Ledbetter, 1985).  

Local knowledge and skill increase with time spent in an activity. Therefore, technological 

improvements that allow vessels to spend longer on the fishing grounds may have been important for 

improving catchability, by increasing fisher experience. Examples of such improvements include super 

cold freezers and transshipment.  

User skill also affects the benefits obtained from each technological improvement, with greater skill 

improving efficiency, i.e., moving fishing power closer to the frontier of technical possibility (Grosskopf, 
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1993). This is likely to be particularly important for complex activities such as using remotely sensed 

data and developing collaborative arrangements between vessels.  

Economic incentives can also reduce fisher skill through time which may reduce catch rates. If labour 

costs can be reduced by more than the value of the consequent loss of catch, skilled crew may be 

replaced by cheaper crew with less experience and training. In the early 1990s, fish price declines led 

vessel owners to reduce costs by replacing Japanese fishing crews with foreign crews (mostly 

Indonesians) who were considered to be less skilled (Miyake et al., 2010). Taiwanese distant water 

fleets rely largely on low-cost migrant labour, with the majority of workers from Indonesia, the 

Philippines, and Vietnam (Hung et al., 2022). However, this may not always be a disadvantage: 

Matsubara et al. (2022) commented that hiring foreign crews on Japanese pole and line vessels could 

improve searching and fishing efficiency, because they were more physically capable.  

4.3. Purse seine CPUE 
Purse seine CPUE is very susceptible to effort creep given the technology-linked basis of the search 

and capture processes. When there are more factors where efficiency can be improved, and efficiency 

is multiplicative, there is more potential to increase fishing power. The high value of the fishery also 

provides industry with both strong incentives to increase catchability, and the funding to invest in the 

necessary research and development. A scientific workshop held in 2012 explored some of the issues 

that make the use of purse seine CPUE in stock assessment difficult (ISSF, 2012).  

For example, Fonteneau noted (ISSF, 2012) that “The 2 factors classified as being the most important 

ones in 2000 are the extensive use of FADs and the use of bird radars during searching. Other new 

factors are also considered as being very important to increase the efficiency of the vessels, including 

the use of supply vessels, improved echo sounders, improved sonar (e.g., increased range), intensive 

use of satellite imagery, deeper and faster nets, knowledge of underwater currents and of net depth, 

faster unloading, widespread use of computers, and technological improvements of FADs. Other 

changes may also be important to improve fishing power such as improved positioning of vessels, 

skippers' improved use of an increasing amount of information, higher crow’s nests, improved 

navigation radars, larger brail nets, and increased fish hold capacity. It was concluded that, as a result 

of these multiple changes, purse seiners are clearly much more efficient in 2001 (and today) than in 

1980 (and before). This conclusion probably applies worldwide, although these improvements in 

fishing power were probably variable between flags and oceans. Unfortunately, the timing of changes 

in these factors is poorly documented by scientists and the exact effects of the interaction of these 

multiple factors producing the increase of purse seiner fishing power remain difficult or impossible to 

measure quantitatively.”  

Note that most of Fonteneau’s efficiency factors are rarely or never available to analysts, and so they 

cannot be accounted for in a CPUE standardization.  

Vessels can make multiple types of set on the same trip: associated with a floating object such as a 

FAD, unassociated, or (in the eastern Pacific) associated with dolphins. Each set type has different size 

selectivity, so is represented by a different fishery.  

Purse seine fishing is complex, and purse seine CPUE is analysed via several different approaches. Most 

analyse free school fishing and associated fishing separately. Catch may be relatively easy to define 

based on logbook records, although it is complicated by uncertainty in estimates of species 

composition. The unit of effort, however, is challenging.  

The search for fish is increasingly supported by technologies that reach beyond individual vessels. Fish 

aggregating devices incorporate GPS and echo-sounders that report to vessels via satellites, with 
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regular upgrades in the technology, and increases through time in the proportions of FADs that are 

instrumented (Lopez et al., 2014). Echosounders were found to increase catch per set by an average 

of about 10% in a study of French purse seiners in the period 2012-2017 (Wain et al., 2021). They also 

reduce search time, which allows vessels to make more sets per day.  

Vessels increasingly share FADs and the information they provide, allowing them to develop an 

understanding of the spatial distribution of tuna across the fishery (IOTC Secretariat, 2023). They may 

also use supply vessels to help with the search. Together, these factors make an individual vessel 

almost irrelevant as a unit of search effort. In the Indian Ocean vessels are limited to 300 active buoys 

per vessel under Resolution 19/02 (IOTC, 2019), reducing to 250 on 1 January 2026 and 225 on 1 

January 2028 (Resolution 24/02).  

A simple approach is to define effort as the set, which eliminates the search process. However, it is 

unclear what the relationship is between catch per associated set and the abundance of fish in an area. 

The abundance on a FAD is known to be affected by the characteristics of the FAD; the time since the 

FAD was released or last fished on; by the number of alternative aggregation sites available in the local 

area; by the time of day; and by other factors. The size of the catch on a FAD will be affected by the 

ability of the vessel to find aggregations of the preferred size, which will be affected by the quality of 

the information provided to the vessel via satellite from the echosounder on the FAD and from supply 

vessels. Vessels and groups of vessels may use software to predict FAD movements and likely fish 

association, and may optimise their path so as to maximise catch and minimise costs. Once found, 

catch size will be affected by the ability of the vessel to efficiently catch its preferred quantity of fish. 

These are affected by attributes of the vessel such as net size, depth and materials, the power and 

control of the winches, and the skill of the skipper and crew.  

Many of these factors involve the use of technology, and technology can be improved.  

Even without changes in catchability, catch per set may be hyperstable relative to abundance, due to 

upper and lower limits on the sizes of viable sets, and the ability of vessels to choose where to set.  

4.3.1. Estimated rates of catchability change 
Tidd et al. (2016) estimated an average increase in fishing power from 1993-2010 of 3.8% per year 

across the USA, Korean, Taiwanese, and Japanese purse seine fleets fishing in the Western and Central 

Pacific Ocean (WCPO). Estimates of between 3% and 6% per year were obtained for the exclusive 

economic zones (EEZs) of countries within the Parties to the Nauru Agreement (PNA) in the WCPO, for 

the period 2006-2018 (Vidal et al., 2021). 

Studies on the French fleet indicate a 10% increase in catch per set associated with echosounder use, 

equivalent to about 1% per annum, and a 1.7 – 4.0 % increase in efficiency (stable across time) arising 

from fishing their own floating objects (IOTC, 2020; Wain et al., 2021).  

5. Factors that may counterbalance effort creep 

5.1. Reduced effort  
There are fewer longliners in the tropical tuna fisheries now than there have been in the past, so it can 

be argued that each longliner will benefit less from the information sharing that increases their 

catchability. Industrial longline fishing effort in the Indian Ocean has declined by about 25% since the 

year 2000 (IOTC data, see https://iotc.org/data/browser). However, information sharing depends on 

the number of vessels with which each vessel collaborates, rather than the total number of vessels 

fishing. Interpretation requires knowledge of the trends in networks and group sizes through time. 

Catchability effects also depend on the quality of the information shared, and on the degree to which 
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data from multiple vessels can be integrated to identify optimal strategies for each vessel in a group. 

Further research is needed, but on balance this factor appears unlikely to be an important factor in 

recent catchability changes.  

5.2. Vessel deterioration 
The use of vessel effects in CPUE standardization assumes that each vessel has constant catchability 

through time. However, wear across the lifetime of a vessel may lead to higher rates of equipment 

breakdown for older vessels, which may reduce their catchability. Vessel deterioration is not allowed 

for in CPUE standardization.  

5.3. Arms race 
There is likely to be an ‘arms race’ between fishers and fish, with the average catchability at the 

population level changing due to factors that include learning, selection, varying availability to fishing, 

and evolution. Such effects may have contributed to the early (1950s) declines of longline catch rates 

observed for tuna species in all oceans, which are considered too large to be due to biomass reduction 

given the relatively small catches at that time (Maunder et al., 2006b; Nakano and Bayliff, 1992; 

Polacheck, 2006). Similar declines in catchability on first exploitation have been seen in many fisheries 

(e.g., Askey et al., 2006; van Poorten and Post, 2005).  

It has often been demonstrated that fish can learn how to avoid capture, particularly for passive gears 

such as longlines and recreational angling (Arlinghaus et al., 2017). Fish have well-developed cognitive 

abilities and learning skills (Brown et al., 2011). Learning can occur through encounters with gear, with 

long-lasting effects (Beukema, 1969; Fernö and Huse, 1983). The probability of fatal hooking at each 

encounter with a longline hook can be relatively low (Løkkeborg et al., 2010), which gives most fish 

one or more opportunities to learn. Learning would tend to reduce population-level catchability more 

with increasing exposure to fishing, which would lead to an inverse relationship between catchability 

and recent fishing effort. Since experience increases with age, learning will affect catchability more for 

older than for younger fish.  

Fishing mortality will also result in short-term selection for lower catchability in the population. There 

is always behavioural variation among individual fish (Budaev and Brown, 2011; Evans et al., 2008), 

which will result in catchability variation (e.g., bold versus shy characteristics). Passive gears have been 

shown to preferentially catch bold, aggressive, or active individuals (Arlinghaus et al., 2017). Fish that 

are more catchable are more likely to be captured and removed, which will reduce population-level 

catchability. As for learning, this reduction will affect older fish more than younger fish. Similarly, the 

size of the selective effect on population-level catchability will be negatively correlated with recent 

fishing effort. Kleiber and Maunder (2008) demonstrated that aggregate CPUE for fish assemblages is 

likely to be hyper-responsive to changes in fishing effort, due to the variation in catchability between 

species. The same argument should apply to an individual species, to the extent that catchability varies 

among individuals. Thus, increases in longline fishing effort should reduce the average longline 

catchability, while reductions in longline fishing effort should increase longline catchability at the 

population level (Koeck et al., 2020).  

The limited vulnerability model (Cox and Walters, 2002) “assumes that fish exchange between 

available and unavailable states and that fishery catches are taken only from the available pool. This 

limited vulnerability model exhibits a nonlinear, negative relationship between fishing effort and catch 

rate that manifests itself in the effort – exploitation relationship as an apparent decline in catchability 

with increasing effort”.   
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The fourth effect of fishing on catchability – evolution – will consistently tend to reduce it, and may act 

quite rapidly. Behavioural traits affecting catchability have heritable components (Dochtermann et al., 

2015; Philipp et al., 2009), which implies that a fished population will evolve through time to have 

lower mean catchability to the fishing method applied (Monk et al., 2021). Heino et al. (2015) reviewed 

studies of fishing-induced evolution of behavioural traits and found limited evidence from the wild, 

but strong evidence from experimental studies. They suggest that such evolution is common but has 

so far been overlooked.  

These factors may all affect population-level catchability to some degree. From the 1950s to 2000, 

industrial longline fishing effort in the Indian Ocean steadily increased from very low levels to reach 

400,000,000 hooks per year (IOTC data – see https://iotc.org/data/browser). Since 2000, however, 

longline effort has declined by 25%, while catches in weight have declined by approximately 60% for 

yellowfin and 70% for bigeye tuna over the same period. Increases in longline fishing effort may have 

induced an initial rapid decline in catchability based on learning, selection, and availability, followed 

by smaller declines until the year 2000. Subsequent reductions in longline effort may have permitted 

some recovery of catchability due to learning, selection, and availability effects, while changes in the 

genetic make-up of the stock would have been retained.  

5.4. Hunger 
Ward (2008) notes that “if the historical removal of large pelagic predators has resulted in increased 

availability of food, then the remaining animals might be less attracted to longline bait. Competition 

for food would be more intense before exploitation, so more food is available per capita after stocks 

are reduced. However, analyses indicated a historical decline in the condition factor of Atlantic bluefin 

tuna (Thunnus thynnus), which is the opposite of what would be expected if food availability was 

increasing as stock size declined (Golet et al., 2007).” Long-term changes in fish condition have not 

been studied for other species of tuna, and may not be feasible given the sensitivity of fish condition 

estimates to covariates (Macdonald et al., 2023).  

6. Stock assessment and effort creep 

6.1. Purse seine CPUE  
Some tuna RFMOs have begun to use purse seine CPUE in stock assessment. The 2022 WCPFC stock 

assessment for skipjack tuna (Castillo Jordan et al., 2022) included standardized purse seine CPUE 

indices in 4 of the 8 regions. No effort creep was included in this assessment.  

In the Indian Ocean, the 2020 skipjack assessment (Fu, 2020; IOTC, 2020) included a standardized CPUE 

index based on catch rates in the European purse seine floating object fisheries (Guery et al., 2020). 

As noted in the introduction to this paper, there were differing views about the need to include effort 

creep. The model ensemble included alternative assumptions about effort creep in this fishery since 

1995, with 0% and 1.25%. The estimate of 1.25% was the lowest of the values estimated by Kolody 

(2018).  

The 2023 skipjack assessment (Fu, 2023) included an index based on standardized catch rates in purse 

seine floating object fisheries (Kaplan et al., 2023). The final model ensemble again included 

alternative assumptions about effort creep in this fishery, with 0% and 1.25%.  

The 2021 Indian Ocean yellowfin tuna assessment included a purse seine CPUE index that was 

associated with the adult part of the stock. It was assigned an assumed rate of effort creep of 3.15% 

p.a., which resulted in a trend consistent with the longline CPUE. Nonetheless the independent review 

https://iotc.org/data/browser
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of the 2021 yellowfin tuna stock assessment recommended that purse seine CPUE should not be 

included in the assessment model (Maunder et al., 2023).   

The 2022 Indian Ocean bigeye tuna stock assessment included a purse seine CPUE index associated 

with the juvenile part of the stock. It was included in every model in the final ensemble, but no effort 

creep was included.  

IATTC yellowfin tuna assessments use an index based on the dolphin-associated purse seine fishery 

(Minte-Vera et al., 2020a). Various approaches to catchability are considered, including time blocks 

and density-dependent catchability. A review of the 2019 yellowfin assessment recommended that 

IATTC staff should prioritize investigating approaches to account for effort creep (Cass-Calay et al., 

2019).  

6.2. Longline CPUE  
The CCSBT operating model for southern bluefin tuna assumes a continuous rate of effort creep of 

0.5% for both conditioning and projections, and has done so since at least 2005 (CCSBT, 2005). The 

same rate is included in the management procedure (CCSBT, 2018).  

Effort creep in longline CPUE indices is not currently used in the reference case or ensemble for any 

species of tropical tuna. It has mainly been used in sensitivity analyses.   

- WCPO albacore tuna (Davies et al., 2009), 0.5% p.a. 

- WCPO bigeye tuna (Hoyle et al., 2008), 0.5% p.a. 1952-1985, 2% p.a. 1985-2007 

- WCPO yellowfin tuna (Harley et al., 2009) 0.5% p.a. 1952-1990, 2% p.a. 1990-2008  

- Indian Ocean albacore tuna (Hoyle et al., 2014), 1% p.a. 1980-2012 

In the 2021 Indian Ocean yellowfin tuna stock assessment (Fu et al., 2021), a sensitivity analysis was 

run during the WPTT meeting that included 1% effort creep per year for the entire period of the index 

(IOTC, 2021). This had the effect of decreasing the CPUE by 40-50% on average by the end of the time 

series, as well as increasing the biomass depletion level.  

The 2022 Indian Ocean bigeye tuna assessment (Fu et al., 2022) reported the results of a sensitivity 

analysis which showed that the longline indices reduced by an additional 33% if a 1% annual rate of 

effort creep was assumed. This resulted in greater stock depletion to a level of 17%, compared to 27% 

for a model without effort creep.  

6.3. Effort creep assumptions in final models and model ensembles 
Rates of assumed effort creep were obtained for tuna stock assessments in all tuna RFMOs (Table 2). 

For the IOTC these were yellowfin 2021 (Fu et al., 2021), bigeye 2022 (Fu et al., 2022), and skipjack 

2023 (Fu, 2023). For the IATTC these were yellowfin 2019 (Minte-Vera et al., 2020b), bigeye 2019 (Xu 

et al., 2020), and bigeye 2024 (Xu et al., 2024). For the WCPFC these were yellowfin 2023 (Magnusson 

et al., 2023), bigeye 2023 (Day et al., 2023), and skipjack 2022 (Castillo Jordan et al., 2022). For ICCAT 

these were yellowfin 2019 (ICCAT, 2020) and bigeye 2018 (ICCAT, 2019). Information for CCSBT was 

based on all approaches applied to southern bluefin tuna assessments and management procedures 

since 2005 (CCSBT, 2005), and the current approach to CPUE (Itoh and Takahashi, 2022).  
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Table 2: Rates of effort creep assumed in the final model ensembles used for management advice, in assessments presented 
to the tuna RFMOs for longline (LL), purse seine (PS), and pole-and-line (PL) series. The vessel ID column indicates whether this 
term is included in the longline CPUE standardization.  

Ocean Species Year LL Vessel ID PS PL 

Indian SKJ 2020  Y 0%, 1.25% 0% 

 YFT 2021 N Y 3%  

 BET 2022 N Y   

 SKJ 2023  Y 0%, 1.25% 0%, 1.25% 

WCPO SKJ 2022 N N N N 

 YFT 2023 N N   

 BET 2023 N N   

IATTC BET 2019 N Y   

 YFT 2019   complicated  

 BET2 2024 0%, 1%, 2% Y   

ICCAT BET 2018 N Y N  

 YFT 2019 N Y N  

CCSBT SBT 2005-present 0.5% N   

 

7. Recommendations for stock assessment 
To avoid bias in depletion and stock status estimates (e.g., Han et al., 2023; Ye and Dennis, 2009), 

stock assessments need to adjust for effort creep in indices of abundance based on CPUE. Wilberg et 

al. (2009) recommend a default assumption that catchability varies over time. They also recommend 

that multiple methods of including time-varying catchability should be applied. Scherrer and Galbraith 

(2020) recommend that inclusion of technological creep in fisheries management is essential for long-

term sustainability, since underestimating its long-term value will lead to underestimating fisheries 

impacts. Similarly, Palomares and Pauly (2019) state that technology creep must be included in all 

analyses involving time series of fishing effort, particularly if they exceed one decade of temporal 

coverage, since impacts are almost always significant at this time scale.  

CPUE standardization can account for some effects on catchability, but it cannot account for every 

factor that improves fishing power. There is always likely to be effort creep due to unaccounted 

sources of increase in catchability. Hoyle et al. (2024) recommend that, to allow for uncertainty about 

fishing power, stock assessments (particularly for target species) should consider a range of scenarios 

regarding long-term catchability trends, from low to high but noting that 0% is rarely plausible. The 

2023 review of the IATTC tropical tuna assessments recommended exploring the inclusion of longline 

effort creep at a rate of 1% per annum (Dickey-Collas et al., 2023).  

Studies of technology change suggest that (in a well-developed fleet, all else being equal) fishing 

power can be assumed to follow a random walk around an exponential trend with a constant rate. 

This is consistent with the usual approach for applying effort creep via a constant multiplicative rate 

of change, i.e., for an index that begins in year a and ends in year a+N, for all years n=1:N, 

adjusted CPUEa+n = original CPUEa+n / (1 + 𝑐𝑟𝑒𝑒𝑝)𝑛. An alternative and equivalent approach is 

to adjust the q parameter (e.g., Webber et al., 2023). If rates are relatively stable through time, it is 

reasonable to extrapolate beyond the period for which an estimate is available.  

 
2 Included in benchmark assessment presented to SAC meeting, 10-14 June 2024.  
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Over long periods, cumulative effort creep can substantially affect the index. For example, cumulative 

longline effort creep between 1953 and 1979 at a rate of 0.4% per year reaches an 11% increase in 

effective effort, but at the higher rate of 1.4% per year this reaches 44%. For the remaining period 

between 1979 and 2023, effort creep of 0.5% accumulates to 25%, while a rate of 1.5% accumulates 

to a 93% increase in effective effort.  

7.1. What estimate of effort creep to use? 
Proposals are needed for levels of effort creep to assume for indices of abundance based on longline, 

purse seine, and pole and line data.  

Estimating individual components of the effort creep contributing to catchability change has several 

problems. First, it will omit sources of catchability change for which analysts lack data (Scherrer and 

Galbraith, 2020), so will tend to underestimate the total. Second, individual effort creep factors are 

usually estimated and published to correct for the introduction of an effective new technology over a 

short period of time, and are not representative of (tend to overestimate) long-term changes 

(Palomares and Pauly, 2019).  

The best currently available approach for estimating effort creep is comparison against a baseline (see 

section 3.3). However, this approach is only available for comparing purse seine against longline 

indices. Without a time-series of independent biomass estimates from surveys, there is no base line 

against which to estimate longline effort creep.   

If the rate of increase in a fleet’s fishing power is constant, the amount of effort creep to add to an 

index will depend on how much fishing power change is already included in the index, via the effects 

included in a CPUE standardization. For example, analyses that include vessel effects implicitly 

account for a component of catchability change, which implies that these indices require less 

additional effort creep.  

Although reliable estimates of effort creep are unavailable, dealing with uncertainty is one of the core 

functions of stock assessment. For example, similar effects of uncertainty are associated with our 

understanding of stock structure, movement dynamics, and estimates of natural mortality and the 

steepness parameter.  

7.1.1. Longline 
Investigation of individual factors demonstrates that there is considerable potential for longline 

fishing power to have increased through time.  

Available estimates of longline effort creep associated with vessel turnover in the Japanese longline 

fleet in the western equatorial Pacific ranged from 0.5% to 2.2%. It is proposed that analysts apply 

alternative rates of 0.5% to 1.5% per year, representing effort creep associated with vessel turnover, 

to indices for tropical areas that do not include vessel effects, and for early periods when Japanese 

vessel identities are unavailable. The rate associated with vessel turnover is likely to represent less 

than half of the total improvement, particularly in recent years with rapid technological changes 

(communication, electronics, remote sensing) that support fish finding, as discussed in the earlier 

section on longline catchability. Scenarios are proposed of an additional 0.5% and 1.5% effort creep 

per year to all longline indices (beyond the rate associated with vessel turnover), to represent effort 

creep due to learning, equipment and communication technology upgrades on existing vessels, 

development of remote tools that are not tied to individual vessels, and increases in knowledge.  

The longline indices used in tuna stock assessments are based on data from a variety of fleets. Effort 

creep is likely to vary between fleets, which will affect the indices used in many tuna assessments 
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which are based on analyses of joint datasets. It is unclear how rates of longline effort creep in other 

fleets may differ from the rates in the Japanese fleet. However, the estimates above are 

recommended in all cases since they are currently the only ones available.  

Appropriate longline fishing power trends for bigeye and yellowfin tuna outside tropical areas are less 

clear. The approach should be judged case-by-case based on the fisheries involved in the analysis and 

their preferred targets. Effort creep for all species can occur due to some types of technology change 

(e.g., monofilament leaders, targeting anticyclonic gyres), but not necessarily for others (e.g., hook 

and bait types).  

7.1.2. Purse seine 
For purse seine fisheries, estimates of purse seine effort creep can be obtained by measuring against 

baseline rates of longline CPUE inside a stock assessment. For purse seine associated indices 

measured against longline CPUE indices in the 2016 yellowfin and bigeye tuna assessments, estimates 

were 1.25% per year for yellowfin tuna and 4.1% per year for bigeye tuna (Kolody, 2018). These 

comparisons used the effort definition from a standardization of skipjack CPUE where the nominal 

and standardized indices had essentially identical trends (Katara et al., 2017). Comparisons of the 

standardized longline index and the purse seine free school index on adults in the western equatorial 

region of the yellowfin tuna assessment (Fu et al., 2021) provided an estimate of 3.15 % per year. The 

purse seine associated index in this case was also essentially unchanged between nominal and 

standardized (Guery et al., 2021).  

For this paper, effort creep values by fishery in the 2019 skipjack stock assessment (Vincent et al., 

2019) were calculated between 2000 and 2018 for WCPO purse seine CPUE against a baseline mainly 

provided by Japanese pole and line CPUE. This assessment constrains Japanese pole and line CPUE 

catchability to be seasonal but constant across years (except in region 6 where it is allowed to vary), 

but it estimates a constrained random walk for purse seine fishery catchability. Purse seine CPUE is 

unstandardized catch per set in region 7 and 8, and standardized in region 6 (Vidal et al., 2019). For 

equatorial model regions 6, 7, and 8, the average rate of catchability change determined by this 

random walk represents the difference between purse seine effort creep and pole and line effort 

creep. Quarterly catchability estimates were extracted from the model result files 

(https://fame.spc.int/resources/stockassessmentfiles). The mean estimates for associated purse 

seine were 2.7%, 2.1%, and 3.5% per year. For free school purse seine, they were 2.1%., 2.2%, and 

1.3% per year. The free school estimates average 0.9% less than the associated fishery estimates.  

Tidd et al. (2023) estimate an increase in production efficiency from 1992 to 2019 of 3.6% per year 

for Indian Ocean associated purse seine fisheries, and 2.1% per year for free school fisheries. These 

estimates of increasing efficiency use exploitation rates (catch / exploitable biomass) as the output 

variable. However, they are likely to underestimate increases in production efficiency, because they 

are conditioned on exploitation rates (and therefore biomass trends) estimated in the Indian Ocean 

skipjack and yellowfin stock assessments. This is particularly important for the skipjack component 

because its biomass is strongly influenced by purse seine CPUE. Production efficiency increases are 

somewhat different from catchability increases, because inputs include factors like vessel power and 

length, and the number of buoys deployed. Nevertheless, the estimated increases in efficiency are 

not inconsistent with the scale of effort creep estimates.  

To obtain estimates of total effort creep for purse fisheries it is necessary to allow for unmodelled 

effort creep in the longline or pole and line fisheries that provide the baseline for these stock 

assessments. The longline indices in the analyses of Kolody (2018) and Fu et al. (2021) were based on 

joint analysis of data from multiple fleets (Hoyle et al., 2016; Kitakado et al., 2021). The analyses 
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included vessel effects so had already allowed for vessel turnover, but the other variables only include 

HBF, cluster, and location. These could not be expected to explain much catchability change linked to 

technology. The preliminary recommendation is that analysts add another 0.25% to 0.75% to 

estimates of associated purse seine effort creep to allow for changes in the baseline biomass trend 

associated with longline effort creep. This is half of the rate assumed for longline effort creep, because 

fish caught in associated purse seine sets are younger than longline-caught fish, so the purse seine-

vulnerable biomass trend would be less affected than the longline-vulnerable biomass. Free school 

yellowfin sets have similar selectivity to longlines, so the proposed additions are 0.5% and 1.5%. It is 

also recommended that the analyses of Kolody (2018) are updated to explore possible effects of 

longline effort creep and other uncertainties.  

It is proposed that analysts trial alternative scenarios for effort creep of 1.5%, 2.0%, 4.35%, and 4.85% 

per year for associated purse seine indices. For free school fisheries alternative scenarios are 

proposed with rates 0.9% less than those for associated fisheries. These estimates of effort creep are 

based on abundance indices that do not effectively account for fishing power change, so lower rates 

should be used when standardizations include important factors linked to fishing power and 

significantly affect the index trend.  

Nevertheless, there remains a very high risk that, in addition to effort creep, purse seine CPUE is both 

hyperstable and strongly affected by factors unrelated to abundance, such as environmental 

conditions. Such factors could also have biased the estimates of purse seine effort creep discussed 

above. When alternatives to purse seine CPUE are available, they should be preferred.   

7.2. Research recommendations 
These estimates are preliminary and based on very limited studies. There is an opportunity to develop 

better estimates of effort creep for purse seine fishery abundance indices, by applying the method of 

Kolody (2018) to available bigeye and yellowfin tuna stock assessments from all oceans. Using the 

same approach, estimates of long-term change in average catchability per vessel day or per set may 

be obtained by using nominal CPUE for purse seine fleets.  

In addition, estimates of catchability change associated with vessel turnover could be obtained for all 

fleets, and for purse seine and pole-and-line vessels as well as longliners, by applying the methods of 

Hoyle (2009) to analyses of catch and effort data from individual fleets.  

Applying the estimates developed by Ward (e.g., Ward, 2007; Ward, 2008; Ward and Hindmarsh, 

2007; Ward and Myers, 2007) to the longline CPUE indices for the Indian Ocean would require 

information on changes in fishing practices through time by the fleets included in the indices. This 

information is mostly unavailable at the operational level. However, syntheses at a higher level should 

be sufficient to develop plausible hypotheses about likely rates of catchability change through time.  

In addition, there is a need for experiments to estimate the species-specific catchability effects of 

individual changes in fishing practice. There is also potential for analyses of existing observer data to 

provide estimates of these effects.   

In the longer term, estimates of effort creep in CPUE indices may be derived by comparing the indices 

with information from close-kin mark recapture experiments, a variation of the ‘comparison against 

a baseline’ method, though it will take some time to develop time series of CKMR estimates that are 

long enough for this purpose. The first such application to tuna longline CPUE may come from the 

southern bluefin tuna fishery (Bravington et al., 2016). A simulation study would be useful to support 

this approach, using the methods of Punt et al. (2024).  
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Other approaches may be considered and should be explored with simulation. For example, trends in 

recruitment deviates can be useful to indicate model misspecification (e.g., Merino et al., 2022), such 

as effects associated with inconsistency between the index and catches. In these cases, a hypothesis 

about effort creep can be developed by adjusting the index trend to remove the trend in recruitment 

deviates, along with consideration of alternative hypotheses such as productivity changes.  

It may sometimes be impractical to simply include effort creep in an assessment without changing 

any other factor. If including effort creep pushes the model into an implausible parameter space, 

structural changes to the model may be needed. It would be a mistake to infer that this means the 

effort creep estimates are wrong. In fact, some other aspect of the model dynamics may be wrong, 

and inconsistent with the greater depletion implied by the effort creep. For example, the stock may 

have a more resilient stock recruitment relationship than assumed, some other density-dependent 

effect, or some other aspect such as the approach to modeling size data, tag mixing, or movement 

rates. Current multi-region assessment modeling approaches have been built up over years with 

careful adjustments to ensure that results are plausible. A major change to biomass trends may 

require various adjustments to reconcile this change with other assumptions in the model.  

8. Conclusions 
Cryptic increases in fishing power are an important source of uncertainty in stock assessments, with 

significant implications for management advice. Productivity growth is driven by technological change 

and increasing knowledge in almost all human enterprises. Rates of improvement in individual fields 

tend to be random walks with a relatively stable rate of exponential change through time. This result 

provides a sound justification for assuming constant rates of increase in fishing power through time. 

Rates of increase tend to be higher in fields where productivity is affected by more independent 

components that can be improved, particularly where improvements can occur rapidly. This is 

particularly true for fields that involve software. It is possible that the introduction of advanced 

communication technologies to fishing has led to an increase in rates of productivity change.  

Studies of technology change in longline and purse seine fisheries provide examples of catchability 

change associated with multiple factors. These factors operate in combination as multiplicative 

changes to fishing power though time. However, data that permit analysts to estimate catchability 

change are unavailable for all but a few individual factors. One source of such information is vessel 

turnover, but this is likely to significantly underestimate fishing power change since it omits the effects 

of upgrades to existing vessels, or indeed any factor that is not permanently associated with individual 

vessels. We must therefore rely on syntheses and measurements against baselines to estimate total 

catchability change.  

Ignoring effort creep would implicitly assume that a longline vessel from the 1970s, fishing in the 

present using 1970s techniques, would obtain the same catch rates as a modern vessel, despite all the 

developments of the last 50 years.  

Effort creep in longline fisheries is particularly important for tuna stock assessment, with long CPUE 

time series that provide the foundation for assessment outcomes. Although index-specific estimates 

are often unavailable, ignoring effort creep will usually bias biomass estimates towards more optimistic 

levels of depletion, and higher status. Syntheses of numerous effort creep studies indicate that 

technology creep should be assumed in all analyses involving time series of fishing effort, particularly 

if they exceed one decade of temporal coverage. Stock assessments should consider a range of 

scenarios regarding long-term catchability trends, from low to high but noting that 0% is rarely part of 
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the plausible range, particularly for the tropical fisheries targeting bigeye, yellowfin, and skipjack 

tunas.  

Including effort creep in stock assessments will result in significantly lower estimates of stock status, 

and greater levels of depletion. Although these estimates are likely to be more realistic, awareness  of 

the implications is a barrier to implementing effort creep in stock assessments.  

For Indian Ocean stock assessments, this paper proposes rates of effort creep for both longline and 

purse seine indices, each with alternatives to apply as part of the model ensemble to represent 

uncertainty.  
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Appendix:  
Text included in the report of the 22nd session of the IOTC Working Party on Tropical Tunas, stock 

assessment meeting (IOTC 2020, references added).  

● Some participants felt that the 0% per year PSLS catchability option was sufficient because:  
- The floating object (PSLS) CPUE standardization analysis (Guery et al., 2020) should have removed 
the catchability trend;  

- Acoustic fish aggregating device (FAD) uptake was very rapid in the Spanish fleet with almost 100% 
usage since 2013;  

- The acoustic FAD technology has not improved since ~2014;  

- The number of FADs deployed per vessel has been decreasing in recent years as has the use of 
support vessels;  

- The independent echosounder indices (Santiago et al., 2020) in the most recent years resemble the 
large PSLS CPUE increase, and should be given additional consideration in the future, as they operate 
consistently over time.  

● The opposing participants thought that the 1.25% per year catchability trend should have been 
adopted as a minimum, because:  

- The PSLS standardized CPUE (Guery et al., 2020) series closely resembles the nominal CPUE series, 
despite decades of technological development in the fishery. Furthermore, it is not theoretically 
clear why catch per set should be interpreted analogously to catch per unit effort, since there is no 
link to search effort, and a set would not be undertaken without prior acoustic evidence of the 
presence of fish;  

- Studies on the French fleet (Kaplan et al., 2020; Wain et al., 2021) indicate a 10% increase in catch 
per set associated with echosounder use, and 1.7 – 4.0 % increase in efficiency arising from fishing 
owned FOBs (and this practice has increased in recent years);  

- The 2018 analysis (Kolody, 2018, IOTC-2018-WPTT20-32) confirmed that the standardized 2018 
PSLS CPUE (Katara et al., 2018) (which closely resembles the most recent series) must have long-
term increasing catchability trends to be internally consistent with the bigeye and yellowfin tuna 
assessments at the time. 1.25% per year was an initial estimate derived from yellowfin, while the 
equivalent estimate for bigeye was 4.1%. These increasing catchability trends are qualitatively 
consistent with similar results from the Pacific Ocean;  

- If one accepts the BET and YFT assessments and the analysis outlined in IOTC-2018-WPTT20-32 
(Kolody, 2018), but assumes that standardized PSLS catchability has not changed, it implies that the 
LL fisheries must have become increasingly less effective over the past several decades. The WPTT 
and WPM have endorsed 1% per year increasing catchability trends in the LL fisheries as plausible 
assumptions in bigeye and yellowfin MSE Operating Models, due to factors that the standardization 
is not expected to be able to address. If correct, this would imply an even greater catchability trend 
in the PSLS fishery;  

- The catchability trend should have been introduced from the start of the time series (~1990), 
rather than 1995 as was requested from the WPTT in 2017 and repeated in 2020.  
 


	_SC20_cover page_SA-IP-19.pdf (p.1)
	SC20-SA-IP-19_IOTC-2024-WPTT26DP-16rev3_Effort_creep in tuna assessments.pdf (p.2-36)

