Pelagic longline bycatch impacts on seabirds: a brief overview and introduction for the review of WCPFC CMM 2018-03

WCPFC holds responsibility for seabirds globally

For instance, 77% (17/22) albatross species depend on the WCPO

Life history renders seabirds highly vulnerable

Seabirds, albatrosses and petrels in particular, exhibit:

- Long life spans (>70 years)
- Delayed maturity (longest generation time of any bird; 6-25 years)
- Low reproductive rates (<1 egg per year)
- Are opportunistic foragers (i.e., they are attracted to fishing activities)

Warham 1991

Vulnerable seabird populations in the WCPO continue to decline

Species	IUCN status	Breeds in WCPO	Forages in WCPO	${\sf N}$ breeding pairs	Trend	Updated extract of
Southern Royal Albatross	(CR)	\checkmark	\checkmark	6,347	\checkmark	WP-03
Antipodean Albatross	EN	\checkmark	\checkmark	8,654	1	
Northern Royal Albatross	EN	\checkmark	\checkmark	4,261	\leftrightarrow	
Indian Yellow-nosed Albatross	EN		\checkmark	33,988	1	
Grey-headed Albatross	EN	\checkmark	\checkmark	80,633	1	
Westland Petrel	EN	\checkmark	\checkmark	6,223	\leftrightarrow	
Wandering Albatross	VU	\checkmark	\checkmark	10,072	1	1
Short-tailed Albatross	VU	\checkmark	\checkmark	889	1	
Salvin's Albatross	VU	\checkmark	\checkmark	58,563	↓ 🔎	
White-chinned Petrel	VU	\checkmark	\checkmark	1,317,278	\mathbf{V}	
Black Petrel	VU	\checkmark	\checkmark	5,456	\leftrightarrow	

WCPFC19 noted a global decline in specific ACAP seabird population trends, which are vulnerable to threats posed by longline fisheries in the WCPO

Of particular concern: Antipodean Albatross

Global extinction predicted in three generations

Of particular concern: Southern Royal Albatross

92% decline predicted in three generations

DOC in prep

Pelagic longline mortality estimates

- Globally: 50,000-75,000 seabirds annually (Anderson et al. 2011)*
- Southern Hemisphere: 39,000-43,000 petrels and albatrosses annually (JP, SAF, AUS & NZ data only; Abraham et al. 2019)*
- Southern Hemisphere: 12,000-25,000 petrels and albatrosses annually (NZ data only; Edwards et al. 2023 – multi-country update in progress)*
- WCPFC: 11,000-25,000 seabirds annually (Peatman et al. 2019)*

WCPFC plays a key role in addressing global seabird bycatch

*These estimates have a range of varying caveats and shortcomings, and all are subject to poor observer coverage, and sometimes limited tracking data, challenging inferences.

200

Peatman et al. 2019

WCPFC plays a key role in addressing global seabird bycatch – particularly in the Southern Ocean

Seabird bycatch distribution is influenced by both seabird distribution and fishing effort

*These estimates have a range of caveats and shortcomings, and all are subject to poor observer coverage, and sometimes limited tracking data, challenging inferences.

Peatman et al. 2019

Impact & risk estimates

A recent Southern Hemisphere Risk Assessment using NZ data only, highlighted 17 WCPO species as potentially bycaught beyond sustainable levels*

These species represent the majority (81%) of "at-risk" species

(Note a multi-country update of this modelling effort is in process)

*These estimates have a range of caveats and shortcomings, and all are subject to poor observer coverage, and sometimes limited tracking data, challenging inferences.

Other threats

Unlike other Ocean basins, terrestrial threats to vulnerable seabirds in the WCPO have largely been addressed:

- ~70% of ACAP breeding sites in the WCPO are free of invasive species (~30% thanks to intensive management)
- Harvesting by humans (e.g. for feathers) has stopped

There is no current direct evidence for climate change driving population declines in the WCPO (yet)

Vulnerable seabird populations in the WCPO continue to decline

Species	IUCN status	Breeds in WCPO	Forages in WCPO	$N_{breeding pairs}$	Trend	Updated extract of
Southern Royal Albatross	(CR)	\checkmark	\checkmark	6,347	\checkmark	SC18-EB-
Antipodean Albatross	EN	\checkmark	\checkmark	8,654	\checkmark	
Northern Royal Albatross	EN	\checkmark	\checkmark	4,261	\leftrightarrow	
Indian Yellow-nosed Albatross	EN		\checkmark	33,988	\mathbf{V}	
Grey-headed Albatross	EN	\checkmark	\checkmark	80,633	\mathbf{V}	
Westland Petrel	EN	\checkmark	\checkmark	6,223	\leftrightarrow	
Wandering Albatross	VU	\checkmark	\checkmark	10,072	1	
Short-tailed Albatross	VU	\checkmark	\checkmark	889	1	
Salvin's Albatross	VU	\checkmark	\checkmark	58,563	\downarrow	
White-chinned Petrel	VU	\checkmark	\checkmark	1,317,278	↓	H
Black Petrel	VU	\checkmark	\checkmark	5,456	\leftrightarrow	

Considering all lines of evidence: observed population declines are most likely driven by bycatch at unsustainable levels in pelagic longline fisheries

Proven solutions exist

- A variety of mitigation methods have been proven to reduce bycatch to negligible levels.
- These mitigation methods have been developed over decades.
- Effective use of proven mitigation methods can allow seabird populations to recover.

Review of WCPFC CMM 2018-03

Purpose:

"To ensure that effective mitigation methods are required and applied across the Convention Area where there is bycatch risk to vulnerable seabirds from longline fishing."

Looking forward to working with you

References

- Abraham et al. 2019. Assessment of the risk of surface longline fisheries in the Southern Femisphere to albatrosses and petrels, for 2016. CCSBT-ERS-1905-17.
- ACAP. 2022. Conservation Status of Albatrosses and Petrels and Advice on reducing their bycatch in WCPFC fisheries. SC18-EB-WP-03.
- ACAP. 2024. Species & breeding sites. acap.aq.
- Anderson et al. 2011. Global seabird bycatch in longline fisheries. Endangered Species Research 14: 91-106.
- Beal et al. 2021. Global political responsibility for the conservation of albatrosses and large petrels. Science Advances 7: 7225.
- Dasnon et al. 2023. Fisher bycatch mitigation measures as an efficient tool for the conservation of seabird populations. Journal of Applied 59: 1674-1685.
- DOC. Survey of Southern Royal Albatross on Motu Ihupuku/Campbell Island. In prep.
- Edwards et al. 2023. Updated risk assessment framework for Southern Hemisphere seabirds. AEBR 321. FNZ.
- Edwards et al. Biological and fishery inputs for Southern Hemisphere risk assessment. In prep.
- IUCN. 2024. IUCN Red List of Threatened Species. Version 2023-1.
- Peatman et al. 2019. Project 68: Estimation of seabird mortality across the WCPFC Convention Area. SC15-EB-WP-03.
- Richard. 2021. Integrated population model of Antipodean Albatross for simulating management scenarios. DOC.
- Warham. 1991. The Petrels: their ecology and breeding systems. Academic Press.