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Abstract 
Catch rate standardisations are critical to the development of indices of biomass for inclusion 
in stock assessment models. However, a potentially large number of operational and 
oceanographic variables are able to be considered to be included in a standardisation model. 
We use principal component analyses (PCAs) to demonstrate the utility of this approach to 
assist the analyst in identifying variables to include in catch rate standardisations.  
 
 
Introduction 
 
Constructing a standardised catch per unit effort (CPUE) series is critical to the development  
of indices of abundance in stock assessment models (Hoyle et al. 2007). In addition, 
standardisations of  CPUE data are useful to understand the key variables that influence catch 
rates at smaller scales, potentially down to levels of EEZs or sub-EEZs of fishing fleets.  
 
Standardisations of CPUE data have been undertaken using a range of modelling approaches 
(e.g. GLMs, GAMs) (Hoyle et al. 2007). These standardisations have generally been 
undertaken using a wide range of operational parameters (e.g. hooks per basket, set type, 
latitude, longitude, temporal variables (years, months, quarters)) that are available within a 
data set. For example, for some of the distant water fishery data that are supplied on 5° x 5° 
by month basis, latitude, longitude, year-month and hooks between floats (HBF) have been 
used to derive standardised catch rate indices to provide temporal series of relative biomass 
within stock assessment models (e.g. Langley et al. 2007). The implicit assumptions made by 
the supplying country and/or the analyst is that variables included in a standardisation 
represent the key variables that need to be included in a model. 
 
A wide range of oceanographic variables have also been used to standardise catch rates (e.g. 
sea surface temperature, temperature at depth, current variables, salinity, altimetry, 
concentration of chlorophyll) (Hoyle et al. 2007). Other fishery variables (e.g. catches in the 
previous month of the target species, catches of other species) and the presence of particular 
equipment on fishing vessels (e.g. presence of bird radar) have also been considered (Shono 
and Ogura 2000).  
 
There are potentially two issues associated with variable selection as described above. Firstly, 
the wide range of potential variables that could be included in a standardisation model makes 
the identification of important variables difficult. Secondly, some variables are likely to be 
highly correlated with each other. For example, temperature is likely to strongly affect the 
distribution and local abundances of tunas and other species; however, a wide range of 
temperature variables may be considered and incorporated in standardisations (e.g. SST, 
temperature at depth, depth of different isotherms, differences in depth of different isotherms, 
monthly ranges of temperatures etc) and many correlations among temperature variables are 
likely to exist. Thus several variables in a model may have little additional explanatory power 
compared to a single variable in standardisations (i.e. they are redundant). The problem is 
deciding which particular variables should be considered and included in a particular CPUE 
standardisation. This is often left to the discretion of the analyst, using relevant literature in 
regard to species preferences (e.g. depths, temperature preferences) on which to base variable 
selection. 
 
One way of identifying important variables is to examine and compare the effects of different 
combinations of variables and fits of the subsequent model to the data. For example, 
standardisation might compare a suite of different GLMs, comparing the fit of a range of 
variables and models by AIC and the amount of deviance explained. However, combinations 
of variables included in each GLM still rely on the judgement of the analyst. 
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One alternative is to use multi-variate data exploration methods, such as principal components 
analyses (PCAs), to assist the analyst in identifying variables to include in a catch rate 
standardisation model. PCAs take multivariate datasets and ‘re-plot’ data in multivariate  
space, creating new axes (Principal component axes, PC axes). The original data (catch rates)  
are then re-plotted against these new axes. Correlations of each variable on each PC axis are 
determined to identify in determining the location of each PC axis. The outputs of PCAs 
include the weighting of each variable on each new PC axis to determine which variables are 
most influential in describing the variability in catch rate data. The total amount of variability 
in the data set accounted for by each PC axis is also estimated (McGarigal et al. 2000).  
 
PCAs are not statistical tests of significance but assist identifying which variables in a 
multivariate data set are contributing most to explaining the variability in a data set. In 
addition, PCAs assist in identifying which variables may be considered redundant (providing 
little or no additional explanatory power), by allowing the examination of the weightings of 
individual variables on each axis. If several similar variables (e.g. depth of a range of 
temperature isotherms) have a similar weighting on a single PC axis, then the analyst may 
consider including only the most heavily weighted variable of a particular axis to include in a 
subsequent catch rate standardisation. Ultimately, PCAs can assist identifying which variables 
are most influential in explaining the variation in a dataset and therefore which variables 
could be considered for inclusion in a subsequent catch rate standardisation via a standard 
approach (e.g. GLM).  
 
This paper provides a simple example of how a PCA may be used to assist in selecting 
variables to be included in a subsequent catch rate standardisation. The PCA approach is 
compared to a range of GLM standardisations where combinations of variables are selected 
by the analyses. We limit our analyses to consider only the influence of oceanographic 
variables on longline catch rates of bigeye from the vicinity of the Palau EEZ, 1998–2006. 
 
 
Methods 
 
To test the applicability of a PCA approach to variable selection for catch rate 
standardisations, a range of readily available oceanographic variables (www.NOAA.NCEP) 
and longline catch and effort data for bigeye tuna were merged into strata of 2° x 2° of 
latitude and longitude. Four strata representing areas of relatively high levels of recent bigeye 
catch and effort from the vicinity of the Palau EEZ  were selected for further analyses. GLMs 
for a range of models were undertaken and the fits to each model compared (Table 1).  
 
A PCA using a similar range of variables was subsequently undertaken for one of these strata. 
The weighting of each variable on each PC axis was examined, and the variable with the 
highest weighting (correlation) on each of the first four PC axes were selected. A GLM using 
these four variables (one from each of the first four PC axes) was then run and the fit 
compared to the original GLMs. All analyses were undertaken in R. 
 
 
Results 
 
Initial GLMs 
 
A total of 13 GLMs were undertaken (Table 1) to compare the amount of variation in bigeye 
catch rates attributable to different combinations of oceanographic variables. Deviance 
explained by each GLM were compared to assess the fit of each model. Each model included 
a range of variables for each oceanographic characteristic (e.g. mean monthly value, highest 
monthly value, lowest monthly value, monthly range). In addition, a GLM model including 
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15 common oceanographic variables that were considered in a PCA (Table 2) was also 
undertaken. 
 
Temperature and altimetry variables explained the highest proportion of variation in catch 
rates of any groups of variables (35% and 44% of deviance explained, respectively), with 
chlorophyll, altimetry and salinity accounting for a similar amount of deviance in the model 
but a more complex model. 
 
The full model (all oceanographic variables) accounted for more than 58% of deviations in 
monthly bigeye catch rates from these four strata but identified 14 significant oceanographic 
variables (Table 1), a complex model, likely to be over-parameterised. Examination of the 
diagnostics (AIC) of this GLM model revealed that three variables (i.e. the Reduced model, 
which included monthly deviations from mean altimetry, the average monthly depth of the 
27ºC isotherm, and the average monthly depth of the 18ºC isotherm) plus the month term 
accounted for approximately 53% of deviations in monthly bigeye catch rates from these four 
strata. Including catches in the previous month improved the amount of deviance explained by 
both the full model and reduced model. 
 
Table 1. GLM fits for each of the bigeye models examined. Deviance explained indicates how 
much of the deviance in the CPUE data was explained by each model option. GLMs from the 
PCAs are provided in the lower portion of the table. The number of variables included in each 
model includes the ‘month’ term. 
 

Model r2 Deviance explained 
(adjusted r2) 

 
GLMs 
Month only 

 
 

0.143 

 
 

11.9 % 
Month + currents variables 0.122 9.7 % 
Month + altimetry 0.456 44.3 % 
Month + temperature variables 0.381 35.2 % 
Month + salinity 0.071 5.5 % 
Month + chlorophyll 0.088 7.1 % 
Month + chlorophyll + altimetry + salinity 0.466 44.8 % 
Full model 0.667 58.7 % 
Reduced model 0.596 53.0 % 
Previous catches only 0.172 16.8 % 
Month-strata + previous catches 0.333 23.9 % 
Full model + previous catches 0.708 62.9 % 
Reduced model + previous catches 0.609 54.5 % 
   
GLMs including only the variables included in 
the PCA 

  

PCA variables 0.623 54.7 % 
   
PCA GLMs   
Oceanographic variables model 0.549 47.1 % 
Oceanographic variables model + previous catches 0.585 51.0 % 

 
 
PCA 
 
Fifteen oceanographic variables were included in a PCA (Table 2). A GLM including these 
variables explained more than 54% of deviance in monthly catch rates of bigeye tuna from the 
area examined (Table 1). 
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A PCA was undertaken on these oceanographic variables, using monthly catch rates of bigeye 
as a grouping variable. Catch rate data were grouped into four levels; Very low (VL), catch 
rates less than 50% of the mean (12.6 kg.hhooks-1); Low (L), catch rates greater than 50% of 
the mean but less than the mean; high (H), catch rates greater than the mean but less than 1.5 
times the mean; Very high (VH), catch rates greater than 1.5 times the mean. 
 
Variances were scaled to unit variance to allow differences in the variance among variables to 
be validly compared (R Development Core Team, 2007). The first four PC axes accounted for 
more than 77% of the variance in the original data set (Table 2). PC axis 1 was mainly 
influenced by variables describing the thermal profile of the water column in the strata being 
considered and accounted for more than 32% of the total variance in the data set (Table 2). 
The depth of the 22 °C isotherm produced the highest correlation on PC axis 1.  
 
Table 2. Variable weightings on the first four principal component axes from a PCA examining 
the influence of the mean monthly value of 15 oceanographic variables on bigeye catch rates in 
the area examined of the western WCPO, 1998–2006. Grey filled cells highlight correlations of 
variables with PC axes of greater than 0.35. Values underlined identify the highest weightings on 
each PC axis, identifying those variables that were used in subsequent GLMs. The proportion of 
variance explained by each PC axis is also provided, as is the cumulative variance and the 
percent of total variance explained with the addition of each of the first four PC axes. 
 

Variable PC axis 1 PC axis 2 PC axis 3 PC axis 4 

     

Sea surface temperature 0.222 0.360 -0.084 -0.252 

Chlorophyll a concentration -0.020 -0.438 0.216 0.318 

Altimetry deviation 0.188 0.134 0.024 0.586 

Surface salinity 0.210 -0.383 0.037 -0.344 

Depth of the 20°C isotherm 0.415 0.104 0.163 0.149 

Depth of the 27°C isotherm 0.363 0.194 -0.014 -0.171 

Depth of the 22°C isotherm 0.428 0.133 0.101 0.053 

Depth of the 18°C isotherm 0.395 0.069 0.177 0.192 

Strength of easterly current -0.253 0.331 0.368 0.029 

Strength of westerly current -0.251 0.315 0.370 0.113 

Strength of northerly current 0.204 -0.321 0.239 -0.112 

Strength of southerly current 0.177 -0.076 0.360 -0.303 

Chlorophyll a range -0.042 -0.340 0.243 0.253 

Altimetry range -0.109 0.089 0.578 -0.161 

Salinity range -0.117 -0.049 0.154 -0.273 

     

Proportion of variance 0.323 0.189 0.161 0.100 

Cumulative variance 0.323 0.512 0.673 0.773 

Variance explained (%) 32.3 % 51.2 % 67.3 % 77.3 % 
 
 
Sea surface temperature (SST) had a strong positive weighting along PC 2. However, the 
strongest weighting along PC axis 2 was with chlorophyll concentration, which revealed a 
strong negative correlation with the axis (Table 2). Monthly altimetry range was most 
strongly weighted on PC axis 3. Current variables were also strongly weighted along PC axis 
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3. Mean monthly altimetry deviations weighted most strongly along PC 4. A biplot of the 
relationships between the variables and bigeye catch rates on PC axes 1 and 2 highlighted the 
strong weightings with these four variables (Figure 1), especially variables describing 
temperature at depths. 
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Figure 1. Biplot of relationships between oceanographic variables (blue arrows and labels) and 
bigeye catch rates (black labels) identified in a PCA. The biplot is of the first two PC axes, which 
account for more than 51% of variability in the multivariate data set. The length and vector of 
each arrow shows the relative weighting on the first two PC axes; longer arrows closer to each 
PC axis reveals stronger correlations. Catch rate labels (black letters): VL, catch rates less than 
50% of the mean (12.6 kg.hhooks-1); L, catch rates greater than 50% of the mean but less than 
the mean; H, catch rates greater than the mean but less than 1.5 times the mean; VH, catch rates 
greater than 1.5 time the mean. Variables in red boxes were used in subsequent GLMs.  
 
 
The variables most heavily weighted on each of the first four PC axes (depth of the 22°C 
isotherm, chlorophyll a concentration, altimetry deviation from mean, monthly range of 
altimetry deviation) were included in a GLM to model monthly bigeye catch rates. The 
subsequent model accounted for more than 47% of the variability in monthly bigeye catch 
rates. Including catches in the previous month increased the fit to 51% of monthly variation in 
bigeye catch rates (Table 1). 
 
Comparison of GLMs. 
 
The four models examined in detail appeared to fit the long-term trend (1998–2006) in bigeye 
catch rates in each of the four strata well, with the exception that most models underestimated 
periods of relatively high bigeye catch rates in two of the four strata prior to 2000 (Figure 2). 
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The increasing nominal catch rates were well fitted by all four models, with the exception of 
periods of very high catch rates in one strata since 2004. The full (complex) model fitted the 
catch arte data best as expected, although the reduced model and PCA model also fitted the 
data from each strata well. 
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Figure 2. Comparison of fits of standardisations of bigeye catch rates (kg.hhooks-1) from selected 
GLMs and GLMs using the outcomes of a PCA. Nominal catch rates are also plotted. Each figure 
represents an individual strata of  2° x 2°. “Variables as in PCA” represents the fit of a GLM 
which included all 15 variables included in the PCA (as listed in Table 2). 
 
 
Discussion 
 
All models examined in more detail appeared to fit the nominal bigeye catch rate data well 
(Figure 2). All models tended to reduce the influences of periods of relatively high or 
relatively low catch rates in all four strata. All models also included a downward trend in 
bigeye catch rates between 1998 and 2004, and subsequent increases in catch rates from 2005 
onwards.  
 
Catch rate standardisations from GLMs using the four variables selected from the PCA 
outputs explained a similar level of deviance to GLMs using a wider range of variables (Table 
1). The ‘Reduced model’ GLMs produced a slightly better fit than the PCA GLMs, but 
involved the analyst selecting variables based on AIC outcomes available from GLM 
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diagnostics. In contrast, the apriori decision to include only the variables with the highest 
weighting on each of the first four PC axes reduced the subjectivity of selecting only some 
variables identified as significant in a more complex GLM. This appears to be a more 
defensible approach to variable inclusion in a catch rate standardisation. 
 
However, PCAs do have limitations. One of the major limitations is how many axes to 
interpret, and therefore, how many variables an analyst may consider including in a catch rate 
standardisation. For example, the current PCA generated 15 PC axes (Table 3). One approach 
to limit the number of PC axes to consider is to interpret the scree-plot of a PCA (Figure 3), 
one of the many diagnostics available (McGarigal et al. 2000, R Development Core Team, 
2007). Two interpretations are possible. Firstly, the decision can be made on the point of 
inflection in the scree-plot. In the current analysis, the inflection occurs at PC axis 5 (Figure 
3). In this case, it may be argued to analyse the data of the first five PC axes (i.e. include five 
variables in a subsequent standardisation); beyond this point, the amount of variance 
explained per additional PC axis declines (and a subsequent GLM becomes more complex for 
little additional benefit). Alternatively, only PC axes with unit variances greater than 1.0 
could be interpreted (Figure 3), as has been done in this report (i.e. the first four PC axes).  
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Figure 3. Scree-plot of the PCA described in the report. Variances have been scaled to unit 
variance. Points represent the amount of additional variance accounted for with the addition of 
each PC axis. The blue line indicates a scaled variance of 1.0. 
 
 
The proportion of overall variance explained by the addition of each axis could also be used 
as a basis for how many axes should be considered (Table 3). For example, the first four axes 
all contribute 10% or more of total variance explained, with subsequent axes contributing less 
than 10%. In addition, an apriori decision on the total variance explained (cumulative 
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proportion) could be used. Unfortunately, interpretation rules for PCAs are still poorly 
developed (McGarigal et al. 2000). 
 
Table 3. The (unit) standard deviation (scaled variance) explained, proportion of variance and 
cumulative variance explained with the addition of each PC axis in the current PCA. 
 

PC axis Standard  
deviation 

Proportion 
 of variance 

Cumulative  
proportion 

    
PC 1 2.200 0.323 0.323 
PC 2 1.685 0.189 0.512 
PC 3 1.552 0.161 0.673 
PC 4 1.226 0.100 0.773 
PC 5 0.951 0.060 0.833 
PC 6 0.866 0.020 0.883 
PC 7 0.786 0.041 0.924 
PC 8 0.659 0.029 0.953 
PC 9 0.558 0.021 0.974 

PC 10 0.399 0.011 0.985 
PC 11 0.335 0.007 0.992 
PC 12 0.242 0.004 0.996 
PC 13 0.184 0.002 0.998 
PC 14 0.147 0.001 1.000 
PC 15 0.056 0.000 1.000 

 
 
PCAs may be useful in a wide variety of data exploration situations, including but not limited 
to the identification of variables to be considered in catch rate standardisations using GLMs or 
other techniques. PCAs allow inclusion rules for variables to be established prior to analyses 
being undertaken. In addition, PCAs can incorporate as many variables as required and are 
highly robust to variables with a wide range of non-normal or varying distributions 
(McGarigal et al. 2000). Thus, the use of PCAs as a data exploration tool could be considered 
as a starting point in standardisations of catch rates involving a (potentially) large number of 
variables.  
 
Nonetheless, both approaches (GLM only, or PCA and then GLM) identified that a similar set 
of variables (altimetry and temperature at depth) were important in influencing catch rates of 
bigeye from the four strata examined. The actual temperature-at-depth variable identified in 
the PCA (Table 2) varied from those in the reduced GLM model. From the PCA results , the 
weightings of the depth of temperature isotherms were similar (Table 2) and it is likely that 
the selection of an alternative temperature at depth variable to include in a GLM would have 
made little difference to the overall fit to the subsequent GLM. 
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