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Revision 2

This revision of the report adds:

• Corrected y-axis numbers on annual recruitment plots, calculated as the sum rather than the
average across seasons, effectively multiplying by four (Figures 41, 42, 45).

• Corrected y-axis labels on Majuro and Kobe plots, adding the subscript ‘recent’ (Figure 64).

Revision 1

This is a revision of the first complete version which was labelled 1.03. This revision of the report
adds:

• Corrected proportion-by-source-region plot (Figure 44).

• Corrected Majuro and Kobe plots (Figure 64).

• New dynamic MSY plot (Figure 68).
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1 Executive Summary

This paper describes the 2023 stock assessment of yellowfin tuna (Thunnus albacares) in the western
and central Pacific Ocean. An additional three years of data were available since the previous
assessment in 2020, and the model extends through to the end of 2021. The assessment moved
to a new 5 region spatial structure with improved convergence properties and which achieved a
positive definite Hessian solution, which was a requirement for future assessments from SC18. This
change was made during the stepwise model development process. The 5 region model, given
its superior convergence properties to the original 9 region model, is used as the basis for the
structural uncertainty grid and stock status conclusions. Additional new developments to the stock
assessment, many of which have emanated from the independent peer review of the 2020 yellowfin
assessment, include:

• Conversion from a catch-errors to a catch-conditioned approach, and the inclusion of a like-
lihood component for the CPUE from the index fisheries.

• Change from using VAST to sdmTMB to standardise the input CPUE series and the inclusion
of additional covariates in the CPUE model.

• Different CPUE variances used for the CPUE associated with each index fishery, applying a
new approach to estimate these variances.

• Internal estimation of natural mortality and application of the Lorenzen form of natural
mortality at age.

• Additional procedures implemented for achieving more reliable model convergence, including
jittering and checking positive definite Hessian status for all grid models.

• Integration of parameter estimation uncertainty with model-based uncertainty across the
model grid for the key management reference points.

• Additional size composition filtering.

• Modifications to selectivity estimation settings, changes to fisheries with non-decreasing se-
lectivity.

• Adoption of revised tagger effect modelling framework, reverting to assumptions similar to
those used in 2017.

• Changes to size data weighting and downweighting the conditional age-at-length data for
internal growth estimation.

This assessment is supported by the analysis of catch and effort data for longline fisheries to provide
regional abundance indices (Teears et al., 2023), revised analysis of tagger effects and tag reporting
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rates (Peatman et al., 2023a; Peatman, 2023), size composition data analyses and preparation
(Peatman et al., 2023b), improvements to data for length-weight conversion factors (Macdonald
et al., 2023b), review and analyses to inform considerations of alternative spatial structures, and
developments to the MFCL software (Davies et al., 2023).

This assessment implemented a more rigorous approach to achieve more reliable and stable model
convergence, which was beneficial for achieving a positive definite Hessian for the 2023 diagnostic
model. The cumulative effects of the stepwise changes between the 2020 diagnostic model and the
current diagnostic model is a reduction of SB/SBF =0. The difference between the 2020 diagnostic
model and the current diagnostic model is considerable in terms of SB/SBF =0 but much smaller
in terms of SB. Therefore, it appears that the main difference between the two diagnostic mod-
els is the estimate of higher (SBF =0) by the 2023 diagnostic model. This difference appeared to
occur mainly in the step that introduced the estimation of Lorenzen natural mortality, although
the change in spatial structure and application of the revised approach to modelling tagger effects
further contributed to the reduction of SB/SBF =0. The move away from the more complicated ex-
ternally calculated natural mortality at age function used previously to estimating natural mortality
internally with a Lorenzen functional form followed recommendations from various reviews on stock
assessment methods, and was supported by a recent tuna stock assessment good practices work-
shop. Subject to the caveat that none of the steps in the stepwise development involved jittering,
in terms of decreasing the final value of SB/SBF =0 the most influential steps in the development of
the 2023 diagnostic model were; the estimation of natural mortality using the Lorenzen curve, ap-
plying the revised tagger effects method (which was also a recommendation for an expert workshop
and supported by the Pre-assessment Workshop), and updating the CPUE spatio-temporal analy-
sis. Finally, the 2020 yellowfin stock assessment estimated the median SBrecent/SBF =0 across the
model grid to be 0.58, where ‘recent’ was the period 2015-2018. Calculating the equivalent median
depletion from the 2023 stock assessment grid, SB2015−2018/SBF =0 is 0.47. Overall the changes in
assessment methods and the updated data produced a less optimistic estimation of stock status
than the 2020 assessment.

In addition to the diagnostic model, we report the results of one-off sensitivity models to explore the
impact of key data and model assumptions for the diagnostic model on the stock assessment results
and conclusions. We also undertook a structural uncertainty analysis (model grid with 54 models)
for consideration in developing management advice that includes combinations of those areas of
uncertainty considered important. Finally, we have also estimated the parameter (estimation)
uncertainty for the key management reference points SBrecent/SBF =0 and Frecent/FMSY which is
combined with the structural uncertainty to provide the final uncertainty for these management
quantities. The ability to include estimation uncertainty on top of structural uncertainty for the
key management quantities, SBrecent/SBF =0 and Frecent/FMSY, is an improvement from previous
assessments, however, in this case its inclusion did not influence the management advice. It is,
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however, recommended that management advice is formulated from the results of the structural
uncertainty grid with the estimation uncertainty included for SBrecent/SBF =0 and Frecent/FMSY.
The results below are based on equal weighting of all grid models.

Across the 54 models of the structural uncertainty grid run in this assessment, the most impor-
tant factors when evaluating stock status were the steepness of the stock recruitment relationship,
weighting of the size composition data, and tag mixing period. Unlike the previous assessment,
growth was not included as an uncertainty axis, which was partly due to the recommendation of
the peer review of the 2020 yellowfin assessment that external growth curves would likely be biased
due to the way in which otoliths were selected for developing the growth curves.

The general conclusions of this assessment are as follows:

• The spawning potential of the stock has become more depleted across all model regions until
around 2010, after which it has become more stable, or shown a slight increase.

• Average fishing mortality rates for juvenile and adult age-classes have increased throughout
the period of the assessment, although more so for juveniles which have experienced consid-
erably higher fishing mortality than adults. In the recent period a sharp increase in juvenile
fishing mortality is estimated, while adult fishing mortality has stabilised.

• Overall, median depletion from the model grid for the recent period (2018–2021; SBrecent/SBF =0)
is estimated at 0.47 (80 percentile range including estimation and structural uncertainty 0.42–
0.52, full range 0.33–0.60)

• No models from the uncertainty grid, including estimation uncertainty, estimate the stock to
be below the LRP of 20%SBF =0.

• CMM 2021-01 contains an objective to maintain the spawning biomass depletion ratio above
the average of 2012–2015, SB2012−2015/SBF =0, which is a value of 0.44 calculated across the
unweighted grid. Based upon the estimates of SBrecent/SBF =0 of 0.47, this objective has
currently been met.

• Recent (2017–2020) median fishing mortality (Frecent/FMSY) was 0.50 (80 percentile range,
including estimation and structural uncertainty 0.41–0.62, full range 0.26–0.78).

• Assessment results suggest that the yellowfin stock in the WCPO is not overfished, nor un-
dergoing overfishing.

A number of key research needs have been identified in undertaking this assessment that should be
investigated either internally or through directed research. These include:

1. Continued work examining appropriate approaches for modeling natural mortality for the
WCPO yellowfin assessment.
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2. Further simplifying the assessment by combining fisheries within regions.

3. Evaluation of growth parameter settings.

4. Improved sampling of biological data across the WCPO region for yellowfin.

5. Succession planning for MFCL.

6. Tropical focused model investigation.
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2 Introduction

This paper presents the 2023 stock assessment of yellowfin tuna (Thunnus albacares; YFT) in the
western and central Pacific Ocean (WCPO; west of 150◦ W). Assessment of WCPO yellowfin tuna
has been conducted regularly since the late 1990s (Hampton and Kleiber, 2003; Hampton et al.,
2005; Langley et al., 2011; Davies et al., 2014; Tremblay-Boyer et al., 2017; Vincent et al., 2020).
As in previous assessments, the objectives of the 2023 yellowfin tuna assessment are to estimate
population level parameters which indicate the stock status and impacts of fishing, such as time
series of recruitment, biomass, biomass depletion and fishing mortality. We summarize the stock
status in terms of reference points adopted by the Western and Central Pacific Fisheries Commission
(WCPFC). The methodology used for the assessment is based on the general approach of integrated
modeling (Fournier and Archibald, 1982), which is carried out using the stock assessment framework
MULTIFAN-CL4 (MFCL version number 2.2.x.0; Fournier et al., 1998; Hampton and Fournier,
2001; Kleiber et al., 2019). MFCL implements a size-based, age- and spatially-structured population
model. Model parameters are estimated by maximizing an objective function, consisting of both
likelihood (data) and “prior”5 information components (penalties).

Each new assessment of a WCPO tuna stock typically involves updates to fishery catch, effort, and
size composition data, updates to tag-recapture data when tagging data is used, implementation
of new features in the MFCL modeling software, changes to preparatory data analysis, such as
CPUE standardisations, and consideration of new information on biology, population structure
and potentially other population parameters. These changes are an important part of efforts
to continually improve the modeling procedures and more accurately estimate fishing impacts,
biological and population processes and quantities used for management advice. Advice from the
Scientific Committee (SC) on previous assessments, and the annual SPC pre-assessment workshops
(PAW) (Hamer, 2023) guides this ongoing process. Furthermore, due to changes in assessment
staff, new assessments often involves staff that did not participate in the previous versions and
this may also influence differences in how assessment are conducted. Changes to aspects of an
assessment can result in changes to the estimated status of the stock and fishing impacts, and
resultant management advice. It is important to recognize that each new assessment represents
a new estimation of the historical population dynamics and recent stock status, and each new
assessment team strive to provide the best possible assessment with the time and data available.

The assessment uses an ‘uncertainty grid’ of models as the basis for management advice. The
uncertainty grid is a group of models that are run to explore the interactions among selected

4http://www.multifan-cl.org
5Note that any mention of a “prior” in this report does not refer to a prior in the Bayesian sense, though the

effect on the parameter estimate is similar, but rather a penalty placed on the likelihood such that the estimated
parameter does not deviate too much from the specified “prior” value. The magnitude of the deviation from the
“prior” is dependent on the information content of the data and the strength of the likelihood penalty applied.
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“axes” of uncertainty that relate to biological assumptions, data inputs and data treatment. The
axes are generally selected from one-off sensitivity models of a diagnostic (or base case) model
to indicate uncertainties that have notable effects on the estimates of key model parameters and
management quantities. The variation in estimates of the key management quantities across the
uncertainty grid represents the uncertainty in stock status and should be considered carefully by
managers. This structural or ‘model’ uncertainty is usually more important than the uncertainty
in the estimation of parameters from individual models, referred to as ‘estimation uncertainty’.
However, both are taken into account when documenting the uncertainty in the key management
quantities provided by this assessment.

The 2023 yellowfin tuna assessment occurs after the 2022 peer review of the WCPO 2020 yellowfin
tuna assessment (Punt et al., 2023). The peer review outcomes have implications for the current
assessment and these are noted where relevant. Notable new features of the 2023 assessment are
summarised below and this assessment report should be read in conjunction with several supporting
papers, specifically the paper on CPUE analyses and other data inputs (Teears et al., 2023), the
paper on size composition data preparations and weighting (Peatman et al., 2023b), the papers on
tag reporting rates and tagger effects estimations (Peatman, 2023; Peatman et al., 2023a), the paper
on improved conversion factors and data on fish weights and lengths (Macdonald et al., 2023a), the
paper on developments in the MFCL software (Davies et al., 2023) and the paper on conceptual
models of yellowfin and bigeye population structure (Hamer et al., 2023). Finally, the planning for
this assessment was informed by the discussions at the 2023 SPC PAW (Hamer, 2023).

Significant changes and improvements to the analysis used in this assessment include the following,
which are discussed in more detail in relevant sections of this report.

• Conversion from a catch-errors to a catch-conditioned approach, and the inclusion of a like-
lihood component for the CPUE from the index fisheries (peer review supported this).

• Adoption of a simpler spatial structure (5 model regions). Detailed review of information and
development of conceptual models for spatial structure including both size composition analy-
sis (regression trees) and CPUE time series analysis (peer review recommendation, supported
by PAW).

• Change from using VAST to sdmTMB to standardise the input CPUE series and increased
the spatial resolution of the mesh configuration. Various alternative CPUE model structures
and analyses explored resulting in the inclusion of additional covariates in the CPUE model
(peer review recommendation).

• Different CPUE variances were used for the CPUE associated with each index fishery, using
new approaches to estimate these variances. Modifications were required to MFCL to enable
the index fisheries to have separate CPUE variances while maintaining shared selectivity (peer
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review recommendation).

• Internal estimation of natural mortality and application of the Lorenzen form of natural
mortality (recommendation of 2023 CAPAM Tuna Good Practices Workshop), also an MFCL
modification to allow input of Lorenzen starting parameter values with improved parameter
scaling.

• Additional procedures implemented for achieving more reliable model convergence, including
jittering and checking positive definite Hessian status for all grid models (improvements to
convergence criteria requested by SC18, recommendation by peer review to provide Hessian
diagnostics).

• Integration of estimation uncertainty with model-based uncertainty across the grid (SC18 re-
quest for inclusion of estimation uncertainty). An MFCL development to enable calculation
of variances only for the key derived quantities required for the uncertainty grid was imple-
mented, reducing the computational load to estimate uncertainty for management quantities.

• Use of MFCL tail compression feature, applied only to zero values (and could apply a further
tail compression proportion of 0.001 in future).

• Improved size composition data filtering approaches to reduce influence of low/unrepresentative
sampling. Also explored alternatives for specifying input samples sizes, such as numbers of
sets (but ran out of time to fully explore a range of filtering options). Applied a minimum
input sample size of 50 for size composition data in MFCL (peer review recommendation to
reduce unrepresentative size composition data).

• Continued use of conditional age-at-length data and internal estimation of growth, but down-
weighting this data in the likelihood as an initial step in data weighting (peer review recom-
mendations).

• Reduced the number of fisheries with a non-decreasing selectivity constraint to just the index
fisheries.

• Ensured that tag reporting rate groups are not estimated for groups with zero tag recoveries,
and extending this to tag reporting rate groups with fewer than 6 tag recoveries.

• Adoption of revised tagger effect modelling framework (recommended by expert workshop)
with separate treatment of PTTP Central Pacific tag releases; use of multi-species models;
model selection based on predictive accuracy; and, reverted to assumptions similar to those
used in 2017.

• Initial explorations of the use of Dirichlet multinomial for self-scaling size composition data
weighting (peer review supported this), and modification (reduction) to size composition data
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weighting divisors in the grid as a result.

• Qualitative analysis of tag recapture data to inform tag mixing assumptions (PAW recom-
mendation, and peer review).

3 Background

3.1 Stock structure

Yellowfin tuna is distributed across the Pacific, Indian and Atlantic Oceans in a continuous band
between approximately 45◦ north and 45◦ south of the equator (Grewe et al., 2015; Moore et al.,
2020). Genetic studies suggest that populations in the three major oceans are largely separate
(Pecoraro et al., 2018; Moore et al., 2020), although connectivity between yellowfin spawning areas
in the Indian Ocean and populations in the Atlantic Ocean near south Africa has been detected
(Mullins et al., 2018). Grewe et al. (2015) showed strong genetic differences between samples from
Baja California in the eastern Pacific, Tokelau in the central Pacific and the Coral Sea in the
western Pacific. Similarly, Pecoraro et al. (2018) found genetic differences between populations in
the far eastern and western Pacific Ocean. Evidence of finer scale genetic structure of yellowfin in
the western and central Pacific Ocean is less clear and varies between different studies (Appleyard
et al., 2001; Aguila et al., 2015; Pecoraro et al., 2018; Anderson et al., 2019; Evans et al., 2019). An
earlier genetic study by Ward et al. (1994) proposed the existence of eastern and western Pacific sub-
populations separated at around 150◦ W. Observations of the distribution of yellowfin tuna larvae
indicate that spawning occurs broadly throughout the central and western tropical Pacific, with
spawning all year in the equatorial region, and seasonally in warmer months to the north and south
(Nishikawa et al., 1985; Ijima and Jusup, 2023). Studies using otolith chemistry have suggested
that populations at sub-regional scales may be sourced predominantly from local spawning (Wells
et al., 2012; Rooker et al., 2016; Proctor et al., 2019). The most recent otolith chemistry study
provided good evidence that majority of small ( 30-40 cm) juvenile yellowfin captured around Japan
originated from very small juveniles (< 10 cm) sampled further south in the western Pacific tropical
region (Satoh et al., 2023). This suggests dispersal/movement from the equatorial western Pacific
spawning areas via the western boundary current (Kuroshio) is important for juvenile recruitment
around Japan.

The results of genetic studies are broadly consistent with tag/recapture data in suggesting that
mixing between the far western and far eastern Pacific Ocean regions is limited (Moore et al.,
2020; Hamer et al., 2023). The extensive tag/recapture data available since 1989 shows that
longitudinal movements among the equatorial regions of the central and western Pacific can be
extensive but latitudinal movements to and from the tropical/sub-tropical latitudes may be less
so (Figure 2). The longitudinal movements and continuous distribution across the Pacific suggests
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an isolation by distance mechanism is responsible for the genetic differences observed between the
west and east Pacific populations. Despite the significant tagging and recent genetic studies, there
remains considerable uncertainty on sub-regional population structure in the WCPO, in particular
the spatial connectivity between spawning areas, early life stages, and recruitment to size classes
vulnerable to fishing in different regions. This is an important area for further research. A review
of the status of knowledge of yellowfin tuna population structure is available in Moore et al. (2020),
and concludes that the weight of evidence from both genetic and non-genetic studies supports the
presence of discrete stocks of yellowfin tuna in the EPO and WCPO, as well as the potential for
finer-scale spatial structuring within each of these regions. For this assessment, the stock within
the domain of the model area (essentially the WCPO, west of 150◦ W) has been considered as a
discrete stock that exhibits the same biological traits (Langley et al., 2011; Davies et al., 2014;
Tremblay-Boyer et al., 2017).

Over time, the spatial complexity of the modeling of the yellowfin stock in the WCPO has increased.
In the 2011 assessment the model domain was divided into 6 regions. After a review of the bigeye
assessment in 2012 (Ianelli et al., 2012), a 9 region model (Figure 1) was implemented in 2014
for both yellowfin and bigeye (Davies et al., 2014; Harley et al., 2014; McKechnie et al., 2014),
with the northern boundary of regions 3 and 4 set at 20◦ N. In the 2017 yellowfin assessment
(Tremblay-Boyer et al., 2017) an additional option was included that involved moving the northern
boundary of regions 3 and 4 to 10◦ N to better reflect the purse seine fishery spatial structure and
the assumption of low movement rates between the equatorial and sub-tropical northern regions
(Figure 2). Based on the comparisons between the 10 and 20◦ N options in the 2017 assessment, and
the same comparisons for the concurrent bigeye assessment (Vincent et al., 2018), the 2020 PAW
recommended only using the 10◦ N option in the 2020 yellowfin assessment. The 9 region spatial
structure was viewed as a compromise between the limited knowledge of sub-regional population
structure, fishery/fleet spatial structures and the locations of major localized tag release events (i.e.
regions 4, 8 and 9).

The paper by Hamer et al. (2023) considers published information on genetic and non-genetics
indicators of population structure (mostly covered in the review by Moore et al. (2020)), larval
distribution patterns, and also includes analyses of spatial heterogeneities in size composition data
and CPUE time series for the Pacific longline fisheries. That paper suggests that while yellowfin
tuna are likely one genetic stock in the Western and Central Pacific Ocean (WCPO), there is in-
dication of substructure with the WCPO assessment region. The paper notes that the tropical
region has several features that warrant it being considered as a separate spatial strata from the
northern and southern sub-tropical/temperate regions. Likewise the paper suggests that the In-
donesia/Philippines/Vietnam/South China Sea region warrants being considered a separate spatial
strata. There was also support for a separate region/fisheries around Hawaii based on size compo-
sition data, localised spawning and otolith chemistry studies. The review did not conclude that the
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previous 9 region model structure was inappropriate but did suggest alternative simplified spatial
stratifications that could be considered for yellowfin tuna assessment in the WCPO and this is
discussed further in subsection 4.2. Continuing to improve understanding of spatial population
structure and processes for yellowfin in the WCPO, and more broadly in the Pacific, remains an
important area of research.

The 9 region spatial structure (Figure 1) applied in the 2020 assessment was the basis for the
current assessment. However, based on the review and analyses in Hamer et al. (2023) and the
recommendation from the peer review to explore plausible simpler spatial structures (Punt et al.,
2023), we considered an alternative simplified 5 region structure. Ultimately, the 5 region structure
was adopted for this assessment due to better model performance and convergence properties (see
subsection 6.1), including the requirement to achieve a positive definite Hessian. A thorough
exploration of alternative spatial structures besides the 5 region structure was not possible in the
time available, but is still recommended as future work.

3.2 Biological characteristics

Yellowfin tuna can reach a maximum fork length (FL) of around 180 cm and live for up to 15 years,
although most fish aged to date have been less than 10 years old (Itano, 2000; Farley et al., 2020)
and the maximum validated age is 13 years (Andrews et al., 2022). Growth of the juvenile stage is
particularly fast and they can reach a fork length of around 20-30 cm by three months of age and
approximately 50 cm by 1 year (Farley et al., 2020). Length at 50% maturity in the WCPO is at
around 100-110 cm (Itano, 2000) which equates to around 2 years of age. In this assessment, for the
purpose of computing the spawning biomass, we assume a fixed maturity schedule consistent with
the observations of Itano (2000) (see Vincent and Ducharme-Barth, 2020 for details). Yellowfin
tuna are thought to spawn opportunistically throughout the Pacific in waters warmer than 24◦ C
(Itano, 2000; Reglero et al., 2014). Larval stages are found widely in surface waters throughout
the central and western Pacific (Nishikawa et al., 1985; Servidad-Bacordo et al., 2012; Ijima and
Jusup, 2023) and at least some spawning appears to occur year-round in the WCPO. However,
understanding of spatio-temporal variation in spawning fraction is limited. Important areas for
spawning are thought to occur in the Banda Sea in Indonesia, the north-western Coral Sea, the
eastern and southern Philippines, northeast of Solomon Islands, and around Fiji (McPherson, 1991;
Gunn et al., 2002; Servidad-Bacordo et al., 2012; Ijima and Jusup, 2023). Juvenile yellowfin (several
months of age) are prevalent in commercial fisheries in the Philippines and eastern Indonesia (Hare
et al., 2023; Williams and Ruaia, 2023), suggesting this region is important for the juvenile stages,
but they are also found more widely in the equatorial Pacific.

Growth parameters can be highly influential in the estimates of management parameters by stock
assessment models, and the most recent stock assessments of yellowfin in the WCPO identified
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growth as an important uncertainty requiring further research (McKechnie et al., 2017; Vincent
et al., 2018, 2020). Considerable work was carried our on developing external growth curves from
otoliths and otolith-tag integrated growth models for the previous assessment (Eveson et al., 2020;
Farley et al., 2020). Those studies resulted in different estimates of growth rate parameters to
those previously estimated by the MFCL model based on length composition modal progression.
Annual aging of yellowfin using otoliths has recently been validated using the bomb radiocarbon
method (Andrews et al., 2022), but there has been no further otolith aging of yellowfin since the
2020 assessment. The previous assessment explored alternative growth options including external
fixed growth curves from both otolith aging an internal modal length analyses (applied as external
fixed curves), as well as a fully internal growth estimation by inputting the otolith data (with
associated length data) as conditional-age-at-length data. The latter was used as the approach
for the diagnostic model, and has since been recommended as the most suitable approach for
growth estimation by the yellowfin assessment peer review (Punt et al., 2023). Understanding of
spatio-temporal variation in growth is limited and is insufficient to consider such effects in the
current assessment, nor is it feasible to implement spatially varying growth using the MFCL model
framework.

Natural mortality (M) rate of yellowfin tuna varies with size/age (Hampton, 2000). Mortality
is highest for the smaller juveniles and estimated to be lowest for the pre-adult stage (50-80 cm
FL) 0.6-0.8 yr−1 (Hampton, 2000). After reaching maturity it is thought that mortality increases
with age, particularly in females. Sex ratios of yellowfin tuna are commonly observed to be biased
toward males at larger sizes, and it is thought that this may relate to the higher mortality rates of
mature females due to the physiological stresses related to spawning or a combination of this and
different growth rates between males and females at older ages (Schaefer et al., 1963; Hampton,
2000; Fonteneau, 2002; Sun et al., 2006; Zhu et al., 2008). For the purpose of computing the
spawning potential and mortality schedules, data on sex ratio at length is important. For the
previous assessment data on sex ratios collected by observers in the WCPO was incorporated into
the estimation of spawning potential and M at age (Vincent and Ducharme-Barth, 2020). We
utilise the same data source in this assessment. The 2020 yellowfin assessment conducted a life-
history based meta-analysis of natural mortality for yellowfin (Vincent and Ducharme-Barth, 2020)
indicating an envelope of potential quarterly M rates of lower 95% confidence interval (0.1100),
mean (0.1298) and upper 95% confidence interval (0.1495). More recently natural mortality of
yellowfin has been reviewed by Hoyle et al. (2023), and this review is taken into account when
considering options for natural mortality in the current assessment.

3.3 Fisheries

Yellowfin tuna is an important component of tuna fisheries throughout the WCPO. They are
harvested with a wide variety of gear types, from small-scale artisanal fisheries in Pacific Island
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and southeast Asian waters to large, distant-water longliners and purse seiners that operate widely
in equatorial and tropical waters (Williams and Ruaia, 2023). Purse seiners catch a wide size range
of yellowfin tuna, however, smaller yellowfin often dominate catches associated with FADs (fish
aggregation devices), whereas the longline fishery takes mostly larger adult fish (Vidal and Hamer,
2020; Williams and Ruaia, 2023).

The annual yellowfin tuna catch in the WCPO increased from 100,000 mt in 1970 to between
700,000 and 750,000 mt in recent years, mainly due to increased catches in the purse seine fishery,
(Hare et al., 2023; Williams and Ruaia, 2023). The 2022 catch was approximately 720,000 mt, and
the 2021 (last of year of this assessment) catch was slightly higher at approximately 730,000 mt
(Figure 3). Purse seiners harvest the majority of the yellowfin tuna catch (around 50–55% since
2018), while the longline fleet accounted for around 10-15% of the catch in recent years, primarily
in the equatorial regions (Figure 4, Williams and Ruaia, 2023). The remainder of the catch is
dominated by the domestic fisheries of the Philippines and Indonesia, principally catching smaller
individuals using a variety of small-scale gear types (e.g. pole-and-line, ringnet, gillnet, handline
and seine net). Small to medium sized purse seiners based in those countries also catch fish of sizes
more typical of the purse seine fisheries elsewhere.

Yellowfin tuna typically represent 15–20% of the overall purse-seine catch in recent years and may
contribute higher percentages of the catch in individual sets. Yellowfin tuna are often directly
targeted by purse seiners, especially within unassociated schools (free schools) that are comprised
of larger yellowfin compared to those associated with FADs (associated sets). Unassociated sets
account for the majority of purse seine sets, however, many of these sets fail (skunks) and when
considering successful sets only, the numbers of associated and unassociated sets are similar (Hare
et al., 2022).

Since 2010, annual catches of yellowfin tuna by longline vessels in the WCPO have varied be-
tween approximately 74,000 to 105,000 mt (Williams and Ruaia, 2023). The highest longline catch
recorded was around 125,000 mt in 1980 (Figure 3). Annual catches from the domestic fisheries of
the Philippines and eastern Indonesia area are highly uncertain, particularly prior to 1990. Recent
estimates for pole and line and other gears have reached approximately 220,000–260,000 mt in the
last 5 years years, and for purse seine 350,000–400,000 mt (Figure 3).

Figure 5 shows the spatial distribution of yellowfin tuna catch in the WCPO for the past 10 years.
Most of the catch is taken in western equatorial areas, with less catch by both purse-seine and
longline toward the east. The east-west distribution of catch is strongly influenced by ENSO
events, with larger catches taken east of 160 ◦ E during El Niño episodes. Catches from outside
the equatorial region are relatively minor (5%) and are dominated by longline catches south of the
equator and purse-seine and pole-and-line catches in the north-western area of the WCPO (Figure 4
and Figure 5).
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Improved catch statistics in recent years for the Indonesian, Philippines, and Vietnamese fleets
have resulted from collaborative work between the fisheries agencies of these countries and the
SPC, WCPFC, and CSIRO. In some instances data are available at the individual fisheries level
(e.g., longline or large-fish handline), but often statistics are aggregated across a variety of gears
that typically catch small yellowfin tuna, e.g., ring-net, handline, and troll. Data for these fisheries
have been included in this assessment.

3.4 Key changes from the last assessment

3.4.1 Catch conditioned approach

In previous MULTIFAN-CL assessments of yellowfin tuna, catch was predicted by the model
(termed ‘catch-errors’ model) with observation error allowed, and the standard deviation of the
log-catch deviates assumed to be very small (equivalent to a CV of 0.002). This produced very
accurate predictions of observed catches and therefore only a small contribution of the catch to the
overall objective function. However, the cost of treating the catch in this way was that effort devia-
tion coefficients had to be estimated as model parameters for each catch observation. Additionally,
catchability deviation parameters were required for catch-effort observations for fisheries for which
time-series changes in catchability were allowed. While these parameters were constrained by prior
distributions and estimation was feasible, it resulted in very large numbers of parameters needing
to be estimated by the function minimiser and many of these were effort deviation coefficients and
parameters relating to catchability.

In an effort to reduce complexity and parameterisation this assessment makes use of a relatively
new feature of MULTIFAN-CL first applied to the 2022 skipjack tuna assessment in which catch
is assumed to have no error, i.e., the model is ‘catch-conditioned’ (Davies et al., 2022). This
makes it possible to solve the catch equation for fishing mortality exactly, using a Newton-Raphson
sub-iterative procedure. The main benefit of this approach is that effort deviation coefficients
and catchability-related parameters do not require estimation as model parameters. Effort data for
extraction fisheries is not required at all but can be used if available to estimate catchability through
regressions of fishing mortality and effort, and this is important for making stock projections based
on future effort scenarios. The reduction in parameters has enabled more rapid model convergence
and Hessian matrix computation. The only cost of this approach is that missing catches, which
could be accommodated in the catch-errors version if there was an accompanying effort observation,
are no longer straight forward to account for. However, this is not an impediment for the key WCPO
tuna assessments. The catch conditioned approach allows (but does not require) the specification of
index fisheries to provide indices of relative abundance, these are discussed in subsection 4.4. In the
stepwise model development runs conducted for this assessment, the transition from a ‘catch-errors’
to a ‘catch-conditioning’ model, without implementation of the survey fisheries, did not result in
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any appreciable change in the estimated quantities of relevance to management advice.

4 Data compilation

4.1 General notes

Data used in the yellowfin tuna stock assessment using MFCL consist of catch, effort, length &
weight-frequency data for the fisheries defined in the analysis, and tag-recapture data. Conditional
age-at-length data are also used directly as data in the assessment model, as was recommended by
the peer review of the 2020 yellowfin tuna assessment (Punt et al., 2023). Improvements in these
data inputs are ongoing and readers should refer to the companion papers highlighted at the end
of section 2 for detailed descriptions of how the data and biological inputs were formulated as only
brief overviews are provided below. A summary of the data available for the assessment is provided
in Figure 6.

4.2 Spatial stratification

The geographical area considered in the assessment corresponds to the WCPO (from 50◦N to 40◦S
between 120◦E and 150◦W) and oceanic waters adjacent to the east Asian coast (110◦E between
20◦N and 10◦S). The eastern boundary of the assessment excludes the WCPFC Convention area
component that overlaps with the Inter American Tropical Tuna Commission (IATTC) area. We
began the stepwise model development with the previous 9 region model structure (Vincent et al.,
2020)(Figure 1), but as we progressed through the stepwise model development, aspects of model
convergence began to deteriorate and a decision was made to implement the 5 region structure
which had better convergence properties, including a positive definite Hessian, which was indicated
as being essential for diagnostic models by SC18. The 5 region stratification was supported by the
review paper (Hamer et al., 2023), and we maintained the fisheries definitions for the extraction
fisheries as applied in the 9 region model. That is, gear/flag specific fisheries that were defined by
separate regions in the 9 region stratification, remained defined as separate fisheries within the larger
regions of the simplified stratification, noting that the simplified stratification involved merging
regions of the 9 region structure rather than altering boundaries and creating entirely new regions.
This is akin to a fleets-as-areas approach within the larger simplified regions. Maintaining the
extraction fisheries definitions was partly for efficiency and partly to maintain the fishery definitions
rather that changing both the spatial stratification and fishery definitions together. In this way
the effects of simplified stratification could be isolated. This also accounts for heterogeneities in
fisheries composition data such as for the region around Hawaii. The 5 region structure maintains
the region around the Papua New Guinea and Solomon Islands area to accommodate the longer
residency of yellowfin in these archipelagic waters and the tagging data and associated mixing
period assumptions.
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While the 5 region structure was preferable over the 9 region structure in terms of model perfor-
mance, and provides what we feel is a suitable spatial structure, with more time we may have
been able to improve the performance or the 9 region model. We suggest a stand alone project is
required to fully explore and compare the benefits and limitations of alternative spatial structures,
with review by SC and their advice on a preferred option for future assessments.

Readers should be aware of the differences in the region numbering between the 5 and 9 region
structures, for example region 8 (Papua New Guinea/Solomon Islands) in the 9 region structure is
region 3 in the 5 region structure. When model region numbers are referred to they relate to the
5 region structure unless otherwise specified.

4.3 Temporal stratification

The time period covered by the assessment is 1952–2021 which includes all significant post-war
tuna fishing in the WCPO. Within this period, data were compiled into quarters (1; Jan–Mar,
2; Apr–Jun, 3; Jul–Sep, 4; Oct–Dec). As agreed at SC12, the assessment does not include data
from the most recent calendar year as this is considered incomplete at the time of formulating
the assessment inputs. Recent year data are also often subject to significant revision post-SC, in
particular the longline data on which this assessment greatly depends.

4.4 Definition of fisheries

MFCL requires “fisheries” to be defined that consist of relatively homogeneous fishing units. Ideally,
the defined fisheries will have selectivity and catchability characteristics that do not vary greatly
over time and space. For most pelagic fisheries assessments, fisheries are typically defined according
to combinations of gear type, fishing method and region, and for some, also flag or fleet. There
are 41 fisheries defined for both the 5 and 9 region models used in this assessment (Table 1)
consisting of two fishery types: “index fisheries”, that are used for generating indices of abundance
(see further below), and “extraction fisheries” that account for the catches removed from the stock.
Extraction fisheries include longline, purse seine, pole and line and various miscellaneous fisheries
in the Indonesia/Philippines/Vietnam region. The fisheries definitions for the 2023 assessment are
consistent with those used in the 2020 9 region assessment, but region numbers change to account
for the 5 region structure. A graphical summary of the availability of data for each fishery used in
the assessment model is provided in Figure 6.

Equatorial purse seine fishing activity was aggregated over all nationalities, but stratified by region
and set type, in order to sufficiently capture the variability in fishing operations and selectivity of
different purse seine set types. Set types were grouped into associated (i.e. log, FAD, whale, dolphin,
and unknown set types) and unassociated (free-school) sets. Additional fisheries were defined for
pole-and-line fisheries and miscellaneous fisheries (gillnets, ringnets, hook-and-line, handlines etc.)
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in the western equatorial area. At least one longline index fishery was defined in each region,
although in regions 2 and 4 extraction longline fishing was separated into distant water and offshore
components to account for the apparent differences in fishing practices and selectivity for these fleets
in these regions.

Index fisheries: The catch-conditioned approach (subsubsection 3.4.1) allows the specification
of “index fisheries” that are used to provide standardised CPUE indices of abundance for each
model region. Index fisheries are akin to “survey fisheries” as described for other software such as
Stock Synthesis, and may be the same fisheries as the extraction fisheries, but when used as index
fisheries they do not take any catch, and must have effort data to allow modelling of CPUE. For this
assessment one index fishery is defined for each model region as a composite fishery composed of all
longline fisheries operating in each assessment region (Teears et al., 2023). Index fisheries may be
grouped if it is felt that the CPUE reflects differences in average abundance among regions. For this
assessment, index fisheries are grouped which allows the standardised CPUE to provide information
on regional as well as temporal relative abundance. The full longline operational dataset, described
in McKechnie et al. (2015), Ducharme-Barth et al. (2020b), and Teears et al. (2023), was used as
the basis for developing the index fisheries CPUE. The CPUE standardisation approach for the
index fisheries is described in detail in Teears et al. (2023), see further subsubsection 4.5.3.

The standardized indices for each region are scaled by the regional scaling factors derived from the
geostatistical CPUE standardization model. Catchability for the index fisheries is then assumed to
be constant over time and shared across the assessment regions in order to scale the population.
This means that the assessment model estimates relative abundance among spatial strata that is
generally similar to the scaled CPUE relative abundance. The regular longline extraction fisheries
are based on the same data set, but are disaggregated into the longline fisheries defined in Table 1.

The size composition data (length and weight-frequency) for the extraction fisheries is assumed to
represent the actual composition of the removed fish for any space-time strata, and in the data
preparation process are weighted by the catch in order to represent the fisheries extractions at the
spatial (region) and temporal (quarter) resolution of the model (Peatman et al., 2023b). However,
for the index fisheries, while the same aggregation process is conducted, the size data are weighted
by standardised CPUE (rather than by catch) so that the size data are more representative of the
abundance of the underlying population in each region and time period. Further, because the size
data for the index and extraction fisheries are effectively being used twice (but weighted differently),
the likelihood weighting for the size composition is adjusted such that the original intended weight
(effective sample size) in the likelihood is preserved.
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4.5 Catch and effort data

4.5.1 General characteristics

Catch and effort data were compiled according to the fisheries defined in Table 1. Catches by the
longline fisheries were expressed in numbers of fish, and catches for all other fisheries expressed in
weight (mt). This is consistent with the form in which the catch data are recorded and reported for
these fisheries. The catches are aggregated at 5◦ x 5◦ and quarterly resolution, with the aggregation
process either conducted by SPC, where operational data is available to inform this, or by the
particular countries following statistical procedures that are reported to the Commission. For some
fisheries, notably those in region 2 - Indonesian/Philippines/Vietnam - operational information on
quarterly or spatial patterns in catches is poor so the annual catches are aggregated evenly across
quarters and spatial cells. This is done by SPC.

In the catch-conditioned model, effort is not essential but is required (at least for a recent period
of time) for projection analyses involving fisheries managed under effort rather than catch controls.
The effort data are necessary to derive recent estimates of catchability for running the effort based
projections. In this case the main industrial purse seine fisheries operating in the tropical region
(i.e., regions 2, 3, 4) are managed under effort control. Effort data for these purse seine fisheries are
defined as number of sets specified by set type (associated or unassociated), and are included for
the last 12 quarters to facilitate projections. The period of 12 quarters is consistent with previous
projections using catch errors models. For this assessment several other fisheries also have effort
included to allow effort based projection for management purposes, these are the longline extraction
fisheries, with effort measured as numbers of hooks per set, and the Japanese pole and line fishery
with effort measured in vessel fishing days.

Total annual catches by major gear categories for the WCPO are shown in Figure 3 and a regional
breakdown is provided in Figure 4. Catches by fishery groups are provided in Figure 7, Figure 8
and Figure 9. The spatial distribution of catches over the past ten years is provided in Figure 5.
Discarded catches are estimated to be minor and were not included in the analysis. Catches in the
northern region are low and highly seasonal and the annual catch has been relatively stable over
much of the assessment period. Most of the catch occurs in the tropical regions (2, 3, and 4).

A number of significant trends in the fisheries have occurred over the model period, specifically:

• The steady increase in total yellowfin catch over most of the assessment period, with the
highest overall catches reported in the most recent years.

• The steady increase in catch for the domestic fisheries of Indonesia and the Philippines (region
2) since 1970, where mostly small juveniles are taken, and more significant increase in the
catches over the last 15 years. Some of this trend can be related to improved information to
estimate catches.

22



• The relatively stable and low catches of yellowfin in the northern and southern temperate
regions by longline vessels (regions 1, and 5).

• The development of the equatorial purse-seine fisheries from the mid-1970s, and corresponding
increased catches, particularly in equatorial regions, with the purse seine catch recently at
3-5 times higher than the longline catch.

• Large changes in the purse seine fleet composition and the increasing size and likely efficiency
of the fleet.

4.5.2 Purse seine

For the industrial purse seine fisheries predominantly operating in tropical regions 3, 4 and 8, catch
by species within each set type (associated or unassociated) is determined by applying estimates of
species composition from observer-collected samples to total catches estimated from raised logsheet
data (Hampton and Williams, 2016; Peatman et al., 2021, 2023c). For the Japanese (JP) fleet for
which there is greater confidence in species-based reporting, reported catch by species is used. Purse
seine catch for Philippines (PH) and Indonesian (ID) domestic purse seine fisheries, predominantly
operating in Region 7, was derived from raised port sampling data provided by these countries.
We note that the COVID-19 pandemic resulted in low observer coverage of the purse seine fleets
for the last two years of the assessment period. The implications of the low observer coverage on
the purse seine catch composition estimates could not be fully explored under the time constraints,
but preliminary analysis suggest the estimates have been relatively robust to the lower observer
coverage (Hamer, 2023).

4.5.3 Longline

For the longline fisheries catches in number of fish by species are derived from raised logbook data
or annual catch estimates provided by specific countries. Effort is in terms of hooks per set.

The longline CPUE indices are one of the most important inputs to the assessment as they provide
indices of abundance over time for each region. The CPUE indices are implemented as “index” fish-
eries where they are assumed to have the same catchability and are grouped to provide information
on biomass scaling among the model regions.

The index fishery CPUE time series for the 2023 assessment were derived from the operational
longline dataset for the Pacific region. This dataset is an amalgamation of operational level data
from the distant-water fishing nations (DWFN), United States, Australian, New Zealand and Pacific
Island countries and territories (PICTs) longline fleets operating in the Pacific basin. It represents
the most complete spatiotemporal record of longline fishing activity in the Pacific, spanning from
1952 through to the present and is the result of collaborative ongoing data-sharing efforts from
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many countries. This dataset was first created in 2015 in support of the Pacific-wide bigeye tuna
stock assessment (McKechnie et al., 2015), and was subsequently analyzed to generate indices of
relative abundance for the 2017 and 2020 WCPFC bigeye and yellowfin tuna stock assessments
(McKechnie et al., 2017; Ducharme-Barth et al., 2020b). Since 2017 spatiotemporal approaches
have been used for CPUE modeling in WCPFC stock assessments (Tremblay-Boyer et al., 2017;
Ducharme-Barth et al., 2020b). For this assessment we build on these previous efforts and have
transitioned from using the VAST software (Thorson, 2019; Thorson et al., 2015) for these analyses
to using the sdmTMB package (Anderson et al., 2022). sdmTMB was preferred over VAST due to
it’s greater computational efficiency, ease of use, and the ready availability of online support from
a larger user community than VAST.

A detailed description of the methods for generating the spatiotemporal abundance indices is pro-
vided in Teears et al. (2023). Briefly, it was first confirmed that the sdmTMB package could closely
replicate the previous VAST indices using the data from the 2020 assessment. After this step a
model was run with an increased density of mesh knots (371 versus 154) and the same spatiotempo-
ral subsampling design as the previous assessment. Following this, further exploration of alternative
models was conducted considering additional covariates in addition to those applied in the 2020
assessment. These included density covariates of SST, depth of the 15° C isotherm, and difference
between the depth of the 12° C isotherm and the 18° C isotherm. As per the previous assessment,
catchability covariates of hooks between floats (HBF) and vessel FLAG were included. A vessel ID
covariate was considered, but there were over 6,000 unique vessel IDs and this was not considered
computationally feasible. El Niño Southern Oscillation data were also included as a potential co-
variate but caused model instability and therefore, this was not included in the analyses. A model
selection process described in Teears et al. (2023) was followed and the final model for yellowfin
included HBF, vessel FLAG, depth of 15° C isotherm, and the difference between the depth of the
12° C isotherm and the 18° C isotherm.

In response to the yellowfin peer review, two additional analyses were conducted. One analysis
involved running separate models for northern, equatorial, and southern regions with ‘non-viable’
(poorly sampled) 5° × 5° grid cells removed and comparing the predictions to the results of the
same aggregated northern, equatorial, and southern regions from the Pacific-wide indices. Results
indicated differences in spatial characterization, although the differences were in areas with com-
paratively low abundance and had limited implications. An analysis was also conducted comparing
a principal-fleet model (Japanese fleet only) to the multi-fleet results to assess the effects of combin-
ing fleets. The indices derived from multiple fleets were very similar to the principal-fleet results.
It was decided that the outcomes of these additional analyses did not warrant changing the initial
approach (see Teears et al. (2023)).
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4.5.4 Other fisheries

Effort data for the ID, PH, and VN surface fisheries and Japanese research longline fisheries are
unavailable. However, as these fisheries are not part of the index fisheries, the catch-conditioned ap-
proach does not require effort data for these extraction fisheries. Catch estimates for the ID/PH/VN
fisheries are derived from various port sampling programmes dating back to the 1960s for ID and
the PH, and early 2000s for VN (Williams and Ruaia, 2023).

4.6 Size data

Available length-frequency data for each of the fisheries were compiled into 95 x 2cm size classes
from 10–12 cm to 198–200 cm. Weight data were compiled into 200 x 1 kg size classes from
0–1 kg to 199–200 kg. Most weight data were recorded as processed weights (usually recorded
to the nearest kilogram). Processing methods varied between fleets requiring the application of
fishery-specific conversion factors to convert the available weight data to whole fish equivalents.
Details of the conversion to whole weight are described in Macdonald et al. (2023b). Data were
either collected onboard by fishers, through observer programs, or through port sampling. Each
size-frequency record in the model consisted of the actual number of yellowfin tuna measured and
Figure 6 provides details of the temporal availability of length and weight-frequency data (also
see Teears et al., 2023). Note that a maximum effective sample size of 1,000 is implemented in
MFCL when using the robust normal likelihood for size composition data. The effective sample
size was further down-weighted as explained in subsubsection 5.5.2. Summaries of the available
size composition data by year and fishery are provided in Figure 12 and Figure 13.

4.6.1 Purse seine

Only length-frequency samples are used in the yellowfin assessment for purse seine fisheries. Prior
to 2014, the assessments used only observer samples which had been corrected for grab-sample bias.
As observer coverage had been very low and unrepresentative in early years, there were many gaps
and the time series of size data did not show evidence of modal progression. Two major changes
were implemented for the 2014 assessment and are described in detail in Abascal et al. (2014): first
the long time series of port sampling data from Pago Pago was included, and second all samples
were weighted by the catch - both at the set and strata level, with thresholds applied to ensure
that small samples from important catch strata did not get too much weight (consistent with the
approach taken for the longline fishery). The pre-processing of the purse seine length composition
data for the current assessment is described in Peatman et al. (2023b). Length-frequency data
were unavailable for the “all flags” associated purse seine fishery in region 2 (Fishery 30). In the
model, it was assumed to share a selectivity with the “all flags” associated purse seine fishery in
the adjacent region 4 (Fishery 13).
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4.6.2 Longline

A review of all available longline length and weight-frequency data for yellowfin was undertaken
by McKechnie (2014). Details on the data and analytical approach used to construct the size data
inputs for the current assessment are in Peatman et al. (2023b) and Teears et al. (2023). The key
principle used in constructing the size composition inputs was not to use weight and length data
at the same time, even if it was available, as it would either introduce conflict (if data were in
disagreement) or over-weight the model fit (if they were in agreement). The general approach used
in previous assessments for the “extraction” fisheries was that weight-frequency samples should be
weighted with respect to the spatial distribution of flag-specific catch within each region. This is
done so that catch is extracted from the population at the appropriate size and is not biased by
issues such as small catches with lots of weight frequency samples. Weight-frequency data were
used over length frequency based on the spatiotemporal coverage and number of samples. However,
despite additional weight frequency data being provided by Japan for the 2020 assessment, the
number of available weight-frequency samples has declined in recent years. The 2020 assessment
conducted a sensitivity analysis involving switching from weight to length-frequency data for the
longline fisheries in regions 4, 5, and 6 of the 9 region structure beginning in 2000. The results were
relatively insensitive to this change. We suggest that the next assessment could develop a longline
size composition data set that optimises the use of both length and weight frequency data with
respect of maximising spatial and temporal coverage, and transitioning to length composition data
for the recent years.

Size composition data were prepared similarly for the index fisheries (Peatman et al., 2023b). The
approach for the index fisheries differed from the one briefly described above for the extraction
fisheries in that the size-frequency samples were weighted with respect to the spatial distribution of
abundance as predicted by the spatiotemporal CPUE standardization model (Teears et al., 2023).
This is to allow size compositions to inform temporal variation in population abundance and size.
To generate the size composition data for the index fisheries, data were first subset to match the
nationalities of the “all flags” longline fisheries in each region. This was done to prevent shifts in
size composition as a result of a change in sampling between fisheries.

Given that the same data were used for both the extraction and index fisheries, the observed number
of size-frequency samples input into the assessment was divided by 2 for both the extraction and
index fisheries. The maximum effective sample size in the stock assessment model was also divided
by two for these fisheries (i.e. 500 as opposed to the default value of 1,000 assumed for the other
fisheries).
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4.6.3 Other fisheries

Size composition data for the Philippines domestic fisheries, both small-fish fisheries (Fishery 17)
and large-fish handline fisheries (Fishery 18), were derived from a number of port sampling programs
conducted in the Philippines since the 1980s. In more recent years, size-sampling data have been
substantially augmented by the work of the West Pacific East Asia (WPEA) data improvement
project. Additionally, recent data collection efforts in both Indonesia and Vietnam have provided
new length-frequency data for inclusion in the recent assessments for both the domestic Indonesia
small-scale fishery (Fishery 23) and the domestic Vietnam small-scale fishery in region 2 (Fishery
32).

Size data were missing for the Indonesian-Philippines ex-EEZ purse seine fishery in region 2 (Fishery
24). Based on an investigation of the length frequency data of the other tropical tunas available for
this fishery, selectivity was assumed to be shared with the Philippines small-fish fishery in region
2 (Fishery 17) as this fishery had the most similar size composition for the other tropical tuna
species.

As in the previous assessments the length frequency samples from the Philippines domestic small
fish miscellaneous fishery (Fishery 17) were adjusted to exclude all reported fish lengths greater
than 90 cm from the current assessment. These large fish were also excluded from the new length-
frequency data for both the domestic Indonesia small-scale fishery in region 2 (Fishery 23) and the
domestic Vietnam small-scale fishery in region 2 (Fishery 32). This was done on the basis that it
is suspected that the presence of these large fish may be due to mis-reporting of the fishing gear in
some of the regional sampling programs.

The Indonesia–Philippines domestic handline fishery in region 2 (Fishery 18) consistently catches
the largest individuals in the WCPO. Handline fishing often takes place on mixed–gear trips with
other gears such as hook-and-line targeting smaller fish. To avoid “contaminating” the length-
frequency data for this fishery with fish that were mis-reported as being caught using a handline,
fish smaller than 70 cm were excluded.

Length data from the Japanese coastal purse-seine and pole-and-line fleets were provided by the
National Research Institute of Far Seas Fisheries (NRIFSF). For the equatorial pole-and-line fishery,
length data were available from the Japanese distant-water fleet (sourced from NRIFSF) and from
the domestic fleets (Solomon Islands and PNG). Since the late 1990s, most of the length data were
collected by observers covering the Solomon Islands pole-and-line fleet.

4.7 Tagging data

A reasonable amount of tagging data is available for yellowfin tuna, although it is mostly constrained
to the tropical region. Information on the yellowfin tag data characteristics and the process of
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constructing the MFCL tagging file are available in Peatman et al. (2023a); Teears et al. (2023). A
summary of the tagging data is in Figure 14, and maps displaying tag displacements are in Figure 2.
Data were available from the Regional Tuna Tagging Project (RTTP) during 1989–92 (including
affiliated in-country projects in the Solomon Islands, Kiribati, Fiji and the Philippines), historical
(1995, 1999-2001) data from the Coral Sea tagging cruises by CSIRO (Evans et al., 2008), and
the ongoing Pacific Tuna Tagging Programme (PTTP) that began in 2006. Data for the PTTP
is included up until the end of 2021, with tag releases included until end of 2020 and recaptures
until end of 2021. The 2020 assessment added data from the Japanese Tagging Programme (JPTP)
conducted by NRIFSF and the Ajinomoto Co. Inc, over the period 2000–2020, and these data are
included in the 2023 assessment. The new tagging data for the 2023 assessment comes primarily
from PTTP.

Tags were released using standard tuna tagging equipment and techniques by trained scientists and
technicians. Tags have been returned from a range of fisheries, having been recovered onboard or
via processing and unloading facilities throughout the Asia-Pacific region.

In this assessment, the numbers of tag releases input to the assessment model were adjusted for a
number of sources of tag loss, unusable recaptures due to lack of adequately resolved recapture data,
estimates of tag loss (shedding and initial mortality) due to variable skill of taggers (i.e., tagger
effects), and estimates of base levels of tag shedding and tag mortality. These adjustments are
described in more detail in Peatman et al. (2023a). An additional issue for the yellowfin assessment
is that there are tag returns that were released within the WCPO but recaptured to the east of
longitude 150◦W, outside the WCPO assessment region. The adjustment or rescaling of releases for
recaptures in the EPO preserves the recovery rates of tags from individual tag groups that would
otherwise be biased low given that a considerable proportion of recaptures cannot be attributed
to a recapture category in the assessment. These procedures were first described in Berger et al.
(2014) and McKechnie et al. (2016). For the current assessment, Peatman et al. (2023a) and Teears
et al. (2023) describe the approaches to prepare the tagging data. Additionally, the model used
to adjust tag releases due to variability in tagger ability or “tagger effects” has changed from that
used in the 2020 assessment. This change was the outcome of an expert workshop to review and
recommend the approach for modelling tagger effects and providing the correction factors to adjust
the tag release numbers (Peatman et al., 2022). The approach recommend from that workshop was
applied to the 2022 WCPO skipjack assessment (Castillo Jordán et al., 2022) and is applied to this
assessment. The new approach differs from that applied in 2020, in that it reintroduces individual
tagging events as a term in the model selection process whilst also keeping cruise leg covariates,
whose inclusion were supported for PTTP bigeye releases. It also estimates separate models for
central Pacific and western Pacific cruises, given their difference in tagging platforms and associated
station and tagger effects, but fits models pooling both yellowfin and bigeye tuna releases, allowing
species-specific differences in tagging effects to be accounted for where supported by the data. These
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changes result in stronger tagger effects being predicted and therefore generally larger adjustment
(reductions) to tag releases. This has an important effect of increasing the recapture rates, which
has implications for model estimation of fishing mortality and population scale.

After tagged fish are recaptured, there is often a delay before the tag is reported and the data are
entered into the tagging databases. If this delay is significant then reported recapture rates for
very recent release events will be biased low and will impact estimates of fishing mortality in the
terminal time periods of the assessment. For this reason, any release events occurring after the end
of 2020 were excluded from the assessment, as noted.

For incorporation into the assessment, tag releases were stratified by release region, time period of
release (quarter) and the same size classes used to stratify the length-frequency data.

The likelihood penalties or “priors” used for the reporting rates of the grouped tag return fisheries
has been updated relative to those used in the previous assessment based on the analysis of tag
seeding experiments (Peatman, 2023). Tag reporting was assumed to be similar between the RTTP
and CSTP (which were actually targeted cruises of the RTTP) so reporting rates estimates were
shared across these two programs to reduce model dimensionality. For this assessment we have
also excluded tag release groups with 5 or less recaptures from the estimation of reporting rates, as
we felt there was insufficient information to inform model estimation of the reporting rates. Tag
reporting rate groupings are included in Table 1.

5 Model description

5.1 General characteristics

The model can be considered to consist of several components, (i) the dynamics of the fish popu-
lation; (ii) the fishery dynamics; (iii) the dynamics of tagged fish populations (iv) the observation
models for the data; (v) the parameter estimation procedure; and (vi) stock assessment interpre-
tations. Detailed technical descriptions of components (i)–(iv) are given in Hampton and Fournier
(2001) and Kleiber et al. (2019), and summarised below. In addition, we describe the procedures
followed for estimating the parameters of the model and the way in which stock status conclusions
are drawn relative to a series of reference points.

5.2 Population dynamics

The model partitions the population into spatial regions, depending on the specified spatial stratifi-
cation, and 40 quarterly age-classes. The last age-class comprises a “plus group” in which mortality
and other characteristics are assumed to be constant. The population is “monitored” in the model
at quarterly time steps, extending through a time window of 1952–2021. The main population
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dynamics processes are as follows.

5.2.1 Recruitment

Recruitment is defined as the appearance of age-class 1 quarter fish (i.e. fish averaging ∼ 20 cm
FL) in the population. Yellowfin tuna spawning does not typically follow a clear seasonal pattern,
especially in the tropical waters where most of the spawning occurs. Rather it occurs sporadically
all year and is thought to be influenced by food availability (Itano, 2000). The assessment model
assumed that recruitment occurs instantaneously at the beginning of each quarter. This is a discrete
approximation of continuous recruitment, but provides sufficient flexibility to allow a range of
variability to be incorporated into the estimates as appropriate.

The proportion of total recruitment occurring in each region was initially set relative to the variation
in average regional catch and then estimated during the later phases of the fitting procedure.
Time-series variability in this proportion was estimated within the model and allowed to vary in a
relatively unconstrained fashion.

In recent assessments of tuna in the WCPO, the terminal recruitments have often been fixed at the
mean recruitment of the rest of the model period to reduce the instability that has been detected by
retrospective analyses. This approach has been continued here with the terminal six recruitments
fixed at the geometric mean, which is appropriate for a log-normally distributed random variable.

Spatially-aggregated (over all model regions) recruitment was assumed to have a weak relation-
ship with annual mean spawning potential via a Beverton and Holt stock-recruitment relationship
(SRR) with a fixed value of steepness (h). Steepness is defined as the ratio of the equilibrium
recruitment produced by 20% of the equilibrium unexploited spawning potential to that produced
by the equilibrium unexploited spawning potential (Francis, 1992; Harley, 2011). Typically, fish-
eries data are not very informative about the steepness parameter of the SRR parameters (ISSF,
2011); hence, the steepness parameter was fixed at a moderate value (0.80) and the sensitivity of
the model results to the value of steepness was explored by setting it to lower (0.65) and higher
(0.95) values. The high CV (2.2) of the log-recruitment deviates, computed annually, ensured that
the SRR had negligible impact on the estimation of recruitment and other model parameters, as
recommended by Ianelli et al. (2012). The SRR was estimated over the period 1962–2020 to prevent
the earlier recruitments (which may not be well estimated), and the terminal recruitments (which
are not freely estimated), from influencing the relationship.

The SRR was incorporated mainly so that yield analysis and population projections could be under-
taken for stock assessment purposes, particularly the determination of equilibrium- and depletion-
based reference points. We therefore applied a weak penalty (equivalent to a CV of 2.2) for devia-
tion from the SRR so that it would have negligible effect on recruitment and other model estimates
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(Hampton and Fournier, 2001), but still allow the estimation of asymptotic recruitment. This
approach was recommended (recommendation 20) by the 2011 bigeye assessment review (Ianelli
et al., 2012).

5.2.2 Initial population

The population age structure in the initial time period in each region was assumed to be in equi-
librium. For this assessment the calculation of the equilibrium initial population was changed to
no longer use the average total mortality (Z) for the first 20 time periods for the equilibrium initial
population. Instead, for the initial equilibrium condition we applied an initial Z value equal to
the natural mortality (M). The change to the settings for the initial population was introduced
as part of the stepwise model development to implement the fully catch conditioned model. As
noted above, the population is partitioned into quarterly age-classes with an aggregate class for the
maximum age (plus-group). The aggregate age class makes it possible for accumulation of old and
large fish, which is likely in the early years of the fishery when exploitation rates were very low.

5.2.3 Growth

The standard assumptions for WCPO assessments fitted in MFCL were made concerning age and
growth: i) the lengths-at-age are normally distributed for each age-class; ii) the standard devia-
tions of length for each age-class are a log-linear function of the mean lengths-at-age; and 3) the
probability distributions of weights-at-age are a deterministic function of the lengths-at-age and a
specified weight-length relationship6. These processes are assumed to be regionally and temporally
invariant.

In the previous assessment several approaches to growth estimation were explored, including an
external otolith based growth curve with a fixed Richards growth curve based on high-readability
otoliths (Farley et al., 2020), a fixed external Richards growth curve based on the same high-
readability otolith dataset but with the addition of tag-recapture growth increment data (Eveson
et al., 2020), an internal MFCL growth estimation using a conditional-age-at-length (CAAL) dataset
from the otolith dataset including daily and annual ages (Farley et al., 2020), which also made use
of the modal progressions apparent in various size composition data (Vincent et al., 2020).

The assessment was sensitive to approaches used for growth and the internal CAAL estimate of
the von Bertalanffy growth curve was the approach used for the diagnostic model.

The peer review of the yellowfin assessment (Punt et al., 2023) carefully considered the approaches
to estimating growth. They concluded that based on how the otolith samples were selected ac-
cording to length bins (i.e., attempting to achieve sufficient numbers of otolith samples for length

6The length-weight relationship has been updated for the current assessment based on an analysis of current and
historical port sampling data under WCPFC Project 90 (Macdonald et al., 2023b)
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bins across the length range, plus bias in otolith readability with age), that any external growth
curves would likely be biased. They strongly recommended that for this type of otolith sampling
regime the data should be used as CAAL data and the growth be estimated by the MFCL model if
this is possible. We also note that in exploring the internal growth estimations we uncovered some
features with the MFCL code for the internal Richards growth estimation that require attention,
however, this could not be dealt with under the time constraints. For this assessment we use the
CAAL and size composition data to estimate the von Bertalanffy growth curve internal to the
MFCL model similar to the 2020 diagnostic model. When estimating the growth curve, similar to
the previous assessment, we found the L1 parameter tended to hit the lower bounds of 20 cm FL,
so it was necessary to fix L1 at 19.8 cm, consistent with the average size at the age of one quarter
from the otoliths (Farley et al., 2020).

5.2.4 Movement

Movement was assumed to occur instantaneously at the beginning of each quarter via movement
coefficients that connect regions sharing a common boundary. Note that fish can move between
non-contiguous regions in a single time step due to the “implicit transition” computational algo-
rithm employed (see Hampton and Fournier, 2001 and Kleiber et al., 2019 for details). Movement is
parameterized by a pair of bi-directional coefficients at each region boundary. Movement is there-
fore possible in both directions across each regional boundary in each of the four quarters. Each
of these coefficients is estimated independently resulting in 104 estimated movement parameters
for the 9 region spatial structure and 76 for the 5 region spatial structure (adopted as the 2023
diagnostic structure) (2×no.region boundaries (13)×4 quarters). There are limited data from which
to estimate long-term, annual variation in movement or age-specific movement rates. As such, the
estimated seasonal pattern is assumed to be fixed across years and the movement coefficients are
invariant with respect to age. A “prior” of 0 is assumed for all movement coefficients, and a low
penalty is applied to deviations from the “prior”. We had hoped to explore different settings for
modelling movement, as this is an area of uncertainty, however, this was not possible to do properly
under time constraints.

5.2.5 Natural mortality

The instantaneous rate of natural mortality (M) consists of an average over age classes and age-
specific deviations from the average M . Average M can be estimated internally by the model or
specified as a fixed external value. Internal estimation can be constrained by providing a prior value
and a penalty weight for deviations from the prior. Age specific deviations from average M can
also be estimated or input as a fixed M -at-age function. The later approach was taken in the 2020
assessment for both bigeye and yellowfin (Ducharme-Barth et al., 2020a; Vincent et al., 2020) where
M -at-age was calculated using an approach applied to other tunas in the WCPO and EPO (Harley
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and Maunder, 2003; Hoyle, 2008; Hoyle and Nicol, 2008). The peer review had some difficulty with
tracing the sources of data for some of the inputs to the external M -at-age function applied in 2020
that requires fitting a model that depends on empirical data on the sex-ratio at length, a growth
curve, a base M assumption for males, assumptions on critical lengths for inflections and a multiplier
that determines the linear decline in M for young ages to the base M , plus a length at which female
mortality is assumed to begin to increase. There are uncertainties in all these empirical data and
assumptions and the data for sex ratio is limited especially for larger and older fish. While the peer
review generally supported the method, the construction of the external M -at-age function, notably
the limitations in some of the available data required to estimate it, the complexity of the calcu-
lations and the various assumption required are problematic. Furthermore, the external M -at-age
function requires re-estimation if different growth curves are applied, further complicating its use.
After the yellowfin peer review, a Tuna Stock Assessment Good Practices workshop run by the “Cen-
ter for the Advancement of Population Assessment Methodology” (CAPAM) was held (March 2023,
https://www.capamresearch.org/Tuna Stock Assessment Good Practices Workshop) and provided
a strong endorsement for applying a simpler Lorenzen functional form for M -at-age estimation for
tuna. Other CAPAM reviews of approaches for estimating M have also favoured where possible
estimating M within the model, “let the data speak for themselves”, while being careful to review
model diagnostics and plausibility of model estimated M against external estimates (Hamel, 2023;
Punt, 2023).

In this assessment we chose to use the Lorenzen functional form for M -at-age (with M -at-age being
inversely proportional to the mean length at age) and to estimate the asymptotic value of M , i.e.
the M for the oldest fish. The change from the previous external M -at-age to the Lorenzen form
with internal M estimation was made as part of the stepwise development of the 2023 diagnostic
model.

5.2.6 Reproductive potential

The reproductive potential ogive is an important component of the assessment structure as it trans-
lates model estimates of total population biomass to the relevant management quantity, spawning
potential biomass (SB). Assumptions about maturity do not affect the process of fitting the model,
only the reference point values. The approach for calculating the reproductive potential at length
ogive in this assessment is the same as the 2020 assessment (Vincent et al., 2020). MFCL estimates
the reproductive potential at age ogive internally from the externally calculated reproductive poten-
tial ogive at length. This length-based ogive is converted internally to the reproductive potential-
at-age using a smooth-spline approximation (Davies et al., 2019). This allows for a more natu-
ral definition of reproductive potential as the product of three length-based processes: proportion
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females-at-length7 (sex-ratio), proportion of females mature-at-length8, and the fecundity-at-length
of mature females9 (Figure 16). Another added benefit is that this reproductive potential ogive is
growth invariant. The previous stock assessments had to redefine the reproductive potential-at-age
ogive for each different growth curve included in the assessment. As for the 2020 assessment we
have not included spawning fraction in the reproductive potential calculation as the data are still
not adequate for yellowfin in the WCPO.

5.3 Fishery dynamics

5.3.1 Selectivity

Fishery selectivity coefficients at length and weight (for longline) are included in Figure 34 and
Figure 36 and at age in Figure 33 and Figure 35. Selectivity was modeled using a cubic spline, as in
the previous assessment. This allows for greater flexibility than assuming a functional relationship
with age (e.g. logistic curve to model monotonically increasing selectivity or double-normal to model
fisheries that select neither the youngest nor oldest fish), and requires fewer estimated parameters
than modeling selectivity with separate age-specific coefficients. This is a form of smoothing, but
the number of parameters for each fishery is the number of cubic spline ‘nodes’ that are deemed
sufficient to characterize selectivity over the age range. The number of nodes may vary among
fisheries to allow for reasonably complex selectivity patterns, however we found that 5 nodes seemed
sufficient for all fisheries in this case. Some other modifications to selectivity curves were made to
better fit size composition data and these are noted in subsection 6.1.

In all cases, selectivity was assumed to be time-invariant and fishery-specific. However, a single
selectivity function could be “shared” among a group of fisheries that have similar length compo-
sitions or were assumed to operate in a similar manner. This grouping facilitates a reduction in
the number of parameters estimated and can provide insight into the regional abundance of fish of
specific sizes. Selectivity groupings are indicated in Table 1.

While length-based selectivity is not currently permitted in MFCL (Note: efforts to implement this
feature in 2023 were made in response to a peer review recommendation but there was insufficient
time to complete and test this feature), the age-based selectivity functions are penalized such that
selectivity of age-classes that are similar in size will have similar selectivities for a given fishery or
group of fisheries. Additionally, the assumption was made that at least one fishery within each of
the model regions would have selectivity that was penalized to be increasing as a function of length
in order to prevent the accumulation of an invulnerable, cryptic biomass within the model. In the
previous assessment this was typically one of the extraction longline fisheries, though in region 2

7For the current assessment, female sex-ratio-at-length was calculated from Regional Observer Program data in
SPC’s holdings through to 2018, consistent with the previous assessment as few data have been collected since 2018.

8Taken from Farley et al. (2017) as in the previous assessment.
9Taken from Sun et al. (2006) and standardized per kg of body weight at length as in the previous assessment.
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(region 7 of the 9 region structure) it was assumed to be the Indonesia-Philippines handline fishery
(Fishery 18), plus the index fisheries were also assumed to have selectivity penalised to be non-
decreasing with length. However, in this assessment we chose not to penalize any of the extraction
fisheries to have non-decreasing selectivity with increasing length and only apply this to the index
fisheries which are assumed to share selectivity across regions (see further subsection 6.1).

5.4 Dynamics of tagged fish

Tagged fish are modeled as discrete cohorts based on the region, year, quarter and age at release for
the first 30 quarters after release. Subsequently, the tagged fish are pooled into a common group.
This is to limit memory and computational requirements.

5.4.1 Tag reporting

In theory, tag-reporting rates can be estimated internally within the stock assessment model. In
practice, experience has shown that independent information on tag-reporting rates for at least
some fisheries tends to be required for reasonable model behavior to be obtained. We provided
reporting rate priors for reporting groups (combinations for tagging programme and fishery) that
reflect independent estimates of the reporting rates and their variance (Peatman, 2023). We also
make some assumptions regarding fisheries that were similar to those with independent estimates,
but increased the prior variance. For others where we felt there was very little information to
inform priors and variance, uninformative priors were allocated, or in cases where there were 5 or
less tag returns, those groups were not estimated. In these cases, the small numbers of tag returns
were removed from the tagging data input file and the reporting rate for these groups set to a fixed
value of zero. The prior reporting rates and penalty terms were informed from analyses of tag
seeding experiments reported in Peatman (2023). For the RTTP and PTTP, relatively informative
“priors” were formulated for the equatorial purse seine fisheries given that tag seeding experiments
were focused on purse seiners.

All reporting rates were assumed to be time-invariant, and have an upper bound of 0.99 (increased
from 0.9 in previous assessment, see subsection 6.1). For this assessment, as previously noted, we
did not estimate reporting rates for tag reporting groups with five or few tag return. Tag recapture
and reporting rate groupings are provided in Table 2. Previous assessments have assumed fishery-
specific reporting rates are constant over time. This assumption was reasonable when most of
the tag data were associated with a single tagging program. However, tag reporting rates may
vary considerably between tagging programs due to changes in the composition and operation of
individual fisheries, and different levels of awareness and follow-up. Consequently, fishery-specific
tag reporting rates that are also specific to individual tagging programs were estimated.
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5.4.2 Tag mixing

The population dynamics of the fully recruited tagged and untagged populations are governed by the
same model structures and parameters. The populations differ in respect of the recruitment process,
which for the tagged population is the release of tagged fish, i.e., an individual tag and release
event is the recruitment for that tagged population. Implicitly, we assume that the probability of
recapturing a given tagged fish is the same as the probability of catching any given untagged fish in
the same region and time period. For this assumption to be valid, either the distribution of fishing
effort must be random with respect to tagged and untagged fish and/or the tagged fish must be
randomly mixed with the untagged fish. The former condition is unlikely to be met because fishing
effort is almost never randomly distributed in space. The second condition is also unlikely to be
met soon after release because of insufficient time for mixing with the untagged population to have
taken place.

Depending on the distribution of fishing effort in relation to tag release sites, the probability of
capture of tagged fish soon after release may be different to that for the untagged fish. It is therefore
desirable to designate one or more time periods after release as “pre-mixed” and compute fishing
mortality for the tagged fish during this period based on the actual recaptures, corrected for tag
reporting and tagging effects, rather than use fishing mortalities based on the general population
parameters. This, in effect, desensitizes the likelihood function to tag recaptures in the specified
“pre-mixed” periods while correctly removing fish from the tagged population that is present after
the “pre-mixed” period. Herein we refer to the “pre-mixed” period as the “mixing period”.

The allocation of appropriate “mixing periods” in stock assessments that use tag-recapture data
is problematic as model estimations are sensitive to this assumption and misspecification can bias
estimation of management quantities (Kolody and Hoyle, 2014). Mixing rates may vary depending
on release locations and times depending on various factors, including; oceanographic dynamics,
contexts of releases (e.g., FADs versus free schools, archipelagic waters versus oceanic), fishing
effort distribution and environmental/food conditions that influence movements. The yellowfin
peer review discussed mixing period assumptions and supported an approach applied to the 2022
skipjack assessment (Castillo Jordán et al., 2022; Punt et al., 2023). In this approach an external
individual based model was used to estimate mixing periods ’specifically’ for each release group,
taking into account the locational and temporal varying conditions of each release event constituting
the group that may result in different rates of mixing of the released fish (Scutt Phillips et al.,
2022). It applied the individual based Lagrangian model (Ikamoana) (Scutt Phillips et al., 2018)
to simulate movement of individual fish (particles) and quantify the fishing pressure (observed)
that individuals experienced across their dispersal trajectories in comparison to a population of
simulated untagged particles. While this approach is promising, it requires substantial work to
develop and it was not practical or possible to develop this approach for the current assessment,

36



but could potentially be explored in future.

In the previous yellowfin assessments the diagnostic model assumed that tagged yellowfin gradually
mix with the untagged population at the region-level and that this mixing process is complete by
the end of the second quarter after the quarter in which the fish were releases (ie., “mixing period”
assumption is two quarters). A sensitivities was include whereby the tag mixing period assumption
was one quarter (Vincent et al., 2020). Discussion at the PAW (Hamer, 2023) recommended that
external analysis of tag-recapture patterns would be useful to inform consideration of tag mixing
assumptions for yellowfin as previous work on skipjack suggested that acceptable tag mixing may
take longer than two quarters (Kolody and Hoyle, 2014). In response to this the background
analysis paper for this assessment includes a series of maps (see appendices, Teears et al. (2023))
that show tag release distributions and their related recapture distributions for individual tagging
cruise and model regions at 0, 1, 2, 3 and 4 quarters after release (0 quarter meaning recapture
with the same quarter of release, 1 quarter meaning recapture in the first quarter after release
etc.). The recaptures are scaled to the purse seine catches (the purse fishery accounts for 94%
of yellowfin tag returns) and plotted as numbers of tags recaptured per 100 mt of catch in 1 x 1
degree grids cells. The maps provide spatial distributions of relative tag recapture rates within a
model region, similar to the approach of Langley and Million (2012). When recaptures are observed
in 1 x 1 cells spread throughout the model region in relation to the catch distribution and with
roughly similar rates of recapture it could be considered a qualitative diagnostic that tag mixing
was achieved. These plots were used to assign indicative mixing periods for fish released from the
individual tag cruises and these were summarised to provide an indication of ’reasonable’ mixing
period assumptions to apply in sensitivity analyses (Teears et al., 2023). As further information to
support this qualitative assessment, the distributions of displacement distances of tag recaptures
at 1, 2, 3, 4, 5, and 6 quarters after release, for releases from model regions 3, 4, 7 and 8 of the 9
region model (see Teears et al. (2023)) were considered.

Overall, for tag releases with good numbers of recaptures these qualitative analyses supported
mixing period sensitivities of 1, and 2 quarters (Teears et al., 2023), consistent with the previous
assessment. Some tag releases were likely not mixed until at least 3 quarters, which could be
considered as a third sensitivity, although perhaps less supported than 1 and 2 quarters. It was
noted that some tag release groups showed more obvious evidence for mixing than others depending
on how many tags were released (i.e., the qualitative assessments were likely more reliable for
larger tag releases). While these qualitative assessments of mixing period assumption could be
improved with more time, they provide a stronger basis for mixing assumptions than in the previous
assessment.

As per the 2020 assessment the tag return files were created using a sliding window to calculate
the mixing period for each release group as per the recommendation of the 2020 PAW, which was
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further endorsed by the yellowfin assessment peer review (Punt et al., 2023). This approach ensures
that the mixing periods are applied faithfully in respect of actual times at liberty. It means that
tags had to have a time at liberty of at least 182 days for a mixing period of 2 quarters as is assumed
in the diagnostic case, or 91 days for a mixing period of 1 quarter.

5.5 Likelihood components

There are four data components that contribute to the log-likelihood function for the yellowfin
stock assessment: the index fishery CPUE data, the length and weight frequency data, the tagging
data and the conditional age at length data.

5.5.1 Index fishery CPUE likelihood

In previous catch-errors models, abundance indices were constructed for extraction fisheries by
assuming that catchability remained constant over time. In catch-conditioned models, a new ap-
proach has been implemented to model directly the CPUE for ‘index’ fisheries. While such index
fisheries exist in the model and in the data inputs as defined ‘fisheries’, they differ from the regular
‘extraction’ fisheries in that no catch is extracted and their CPUE is modelled directly as a lognor-
mal likelihood contribution. The CPUE index series for each region is assigned a likelihood weight
in the form of a region-specific σ, describing the magnitude of observation noise. The computa-
tional procedure for estimating σ is based on maximum likelihood estimation, by calculating σ as
the standard deviation of log-residuals. The residuals are from a fitted model in the stepwise devel-
opment where data weighting is adjusted. These maximum likelihood estimates of region-specific
σ are then kept the same throughout the stepwise development, diagnostic model, and structural
uncertainty grid.

5.5.2 Length and weight frequency

The probability distributions for the length- and weight-frequency proportions are assumed to
be approximated by robust normal distributions, with the variance determined by the effective
sample size (ESS) and the observed length or weight-frequency proportion. Size frequency samples
are assigned ESS lower than the number of fish measured. Lower ESS recognize that (i) length-
and weight-frequency samples are not truly random (because of non-independence in the population
with respect to size) and would have higher variance as a result; and (ii) the model does not include
all possible process error, resulting in further under-estimation of variances. The observed sample
sizes (OSS) are capped at 1,000 internal to MFCL, the sample size for the composition data used in
the common index and extraction fisheries was divided by two to account if being used twice, and
then the sample sizes were further divided by 20 for the diagnostic model, resulting in a ’maximum’
ESS of 50 for each length or weight sample for a fishery. Alternative divisors for specifying ESS were
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explored in sensitivity analyses, these were 10 and 40. We further explored a self-scaling method
for weighting the size composition date, the Dirichlet-multinomial (DM) likelihood (Thorson et al.,
2017). The DM likelihood approach tended to put high weight on the size composition data leading
to deterioration of the fits to the abundance indices. We therefore decided not to apply the DM
likelihood weighting method, which requires further exploration. However, based on the testing of
the DM weighting, the divisor of 10 would be more consistent with the DM weighting than the
other two sensitivities.

5.5.3 Tag data

A log-likelihood component for the tag data was computed using a negative binomial distribution.
The negative binomial is preferred over the more commonly used Poisson distribution because
tagging data often exhibit more variability than can be attributed by the Poisson. We employed
a parameterization of the overdispersion parameter (τ) such that as it approaches 1, the negative
binomial approaches the Poisson. In the current assessment we assume τ = 2, which is a variance
twice that of the Poisson. Therefore, if the tag return data show high variability (for example, due
to contagion or non-independence of tags), then the negative binomial is able to recognize this.
This should provide a more realistic weighting of the tag return data in the overall log-likelihood
and allow the variability to impact the confidence intervals of estimated parameters.

5.5.4 Conditional age-at-length data

A further log-likelihood component involves the conditional age-at-length (CAAL) dataset, the
inclusion of which was recommended by the yellowfin tuna assessment peer review (Punt et al.,
2023). These data are included in the assessment to assist in estimating growth parameters because
they provide direct observations of the distribution of fish ages within length classes. Each otolith
sample was assigned to a corresponding length and age class in addition to a fishing incident
based on the collection date of the sample and the gear by which it was captured. The model fits
the observed age-at-length data along with information from size mode progression to influence
the estimation of the growth curve. The observed age composition within each length interval is
assumed to be multinomially distributed, and this forms the basis of the likelihood component
for this data source. However, despite the otolith data being collected across a range of locations
and times the CAAL data may have a degree of non-independence so we have downweighted the
otolith samples for the diagnostic model by multiplying the input samples size by 0.75. We also ran
sensitivities with downweighting of 0.5 and no downweighting (i.e,. 1). That latter is consistent
with the 2020 yellowfin assessment.
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5.6 Parameter estimation and uncertainty

The parameters of the model were estimated by minimising the sum of the negative log-likelihoods
associated with each of the data components plus the negative log of the probability density func-
tions of the priors and penalties specified in the model. The optimisation to a specified gradient
level or to a maximum number of function evaluations, if the specified gradient level is not met,
was performed by an efficient optimization using exact derivatives with respect to the model pa-
rameters (auto-differentiation, Fournier et al. (2012)). Estimation was conducted in a series of
phases, the first of which used relatively arbitrary starting values for most parameters. A bash
shell script, “doitall”, implements the phased procedure for fitting the model. Some parameters
were assigned specified starting values consistent with available biological information. The values
of these parameters are provided in the .ini input file.

As a rule, models were run with a gradient criterion of 10−5 and a maximum of 10 000 function
evaluations. This ensured that model runs would complete in less than 24 hours, allowing a daily
routine of continuous model development. During the stepwise development, some model fits were
later demonstrated to be at sub-optimal local minima when fits with improved objective functions
were subsequently obtained by running several replicates with selected parameters perturbed, in a
process referred to as jittering, and continuing the optimisation process with additional function
evaluations for each replicate. In many cases, the new jittered solution that had the best objective
function value was a considerably different model fit in terms of derived management quantities.
This was clearly cause for concern and required additional work to achieve parameter estimates
that we could be confident had achieved a fit in terms of obtaining a good objective function value
and reliable and stable estimates of the derived quantities of most interest for management advice.
A thorough jittering process was therefore adopted for the diagnostic model and the structural
uncertainty grid, selecting the model fit that has the best objective function value. These best
fits may sometimes have worse gradients and Hessian properties than models at sub-optimal local
minima. Thus, a positive definite Hessian (PDH) solution was less important in this process than
considering the best value for the objective function and stable estimates of management quantities.
We reached this conclusion after obtaining several apparently well-converged model solutions with
PDH’s that were subsequently improved, in some cases substantially, by jittering.

Additional steps were incorporated in a process adopted to find estimated model parameters with
an improved objective function value, compared to solutions obtained without jittering. Due to
the sensitivity of these models to initial conditions, an iterative process was adopted where key
parameters for growth and mortality were reset close to values obtained from a previous run of the
model. These values could either be reset at the initial phase or in an intermediate phase of the
optimisation. This process was combined with repeated cycles of jittering, with up to 60 replicate
jitters, and on occasions a secondary round of jittering on the best jittered solution found from the
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primary jitter. Typically, improvements in likelihood were routinely found in the primary round of
jitters, sometimes with improvements to the objective function of tens to hundreds of units of log
likelihood. Improvements in the secondary round of jittering (aka ‘twerking’) could sometimes be
found, but these were usually less than 10 units of log likelihood. Typically the secondary round of
jittering produced little change to the stock status, but the primary jittering could produce changes
of 5% or more to the spawning biomass depletion stock status indicator. This process was used to
select the 2023 diagnostic model and resulted in improvements to the objective function and overall
likelihood. However, this added significant time to the assessment work. Once a stable ‘good fit’
model was obtained, we calculated the Hessian. This process resulted in a well-converged, jittered
diagnostic model with a PDH (see subsection 6.1).

The 2020 assessment ran a jitter analysis on the diagnostic model but did not find the same insta-
bility of solutions in relation to changes to the estimated stock status. This greater stability noted
in 2020 may relate to that model using fixed (external) M -at-age and a fixed (externally estimated)
growth curve, or perhaps there was insufficient time to investigate jittering more thoroughly.

This exhaustive process adopted to achieve a suitable diagnostic model in 2023, also meant that a
single fit of a model in the structural uncertainty grid, while perhaps indicative, could not really
be trusted, irrespective of the objective function value, gradient or Hessian status. While the
grid models based off the diagnostic model are generally expected to have good starting parameter
values, a jittering step for each model in the grid is now considered important to increase confidence
that these models had also achieved stable solutions, both in terms of an improved objective function
value and reliable management quantities. However, under time constraints the jittering of grid
models was reduced to 20 jitters per model, with the Hessian calculated on the best jittered solution,
where ‘best’ is judged solely on the objective function values. The requirement to jitter and run
Hessians on grid models again compounded the workload and computation time required for the
assessment. However, this was all required to meet recommendations of the yellowfin peer review
and the SC18 regarding model convergence.

Finally, we considered the SC18 concerns over a PDH being a mandatory diagnostic that needs to be
achieved for a model to be included for management advice. We argue that while a PDH is desirable
it is not as important as a stable ‘good fit’ objective function and stable management quantities for
these complex assessment models. Often the lack of PDH in these models with several thousand
parameters estimated, is due to one or a few very small negative eigenvalues that have no influence
on the estimations of the key management quantities. MFCL has advanced methods for computing
estimation uncertainty for Hessians with negative eigenvalues, allowing the parameter estimation
uncertainty to be calculated for Hessians with small numbers of small negative eigenvalues. We
have shown by comparing pairs of similar models with the same structure, but with slightly different
fits, one with and one without a PDH, the parameter estimation uncertainty is very similar (e.g.,
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appendix 15.3 Castillo Jordán et al. (2022)). While we expect that a PDH solution is an important
diagnostic to meet for the diagnostic model, this criterion may not be essential (or practicable) for
all grid models, especially if only a small number of small non-influential negative eigenvalues are
found.

Estimation uncertainty

A positive definite Hessian is desirable to calculate parameter or estimation uncertainty for in-
dividual models, although as noted MFCL has advanced procedures for computing estimation
uncertainty in the absence of a positive definite Hessian. Hessian calculations can take considerable
computer time for these models, however, SC18 requested the Hessian status be reported for all
models used for management advice (which includes all grid models). This has been completed
in this assessment but has added significant time, and computational burden, leading to delays in
finishing the assessment.

Structural uncertainty

The structural uncertainty grid attempts to describe the main sources of structural and data un-
certainty in the assessment. Previous experience has shown that overall uncertainty is dominated
by the structural uncertainty grid. For this assessment we have continued with a factorial grid of
model runs which incorporates selected uncertainties explored in one-off sensitivity analyses.

The combined structural and estimation uncertainty is recommended to form the basis for assessing
uncertainty and risk for the key stock status indicators.

Likelihood profiles

For highly complex population models fitted to large amounts of often conflicting data, it is common
for there to be difficulties in estimating total abundance. Therefore, a likelihood profile analysis
was undertaken of the marginal posterior likelihood in respect of population scaling, following the
procedure outlined by McKechnie et al. (2017) and Tremblay-Boyer et al. (2017). The results of
these procedures are presented in the appendices (Appendices subsection 12.1). Likelihood profiles
are only presented for the diagnostic model.

Retrospective analyses were conducted as a general test of the stability of the model, as a robust
model should produce similar output when rerun with data for the terminal quarters sequentially
excluded (Cadigan and Farrell, 2005). The retrospective analyses for the 2023 diagnostic model are
presented in the appendices (Appendices subsection 12.2).
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5.7 Stock assessment interpretation methods

5.7.1 Depletion and fishery impact

Many assessments estimate the ratio of recent to initial biomass (usually spawning biomass) as
an index of fishery depletion. The problem with this approach is that recruitment may vary
considerably over the time series, and if either the initial or recent biomass estimates (or both)
are “non-representative” because of recruitment variability or uncertainty, then the ratio may not
measure fishery depletion, but simply reflect recruitment variability.

This problem is better approached by computing the spawning potential time series (at the model
region level) using the estimated model parameters, but assuming that fishing mortality was zero.
Because both the estimated spawning potential SBt (with fishing), and the unexploited spawning
potential SBt,F =0, incorporate recruitment variability, their ratio at each quarterly time step (t) of
the analysis, SBt/SBt,F =0, can be interpreted as an index of fishery depletion. The computation
of unexploited biomass includes an adjustment in recruitment to acknowledge the possibility of
reduction of recruitment in exploited populations through stock-recruitment effects. To achieve
this the estimated recruitment deviations are multiplied by a scalar based on the difference in the
SRR between the estimated fished and unfished spawning potential estimates.

A similar approach can be used to estimate depletion associated with specific fisheries or groups
of fisheries. Here, fishery groups of interest - longline, purse seine associated sets, purse seine
unassociated sets, pole and line and “other” fisheries, are removed in-turn in separate simulations.
The changes in depletion observed in these runs are then indicative of the depletion caused by the
removed fisheries.

5.7.2 Reference points

The unfished spawning potential (SBF =0) in each time period was calculated given the estimated
recruitments and the Beverton-Holt SRR. This offers a basis for comparing the exploited population
relative to the population subject to natural mortality only. The WCPFC adopted 20%SBF =0 as
a limit reference point (LRP) for the yellowfin stock where SBF =0 for this assessment is calculated
as the average over the period 2012–2021. There is no agreed WCPFC target reference point for
the yellowfin tuna stock however CMM 2021-01 states in para 11 “Pending agreement of a target
reference point the spawning biomass depletion ratio (SBF =0) is to be maintained at or above the
average SBF =0 for 2012–2015”. Stock status was referenced against these points by calculating the
reference points; SBrecent/SBF =0 and SBlatest/SBF =0 where SBF =0 is calculated over 2011–2020
and SBrecent and SBlatest are the mean of the estimated spawning potential over 2018–2021, and
2021 respectively (Table 4).

The other key reference point, Frecent/FMSY, is the estimated average fishing mortality at the full
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assessment area scale over a recent period of time (Frecent; 2017–2020 for this stock assessment)
divided by the fishing mortality producing MSY which is a product of the yield analysis and is
detailed in subsubsection 5.7.3.

Several ancillary analyses using the converged model/s were conducted in order to interpret the
results for stock assessment purposes. The methods involved are summarized below and the details
can be found in Kleiber et al. (2019).

5.7.3 Yield analysis

The yield analysis consists of computing equilibrium catch (or yield) and spawning potential, condi-
tional on a specified basal level of age-specific fishing mortality (Fa) for the entire model domain, a
series of fishing mortality multipliers (fmult), the natural mortality-at-age (Ma), the mean weight-
at-age (wa) and the SRR parameters. All of these parameters, apart from fmult, which is arbitrarily
specified over a range of 0–50 (in increments of 0.1), are available from the parameter estimates of
the model. The maximum yield with respect to fmult can be determined using the formulae given
in Kleiber et al. (2019), and is equivalent to the MSY. Similarly, the spawning potential at MSY
SBMSY can be determined from this analysis. The ratios of the current (or recent average) levels of
fishing mortality and spawning potential to their respective levels at MSY are determined for all
models of interest. This analysis was conducted for all models in the structural uncertainty grid
and thus includes alternative values of steepness assumed for the SRR.

Fishing mortality-at-age (Fa) for the yield analysis was determined as the mean over a recent period
of time (2017–2020). We do not include 2021 in the average as fishing mortality tends to have high
uncertainty for the terminal data year of the analysis and the catch and effort data for this terminal
year are potentially incomplete. Additionally, recruitments for the terminal year of the model are
constrained to be the geometric mean across the entire time series, which affects the F for the
youngest age classes.

MSY was also computed using the average annual Fa from each year included in the model (1952–
2021). This enabled temporal trends in MSY to be assessed and a consideration of the differences
in MSY levels under historical patterns of age-specific exploitation.

5.7.4 Kobe analysis and Majuro plots

For the standard yield analysis (subsubsection 5.7.3), the fishing mortality-at-age, Fa, is determined
as the average over some recent period of time (2017–2020). In addition to this approach the
MSY-based reference points (Ft/FMSY), and SBt/SBMSY) were also computed by repeating the
yield analysis for each year in turn. This enabled temporal trends in the reference points to be
estimated and a consideration of the differences in MSY levels under historical patterns of age-
specific exploitation. This analysis is presented in the form of dynamic Kobe plots and “Majuro
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plots”, which have been presented for all stock assessments in recent years.

5.7.5 Stock projections from the structural uncertainty grid

Projections of stock assessment models can be conducted within MFCL to ensure consistency
between the fitted models and the simulated future dynamics, and the framework for performing
this exercise is detailed in Pilling et al. (2016). Typically, stochastic 30 year projections of recent
catch and effort (2019-2021) are conducted from each assessment model within the uncertainty
grid developed. For each model, 100 stochastic projections, which incorporate future recruitments
randomly sampled from historical deviates, are performed. The results of stock projections are
included in the appendices (subsection 12.3).

6 Model runs

6.1 Developments from the last assessment

The progression of the model development (referred to as the ‘stepwise’) from the 2020 diagnostic
model to the 2023 diagnostic model is described here. Most steps in the stepwise model development
process were implemented using the data inputs from the 2020 assessment, before the new 2023
data had been fully processed and made available. The final input files were ready a few weeks
before the SC meeting, with just enough time to adapt the latest development model to the new
data and make decisions on the final structural changes to the diagnostic model.

6.1.1 Stepwise model development

The major changes incorporated at each step in the diagnostic model development are summarised
below, including the model names used in the figures describing the steps. Each model builds from
the previous step, retaining all previous changes. Some steps combine a major change with one
or more minor changes, especially those that result in negligible changes in model outcomes. The
model names describe an important feature or structural change introduced in that step.

1. Diag2020. The 2020 yellowfin diagnostic model, using data from 2020.

2. NewExe. The MULTIFAN-CL (MFCL) executable was updated from version 2.0.7.0 (from
17 January 2020) to version 2.2.0.0 (30 June 2023), accumulating three years of software
development, including features that were used in this assessment. Later patches of MFCL
2.2.x.0 were released during the stepwise model development period, introducing new features
while retaining compatibility with 2.2.0.0. The full backward compatibility meant that it was
not necessary to rerun the entire stepwise sequence of models each time a new MFCL patch
was released.
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3. PreCatchCond. A set of four changes were applied to the model structure to aid the
transition to a catch-conditioned model, and to ensure stable model behaviour:

(a) A penalty on regional differences in recruitment was reduced from 1.0 to the MFCL
default value of 0.1.

(b) The maximum mortality rate in the model was changed from the MFCL default value
of 5.0 to become a gradual process during the model estimation, where the upper limit
starts at 0.7 and is gradually increased to 3.0.

(c) The assumed fishing mortality before the first year of the model was set to zero instead
of the average of the first five years.

(d) A penalty on movement coefficients was reduced from the MFCL default value of 5.0,
applied to differences from zero movement, to a penalty of 0.1 applied to movement
coefficients deviating from the prior mean of 0.1.

4. CatchCond. Moving from a catch-errors model to catch-conditioned model was an important
structural change in this year’s assessment. By assuming that the total catches are observed
with negligible error, instead of estimating effort deviates as was done in previous models, the
number of model parameters decreased from 11,668 down to 2,963. This reduced the run time
of each model by approximately one third and the expectation was that the smaller number
of estimated parameters would lead to more reliable model convergence, which had been
identified as a key challenge in previous assessments. This stepwise change was implemented
in two parts, in an attempt to isolate the effect of the structural transformation from the
accompanying change in CPUE likelihood:

(a) The intermediate ‘Old CPUE’ model implements an initial catch-conditioned model,
introducing grouped index fisheries with common catchability but retaining the catch-
errors CPUE likelihood, through estimating the relationship between fishing mortality
level and effort.

(b) The fully converted ‘New CPUE’ model includes a likelihood component that measures
directly the goodness of fit to the observed CPUE indices, instead of estimating the
relationship between fishing mortality and effort.

5. SelChanges. In the 2020 assessment, all index fisheries and some of the extraction longline
fisheries were modelled with a penalty constraining their selectivity to be non-decreasing, to
avoid cryptic biomass in the model. After experimental analyses and evaluations for this year’s
model development, however, it was deemed enough to constrain only the index fisheries to
avoid cryptic biomass in the model. This step estimated selectivity for all extraction longline
fisheries without the non-decreasing constraint.
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6. TagStructure. Two changes were made to the modelling of tagging data in the assessment
model:

(a) The upper limit of the estimated tag reporting rates was increased from 0.90 to 0.99, in
an attempt to relieve the problem of estimated parameters running into bounds.

(b) Tag release groups were excluded from tag reporting rate estimation if they had 5 or
fewer recaptures.

7. Growth. The von Bertalanffy growth parameters L1, LA, and K, were all estimated in the
2020 assessment. However, the L1 parameter was estimated at a lower bound that was set
at 20.0 cm. When this bound was lowered, the estimated value of L1 went down to 7.9 cm,
well below any observations found in the data. At this stage in the stepwise development,
options were considered to alleviate this problem and a decision made to fix the L1 parameter
at the average length of age 1 quarter fish, based on observed length measurements from the
otolith data, where L1 = 19.8 cm (n = 66). The growth parameters LA and K, along with
the growth variability parameters σ1 and σA, were estimated in this model and subsequent
steps without running into bounds.

8. DataWeights. Three adjustments were made to the data weighting in the model:

(a) CPUE data weights are expressed as σI , the magnitude of observation noise around
the CPUE indices. In the previous assessment, σI was set to 0.20 in all regions. For
this assessment, a statistical approach was used to estimate maximum likelihood region-
specific σI values as the standard deviation of log-residuals. The residuals are from a
fitted model at this point in the stepwise development. These maximum likelihood σI

values are then kept the same throughout the stepwise development, diagnostic model,
and structural uncertainty grid. The statistically derived σI values are 0.25 on average,
varying slightly between regions.

(b) Age data weights for the otoliths are expressed on a scale between 0 and 1, where 1
would mean that the otoliths sampled were a perfect representation of the yellowfin
tuna population across areas, years, quarters, age, etc. To acknowledge that this is not
the case, a value of 0.75 was chosen as a reasonable value, which is lower than the value
of 1 used in the last assessment.

(c) Size composition data weights are expressed as a denominator to divide the number of
fish measured to approximate an effective sample size for a given fishery in a year-quarter.
A denominator of 20 was used in this assessment, lower than the value of 40 from the
previous assessment. One reason to change this value was that the size composition data
were to be filtered at a later step (see ‘FilterSizeComps’ below), resulting in a smaller
number of measured fish in the final input data.
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9. NatMort. The natural mortality at age used in the last assessment posed practical problems
related to its estimation outside of the assessment model and its dependency on sex-specific
catch data, as well as the requirement of updating the analyses whenever growth parameters
estimates were updated. Furthermore, the last assessment report commented that the natu-
ral mortality rates seemed too high when compared to a meta analysis based on life-history
theory and empirical estimates. To overcome these challenges, and to incorporate recommen-
dations from the 2023 CAPAM Tuna Stock Assessment Good Practices workshop, this year’s
assessment used an internally estimated Lorenzen curve for natural mortality. This was a
major structural change in the assessment model, as the shape of the Lorenzen curve differs
substantially from the previous curve and the overall scale of the natural mortality rate was
estimated rather than fixed.

10. TaggerEffect. The recommended tagger effects model, based on the 2022 workshop and
simulation study (Peatman et al., 2022, 2023a) with the recommended separate tagger effects
models for the western Pacific and central Pacific tagging cruises, was applied to the tag-
ging data. The processing of the tagging data uses a model that is different from the 2020
assessment, reverting to assumptions similar to those used in 2017.

11. NewCPUEMethod. This year, the spatio-temporal analysis to produce CPUE indices was
updated, adding new covariates and using the sdmTMB modelling platform instead of VAST
(Teears et al., 2023).

12. NewData. This step included revisions to data from 1952–2018 and added three years of new
data from 2019–2021, including new tagging data, minor revisions to data filtering protocols
for composition data, new length and weight composition data, and new CPUE data. No
new conditional age-at-length data were available since the 2020 assessment. The length-
weight conversion factors were updated in a separate stepwise model run before the main
data update. Due to the limited time between receiving the finalised new data and the SC
meeting, all other data components were updated together rather than one at a time.

13. FilterSizeComps. Two changes were made in the treatment of size composition data in this
year’s assessment, both to length and weight compositions:

(a) Tail compression was applied to remove the lower and upper tails of all size frequency
distributions that only contain zero-frequency observations. This treatment results in
size distributions that have the same range as the observed data. When MFCL calculates
a predicted size frequency distribution, it accumulates the very smallest and largest sizes
and adds them to the first and last observed size bin.

(b) An MFCL setting was enabled to exclude length and weight frequency samples of less
than 50 fish.
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The purpose of both these changes was to facilitate the estimation of selectivities so that
each fishery removed fish of the right sizes in the stock assessment model. The estimation of
selectivity shape parameters has been identified as a challenge in previous assessments and
the expectation was that reducing noise from the observed data could result in improved
convergence and more reliable parameter estimates.

14. FiveRegions. Following recommendations from the 2022 stock assessment review and the
2023 pre-assessment workshop, alternative regional structures were considered for this year’s
assessment. The conclusion was to adopt a 5 region structure, merging selected regions from
the 9 region structure that was used in the last assessment. The new structure substantially
reduced model complexity, especially in terms of estimated region-year-quarter recruitment
deviations and movement between regions, decreasing the number of model parameters from
3,069 down to 1,901. This change resulted in reducing the run time of each model by approx-
imately one third and the expectation was that the smaller number of estimated parameters
would lead to more reliable model convergence, which had been identified as a key challenge
in previous assessments.

15. Diagnostic2023. The final refinements for the 2023 diagnostic model involved estimating
natural mortality and growth parameters in the last estimation phase and updating the
starting values of these parameters, based on a jittering analysis. This change resulted in a
considerable improvement in the objective function value and a positive definite Hessian.

6.2 Sensitivity analyses and structural uncertainty

6.2.1 Sensitivities

Various one-off sensitivity models were explored to understand the sensitivity of the diagnostic
model estimations to structural and data uncertainties. Each one-off sensitivity model was created
by making a single change to the 2023 diagnostic model. These sensitivities are described below:

1. Steepness: 0.65, 0.95

2. Tag mixing: 1 quarter

3. Size data weighting: 10, 40

4. Conditional age-at-length data weighting: 0.5, 1

6.2.2 Structural uncertainty

Stock assessments of pelagic species in the WCPO use an approach to assess the structural uncer-
tainty in the assessment model by running a ‘grid’ of models that explore the interactions among
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selected ‘axes’ of uncertainty. The grid contains all combinations of levels of several model quanti-
ties, or assumptions, and allows the sensitivity of stock status and management quantities to this
uncertainty to be determined and factored into management advice. The axes are generally selected
from factors explored in the one-off sensitivities with the aim of providing an approximate under-
standing of variability in model estimates due to assumptions in model structure not accounted for
by statistical uncertainty estimated in a single model run, or over a set of one-off sensitivities.

The structural uncertainty grid for the 2023 yellowfin stock assessment was constructed from 4
axes of uncertainty with 1–3 levels for each (below), resulting in a total of 54 models (Table 3).
The previous assessment included axes for steepness (same values as current assessment), growth
(internal estimate based on length modes, external otolith growth curve, conditional age-at-length
internal), size data weighting (20, 60, 200, 500), and tag mixing (1 quarter, 2 quarters).

The values for the diagnostic model are in bold and the levels used in the grid are directly compa-
rable to those presented in subsubsection 7.5.2 through identical notation. The levels of the grid
are:

1. Steepness: 0.65, 0.8, 0.95

2. Tag mixing: 1 quarter, 2 quarters

3. Size data weighting: 10, 20, 40

4. Conditional age-at-length data weighting: 0.5, 0.75, 1

6.2.3 Integrated model and estimation uncertainty for key management quantities

For a full picture of uncertainty for the key management quantities (SBrecent/SBF =0, SBrecent/SBMSY

and Frecent/FMSY) we attempted for the first time to integrate estimation uncertainty for individual
grid models with the variability in best estimates of these quantities across the grid. The procedure
that we adopted involved the following:

1. Obtain the best estimates of the key management quantities for each of the 54 grid models;

2. Obtain Hessian-based estimates of the standard deviations for these quantities using the
variance-covariance matrix of the model parameters and the Delta Method:

3. Generate 1,000 random draws from normal distributions with mean and standard devia-
tion specified as per steps 1 and 2, above, for each of the 54 grid models; in the case of
SBrecent/SBF =0, which was estimated on the log scale, transform the random deviates to
normal space by taking their exponent;

4. Compute the mean, median, and 10th, 25th, 75th and 90th percentiles of the 54,000 values
of each management quantity.
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Note that the above procedure implicitly gives equal weight to each of the 54 grid models, which we
felt was appropriate for this assessment. However, different relative weights could easily be given
by varying the number of random draws of the management quantities from each grid model.

With respect to step 2, we were able to derive SDs even in cases where the Hessian matrix was not
positive definite, but with a few very small negative eigenvalues, using a Hessian ‘positivisation’
process that has been coded in MFCL. By comparison of similar models from the grid that did and
did not have zero negative eigenvalues, we were able to establish that the estimates of standard
deviations of the key management quantities were completely unaffected by the Hessian not being
positive definite, but with a few (maximum of 1 in the case of bigeye) very small negative eigen-
values. Therefore, we opted to include the estimates of estimation error from the few models that
did not have positive definite Hessians.

7 Results

7.1 Consequences of key model developments

The progression of model development from the 2020 diagnostic model to the 2023 diagnostic
model is described in subsection 6.1 and the results are displayed in Figure 18 and Figure 19. In
previous assessments, the stepwise analysis has been presented simply by running MFCL at each
step, plotting the results and attributing the change in results to changes in the model or the
data. Through the process of building this stepwise development, it became apparent that model
convergence is a significant issue for these complex models, and jittering is an important process
to refine and improve the best solution found for any model.

Due to constraints in both time and computational resources, it was not feasible to conduct a jitter
analysis during the full breadth of model exploration involved in the stepwise development. Such
analysis was completed for the diagnostic model and for every model in the uncertainty grid, but
not for the stepwise development. As a result, the successive estimations of two key management
quantities, dynamic spawning potential depletion SB/SBF =0 and spawning potential SB, in the
stepwise development should only be considered indicative of potential changes.

1. Diag2020. The 2020 yellowfin diagnostic model, using data from 2020.

2. NewExe. Updating the executable resulted in no change in SB/SBF =0 and a small decrease
in SB.

3. PreCatchCond. The set of four changes applied before catch-conditioning resulted in a
small increase in SB/SBF =0 and SB.

4. CatchCond. The intermediate ‘Old CPUE’ model change resulted in a decrease in SB/SBF =0

and SB, but the fully converted ‘New CPUE’ model change resulted in a substantial increase
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in SB/SBF =0 and SB, compared to the intermediate model. The overall effect of the combined
‘CatchCond’ step was a net increase in both quantities.

5. SelChanges. Removing constraints on longline selectivities had negligible effects on SB/SBF =0

and SB.

6. TagStructure. Changes to the modelling of tagging data resulted in a decrease in SB/SBF =0

and a small decrease in SB.

7. Growth. Fixing the L1 growth parameter resulted in an increase in both quantities.

8. DataWeights Adjustments to data weighting in the model resulted in a small decrease in
SB/SBF =0 and a decrease in SB.

9. NatMort. Estimating Lorenzen natural mortality resulted in a substantial decrease in
SB/SBF =0, despite a substantial increase in SB, suggesting the biggest influence of this
step was to increase the estimate of SBF =0.

10. TaggerEffect. Updating the tagger effects model resulted in a decrease in both quantities.

11. NewCPUEMethod. Updating the CPUE spatio-temporal analysis resulted in a decrease
in both quantities.

12. NewData. Adding the new data resulted in a decrease in both quantities.

13. FilterSizeComps. Changing the treatment of size composition data resulted in an increase
in SB/SBF =0 and no change in SB.

14. FiveRegions. Adopting the 5 region structure resulted in a decrease in SB/SBF =0, despite
a substantial increase in SB, suggesting the biggest influence of this step was to increase the
estimate of SBF =0.

15. Diag2023. The final refinements to improve the objective function value of the diagnostic
model resulted in a decrease in SB/SBF =0 and substantial decrease in SB.

Overall, the changes in SB/SBF =0 are small until it decreases in steps 9 through 12, and again in
step 15. The cumulative effect of all changes between the 2020 diagnostic model and the current
diagnostic model is a reduction of SB/SBF =0 from 55% to 43% for the year 2018, the last year
where they can be compared. The current diagnostic model estimates the final SB/SBF =0 in 2021
also at 43%.

The difference between the 2020 diagnostic model and the current diagnostic model is considerable
in terms of SB/SBF =0 but much smaller in terms of SB. In other words, it is not the numerator
(SB) that makes SB/SBF =0 different between the two diagnostic models but the denominator
(SBF =0). The increase in SBF =0 occurs mainly in step 9, estimating Lorenzen natural mortality.
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Subject to the caveat that none of the steps in the stepwise development involved jittering, the
most influential steps in the development of the 2023 diagnostic model appear to be the estimation
of natural mortality using the Lorenzen curve, applying the revised tagger effects method, and
updating the CPUE spatio-temporal analysis, in terms of decreasing the final value of SB/SBF =0.

7.2 Fit of the diagnostic model to data sources

7.2.1 Standardised CPUE from index fisheries

The observed CPUE indices show a general and steady decline from the 1950s until around 2000
and show a relatively stable trend after that. Comparing the range of recent indices to that of
historical ones, the catch rates in region 1 have declined less than in other stock regions.

The values of the observed CPUE indices in each region act as regional scalers, since the catchability
coefficient is the same across all regions. The observed CPUE index in the final year 2021, averaged
over quarters, is higher in region 4 than in other regions, implying that this region contains the
highest abundance of yellowfin tuna. Expressed as proportions, the implied abundance from the
observed 2021 CPUE index suggests that 43% of the abundance is in the higher latitude regions 1
and 5, while 57% of the abundance is in the equatorial regions 2, 3, and 4.

The model fits to the index fishery standardised CPUE data were generally very good for all
model regions (Figure 20). The model was able to predict the longer term trends and short-term
variation at the sub-decadal scale. The residual plots (Figure 21) generally show agreeable residual
distributions, although there tends to be a greater spread in the residuals earlier in the time series
associated with the higher CPUE levels. There are sequences of negative residuals in regions 2 and
4 between 2009 and 2014, but the model fits the main CPUE trends after that.

7.2.2 Size composition data

Longline fisheries: The aggregate model fits to the weight composition data for the longline
extraction fisheries (fisheries 1–29, Figure 23) were relatively good for all fisheries, and most impor-
tantly for the fisheries accounting for the largest catches, such as 4, 6, and 9 (Figure 7) in regions 2
and 4. One example of a fishery where the model does not fit the weight composition well is fishery
27, whose selectivity is linked with that of fishery 10, where the weight frequency distribution is
bimodal. Both of those fisheries have a considerable number of weight samples but the annual
catches are very small. Fishery 3 has a bimodal distribution that the model manages to fit quite
well.

The index fisheries all have a common shared selectivity, where the model fit to fisheries 35 and
36 (regions 3 and 4) underestimates the proportion of small fish and overestimates the proportion
of large fish. For the index fisheries in regions 1, 2, and 5, the model fits the weight compositions

53



more closely.

Other fisheries: The aggregated length composition fits are also mostly good for the non-longline
fisheries, with the exception of fisheries 19 and 20 (Figure 22). These two fisheries in region 1 are
the Japanese purse seine and pole and line fisheries, respectively. Both fisheries feature multi-modal
distributions in the input data, and both fisheries catch relatively small amounts of yellowfin, so
the inability to fit those compositions is not so important compared to other fisheries with larger
catches. The non-longline fisheries with the largest annual catches are fisheries 13, 14, 17, 23, and
26 (Figure 8, Figure 9) consisting of miscellaneous gears in region 2 and purse seine in regions 3
and 4.

7.2.3 Tagging data

When aggregated, the tag attrition estimates fit the tagging data relatively well (Figure 26), albeit
overestimating the number of tag returns after 2 periods at liberty, and underestimating the returns
in periods 3–5. When compared at the tag program scale, there are some differences in the quality
of fit (Figure 27). The fit to the PTTP generally reflects the fit to the aggregated scale, as this
represents a large majority of the tags used in the assessment. The RTTP program is the second
largest in terms of tag input data for yellowfin, and the data and fit also resemble the aggregated
scale. The fit to the JPTP program is not as good, underestimating the tag returns after 2–6
periods at liberty and overestimating the tag returns for longer periods at liberty. At the regional
scale, region 1 looks similar to the JPTP program and regions 2–4 look similar to the PTTP and
RTTP programs (Figure 28). Region 5 has very few tag returns, with irregular patterns in the
observed tag return data that the model does not fit well. Most of the tag returns occur in regions
3 and 4.

For the tag returns by year/quarter of recapture, the model-predicted tag returns show relatively
good agreement with the observed data, albeit with some spikes missed and some over- and under-
prediction at various periods (Figure 29). The number of tag returns is low for most longline
fisheries, so the fits to these patchy data are of minor consequence to the likelihood (Figure 30).
The fits to fisheries other than longline are good for those fisheries with the most observed tag
returns, namely fisheries 25 and 26 (purse seine in region 3), fisheries 13, 14, 15, and 16 (purse
seine in region 4), and fisheries 17, 18, 23, and 24 (miscellaneous gears in region 2). The model fits
are reasonable for the other fisheries with small numbers of tag returns (Figure 31).

7.2.4 Conditional age-at-length

The available conditional age-at-length data consists of 1471 otoliths sampled between 1990 to
2018. The geographic distribution of samples (Figure 32) corresponds reasonably well to the range
where yellowfin tuna are caught in great quantities. The model fit to the conditional age-at-length
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data are shown in Figure 15 with 95% prediction intervals. This year’s diagnostic model fits the
data substantially better than the 2020 diagnostic model, with over 200 units of log-likelihood gain
for this data component, when similar data weights are used.

7.3 Population dynamics estimates

7.3.1 Selectivity

A range of selectivity curves are estimated for the different fisheries in the model and can be largely
classified by gear type. For longline fisheries, the age-specific selectivity is shown in Figure 33 and
weight-specific selectivity is shown in Figure 34. For other fisheries, the age-specific selectivity is
shown in Figure 35 and length-specific selectivity is shown in Figure 36.

The five index fisheries have a shared selectivity with a penalty constraining their shape to be
non-decreasing, to avoid cryptic biomass in the model. Some of the longline extraction fisheries are
also asymptotic or estimate the oldest age classes to be nearly fully selected, specifically fisheries
1, 2, 3, 10, 12, and 27, all in the higher latitude regions 1 and 5. All other longline fisheries have
estimated selectivity with a peak at around 10 to 15 quarters, with selectivity then declining to
some asymptote at an intermediate value between zero and full selectivity for the oldest fish. The
selectivity by weight shows similar patterns, but expressed in weight rather than age, where the
aforementioned higher latitude longline fisheries tend to reach full selectivity around 40 kg and the
other longline fisheries typically achieving maximum selectivity around 30 kg.

The selectivity for the non-longline fisheries generally targets younger fish than longline. The main
fisheries in region 2, such as fisheries 17, 23, and 24, have an estimated selectivity that peaks at age
2–3 quarters and then declines, reaching zero selectivity by age 10 quarters. The exception to this
is fishery 18 that has a selectivity that is asymptotic and increases gradually with age, reaching half
selectivity around age 18 quarters. The major purse seine fisheries 13, 14, and 26, in regions 3 and
4, have estimated selectivity curves that fully select ages 4–5 quarters and then decline gradually
for older ages. Expressed in length, fisheries 17, 23, and 24 in region 2 reach full selectivity between
35 and 50 cm, while fisheries 13, 14, and 26 in regions 3 and 4 achieve maximum selectivity between
60 and 70 cm.

7.3.2 Movement

Observed patterns of tag releases and returns among regions are compared to the estimated move-
ment coefficients between regions for each quarter from the diagnostic model in Figure 37 and in
Figure 38.

Summing the observed tagging data over all quarters, the implied retention rate varies between
regions, where over 90% of the tags released in regions 1, 2, 3 are recaptured within the same
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region, 80% for region 4, but only 12% of tags released in region 5 are recaptured within that
region. Most of the tags released in region 5 are recaptured in region 3, whereas almost no tags
released in region 3 are recaptured in region 5. Thus, the data suggest a substantial northward
movement from region 5 to 3. Another movement direction suggested by the data comes from the
observation that 20% of the tags released in region 4 are recaptured in region 3.

The movement estimated in the model, averaging over quarters, shows somewhat different trends,
with movement coefficients around 0.90 staying within regions 1, 2, 4, and 5 but a lower rate of
around 0.60 staying in region 3. The estimated movement from region 3 is mainly into region 5 but
also into region 4. The main movement within the model, southward from region 3 to region 5, is in
the opposite direction from what the tagging data indicate. This reflects that the tagging data are
not the only data source contributing to the estimation of movement in this integrated assessment.
MFCL has considerable freedom to trade off recruitment and regional movement, so care should
be taken in drawing conclusions on one of these estimates without considering the other.

7.3.3 Natural mortality

The Lorenzen form of natural mortality M is used in the 2023 assessment, with the scale of this curve
estimated. As noted in the methods, this is considered good practice. This is in contrast to the 2020
diagnostic model which used a different form for M with the scale fixed. The comparison between
the estimated M in 2023 diagnostic model and the fixed M is shown in Figure 17. Compared to the
fixed M used in the 2020 diagnostic mode, the Lorenzen form of M features considerably higher
levels of M for the youngest fish, and a lower asymptote for the older age classes.

The scale of M in the 2020 diagnostic model was determined by a geometric mean parameter which
was set at 0.232 per quarter. The geometric mean of the Lorenzen M curve in the 2023 diagnostic
model can be calculated as 0.153 per quarter, but these quantities are not directly comparable
as the shape of the curve is quite different. The Lorenzen scale parameter that is estimated in
the current diagnostic model determines M at the highest age in the model. This parameter is
estimated by the diagnostic model as 0.119 per quarter, with 95% confidence limits at 0.113 and
0.126, based on the Hessian.

7.3.4 Maturity

Maturity-at-age is derived from the fixed maturity-at-length (fixed at the same values used in the
2020 diagnostic model) and applying the estimated growth curve to this to get maturity-at-age
for the 2023 diagnostic model. This maturity-at-age curve differs slightly from the 2020 diagnostic
model (Figure 16) due to the differences in growth curves in these two models.
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7.3.5 Tag reporting rates

The estimated tag reporting rates by fishery recapture groups (see groupings in Table 1) are shown
in Figure 40. As expected, the reporting rate estimates differ among fisheries groups and across
tagging programs. In most cases, the reporting rate estimates for those groupings that received
higher penalties were relatively close to the prior mean. Any fishery recapture groups for which
there are no reported tag recaptures have tag reporting rates fixed at zero. In addition, groups
with low numbers of tag recaptures (less than six) were also fixed at zero and those recaptures
removed from the input file. This left 20 tag reporting rate groups where the reporting rates were
estimated, of which 7 tag reporting group rates estimated on the upper bound at 0.99. The change
in the assessment model this year, raising the bound from 0.90 to 0.99, did not prevent the tag
reporting rate from running into bounds during the parameter estimation.

7.3.6 Growth

Growth was estimated in the 2023 diagnostic model using a von Bertalanffy growth form, where
L1 is the mean length at age 1 quarter, LA is the mean length at oldest age in the model, K is a
shape parameter, σ1 is the length variability at age 1 quarter, and σA is the length variability at
the oldest age. As described in subsection 6.1, the L1 parameter is fixed, while all other growth
parameters are estimated with the assessment model. The estimated growth curves from the 2020
diagnostic model and the 2023 diagnostic model are shown in Figure 15. Compared to the growth
curve from the 2020 assessment, the current growth curve predicts slightly larger body size for the
younger ages and smaller body size for ages above 10 quarters.

7.4 Stock assessment results

7.4.1 Recruitment: diagnostic model

The estimated recruitment aggregated across all regions (Figure 41) shows interannual variation,
especially in the earlier decades of the assessment period that does not have size data to inform
recruitment estimation. The variation in recruitment estimates also fluctuates in the last few years,
as these fish are still quite young and have in many cases not yet been observed in the fisheries
data. The total recruitment for the final 6 quarters is set to the arithmetic mean recruitment, a
model setting that affects only the last two points in Figure 41. The long-term trend is that the
estimated recruitment is somewhat higher in the first decade and last five years, but these are also
the periods where recruitment estimates are least reliable.

Overall, region 2 is estimated to have contributed around 40% of the recruitment to the stock, while
regions 1, 4, and 5 are close to 20% each (Figure 43). Region 3 is estimated to have practically
no recruitment, but regions with essentially zero recruitment have been an unwanted and recurring
feature in previous yellowfin assessments (Davies et al., 2014; Tremblay-Boyer et al., 2017; Vincent
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et al., 2020) with the geographic location of missing recruitment varying between the assessments
(Hamer, 2023). The substantial recruitment estimated in region 2 feeds into regions 1, 3, and 5,
where region 2 is the largest source of unfished total biomass (Figure 44). Region 4, on the other
hand, has more equally distributed source regions.

The temporal recruitment trends within individual regions (Figure 42) vary more than the sum of
all regions (Figure 45). The estimated recruitment in region 2 has increased steadily since 1990 and
currently contributes around 50% of recruits to the stock. Region 1 has relatively high estimated
recruitment between 1980 and 2000, while recruitment in region 4 is estimated very low from 1990
to 2010. Region 5 has a more stable long-term trend in recruitment, and region 3 has effectively
zero estimated recruitment.

The estimated relationship between spawning potential and recruitment is shown in Figure 46 with
the assumed steepness of 0.8. The estimated recruitment variability is considerably higher in the
earlier decades of the stock assessment, when size data are limited. The model excludes the early
periods prior to 1968 from the estimation of the stock-recruitment curve.

7.4.2 Biomass: diagnostic model

The estimated total biomass and spawning potential declined steadily from 1960 to 2000, followed
by a relatively stable population size since then (Figure 45). In 1960, the total biomass and
spawning potential, averaged across quarters, are estimated to have been 10.6 and 7.5 million
tonnes, respectively, and by 2000 they had declined to 4.3 and 2.4 million tonnes. In 2021, the
final year of the assessment, the total biomass and spawning potential are estimated at 4.9 and 2.6
million tonnes.

The long-term trends vary between regions (Figure 47), with most regions having a current spawning
potential that is close to one third of the 1960 levels. The exception is region 1, which is around
two thirds of the the 1960 levels. These trends match the observed long-term CPUE trends in each
region (Figure 20).

The current spawning potential of 2.6 million tonnes is partioned between region 1 = 460 thousand
tonnes, region 2 = 370 thousand tonnes, region 3 = 210 thousand tonnes, region 4 = 980 thousand
tonnes, and region 5 = 600 thousand tonnes. The combined higher latitude regions 1 and 5 have a
current spawning potential of 1,070 thousand tonnes, while the combined equatorial regions 2, 3,
and 4 have 1,550 thousand tonnes. Thus, the proportion of the spawning potential in the higher
latitude regions is estimated at 41%, with 59% in the equatorial regions. These proportions are
similar to the proportions of observed CPUE indices in subsubsection 7.2.1.

Analyses conducted at the 2022 peer review of the 2020 yellowfin assessment showed that the
biomass partitioning between regions is effectively determined by the regional scaling of the observed
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CPUE indices (Figure 6 in Punt et al., 2023).

7.4.3 Depletion: diagnostic model

The estimated spawning potential depletion SB/SBF =0 aggregated across all regions shows an
initial gradual decline until 1970, followed by a faster decline to about 2005, and is relatively stable
after that (Figure 48). The estimated SB/SBF =0 for all regions combined in the final year of 2021
is 0.43. This pattern varies regionally, as the current level of SB/SBF =0 is around 0.50 in regions
1, 3, 4, and 5 but a substantially lower level of 0.25 in region 2.

The steepest decline in SB/SBF =0 occurred from 1990 to 2000, especially in regions 2 and 4,
corresponding to higher levels of annual catches in that decade compared to previous decades
(Figure 4). The current level of SB/SBF =0 is similar to the year 2010 in regions 1, 3, 5, while
region 4 shows a gradual increase in this recent period. Region 2 shows a substantial recent decline
from 0.39 in 2010 down to 0.25 in 2021.

7.4.4 Fished (SB) versus unfished (SBF =0) spawning potential: diagnostic model

To interpret the trends in spawning depletion it is useful to compare the trends in spawning poten-
tial, SB, with the predicted spawning potential that would have occurred in the absence of fishing,
SBF =0, also called the unfished biomass (Figure 49). Unfished biomass is the denominator in the
depletion ratio.

The total unfished biomass follows the same decline as the spawning potential during the first two
decades of the stock assessment period, indicating that the steep decline in the estimated spawning
potential before 1970 can be primarily explained by the estimated recruitment trends rather than
fishing. From 1970 onwards, the unfished biomass is estimated to have been relatively stable for
the next decades, until a recent increase in the last few years near the end of the assessment period.
This matches the estimated recent recruitment increase seen in subsubsection 7.4.1.

The individual regions have comparable long-term trends in the estimated unfished biomass, with
a noticable hump around 1990 that can be traced to an estimated recruitment pulse a few years
earlier. Region 4 has the highest estimated unfished biomass among the regions, while region 1
stands out for having a current unfished biomass level near its historical maximum. Regional
differences in the behaviour of the unfished trajectory are an important component in subsequent
differences in SB/SBF =0.

7.4.5 Fishing mortality: diagnostic model

The temporal trend in the adult fishing mortality has been a gradual increase until around 2010
and a slight decline since then (Figure 50), averaging 0.13 in the last ten years. Juveniles, as defined
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by the maturity ogive (Figure 16), have fishing mortality rates that are generally around two times
higher than that of adults, with annual fluctuations. The large difference between juvenile and
adult fishing mortality is a change from the previous yellowfin assessment, where juvenile and adult
fishing mortality were both around 0.15 for recent years. During the stepwise development of the
current diagnostic model, this change occurs when natural mortality is estimated, leading to a
different level and shape of the natural mortality curve.

The juvenile fishing mortality is estimated to have increased rapidly in the last few years, from
0.22 in 2015 to 0.46 in 2021. This increase matches the rapidly increasing catches in fishery 23
(Figure 9), consisting of miscellaneous gears in Indonesian waters targeting juvenile fish at age
2 and 3 quarters (Figure 35). The annual catches in fishery 23 have increased from 58 thousand
tonnes in 2015 to 169 thousand tonnes in 2021, currently more than double that of any other fishery
(Figure 9).

Regional comparison shows that fishing mortality rates are highest for the youngest ages in region
2 but higher for the older ages in the temperate regions 1 and 5, while regions 3 and 4 have fishing
mortality rates that apply both to the younger and older fish in the population (Figure 51). Decadal
comparison shows a recent increase in juvenile fishing mortality rates and that the age distribution
in the population has remained relatively stable over time (Figure 52).

7.5 Multi-model inference: sensitivity analyses and structural uncertainty

7.5.1 One-off sensitivity analyses

Comparisons of the spawning depletion and spawning potential trajectories for the diagnostic model
and the related one-off sensitivity models are provided in Figures 53, 54, 55, and 56.

These comparisons show that estimates of both spawning depletion and spawning potential were
somewhat sensitive to the choice of tag mixing period, while spawning depletion was also somewhat
sensitive to the assumed steepness value, and spawning potential to the assumed size data weighting.

Under the alternative assumed mixing periods, the depletion trajectories followed similar trajecto-
ries, diverging from the late 1970s. Results from the 1 quarter mixing scenario indicating a slightly
less depleted state than the assumption of a 2 quarter mixing scenario. In terms of spawning
potential, that from the 1 quarter mixing scenario was scaled higher across the time series.

With regards steepness, as expected a lower steepness assumption implied a more depleted stock.
There was no impact on the estimated spawning potential.

Assumed size data weighting had small impacts on the estimated spawning depletion trajectory,
with the divisor of 10 implying a more depleted stock at the end of the time series, and a slightly
different trajectory. The assumed size data weighting also scaled the estimated spawning potential.
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The age data weighting also had little impact on the estimated spawning depletion trajectory or
the estimated spawning potential (Figure 56).

7.5.2 Structural uncertainty grid

Results of the structural uncertainty analysis are summarized in box and violin plots of Frecent/FMSY

and SBrecent/SBF =0 for the different levels of each of the four axes of uncertainty (Figure 57).

The distribution of recruitment across model regions and quarters for all models in the structural
uncertainty grid is summarised in Figure 58. Time series of spawning depletion (SBrecent/SBF =0)
and spawning potential SB across grid models are shown in Figure 59 and Figure 60. Majuro
and Kobe plots showing the estimates of Frecent/FMSY, SBrecent/SBF =0 and SB/SBMSY across all
models in the grid are presented in Figure 64. The averages and quantiles across the 54 models
in the grid for all the reference points and other quantities of interest are presented in Table 5.
For key management quantities (SBrecent/SBF =0; Frecent/FMSY; SBrecent/SBMSY) the table alsos
includes the additional estimate of estimation uncertainty for management advice.

The general features of the structural uncertainty analyses are as follows:

• The grid contains 54 models that display a moderate range of estimates of stock status
relative to reference points, and suggest that, overall, the stock is moderately more depleted
than estimates from the 2020 assessment (Table 5).

• The results of the jittering process to improve the fit of all models in the grid is shown
in Table 6. The jittering always achieved to improve the objective function value, but the
gradient could often get worse after jittering and the Hessian for a given grid model could
become non-positive definite.

• The most influential axis was steepness, which displayed results consistent with previous
structural uncertainty grids. Models with steepness of 0.95 were the more optimistic compared
to the steepness of 0.8 assumed in the diagnostic model, while a steepness of 0.65 was the
most pessimistic. The lower the steepness the more depleted the stock and the higher the
fishing mortality with respect to FMSY (Figure 57). The assumed steepness level results in a
clear clustering of stock status levels on the Kobe plot (Figure 64), particularly in relation to
estimates of SBMSY.

• Across the tag mixing period axis, results of models with the 2 quarter mixing period implied
a slightly greater level of depletion and higher F/FMSY than those with the 1 quarter mixing
period.

• The estimates of depletion and fishing mortality for a size composition divisor of 10 were
more pessimistic than those for 20 and 40, which were relatively consistent with one another.
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With an assumed size composition divisor of 10 there was a slight skew in the distribution
toward more optimistic stock status.

• The conditional age-at-length data weighting axis had limited impact on management quan-
tities, with all levels showing similar ranges of depletion and F/FMSY.

• Spawning depletion was generally low in the initial time period and started to increase in the
early 1970s. Depletion stabilised in the mid-2000s through to the most recent period.

• Spawning depletion estimates in region 2 are approaching the limit reference point 20%SBF =0

in the most recent model years for some of the grid models (Figure 59). While not to the same
extent, depletion in the remainder of the tropical region (regions 3 and 4) have shown notable
declines, but some recovery in the most recent period. Declining trends in the temperate
regions are less severe and have also levelled out (Figure 59).

• Similar patterns are seen in spawning potential, with declines most notable in the tropical
region, as well as in region 5 (Figure 60).

• Recruitment is predicted to be highest in region 2, with moderate recruitment in regions 1, 4
and 5, and lower recruitment in region 3. Across the scenarios, region 3 recruitment estimates
are influenced by the tag mixing assumption, with zero recruitment in this region under all
2 quarter mixing scenarios but recruitments present where 1 quarter tag mixing is assumed.
There is no consistent pattern in quarterly recruitment between regions (Figure 58).

• None of the models in the structural uncertainty grid had an overall spawning potential
depletion below the LRP (20%SBF =0); median SBrecent/SBF =0 was 0.47 (80 percentile range:
0.42 to 0.52) (Table 5).

• All models in the structural uncertainty grid showed exploitation to be below FMSY. Median
Frecent/FMSY was 0.50 (80 percentile range 0.42 to 0.61).

7.5.3 Integration of estimation and model uncertainty for key management quantities

Estimation uncertainty across the grid of 54 models was calculated for the key management quan-
tities SBrecent/SBF =0, Frecent/FMSY and SBrecent/SBMSY (Table 5). Distributions of the resulting
quantities broken down by element for each of the four grid axes are presented in Figure 61 for
SBrecent/SBF =0, Figure 62 for Frecent/FMSY and Figure 63 for SBrecent/SBMSY.

Presenting the estimates arising from these two approaches to incorporating uncertainty, results
from the uncertainty grid of models and incorporating estimation uncertainty, allows the impact of
the additional estimation uncertainty to be examined.

The median values for SBrecent/SBF =0 from the grid and after incorporating estimation uncertainty
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are identical. The tails of the distribution are also the same, after rounding to two decimal places.

For MSY-related quantities, incorporation of estimation uncertainty had slightly larger impacts
than the changes seen when incorporating estimation uncertainty into SBrecent/SBF =0. Median
Frecent/FMSY is the same but median SBrecent/SBMSY is slightly lower when incorporating estima-
tion uncertainty. d the 80 percentile ranges of Frecent/FMSY and SBrecent/SBMSY become somewhat
wider, with some values below the 10th percentile of SBrecent/SBMSY falling below 1. These values
are influenced by the levels of mixing and assumed steepness with mix 2 and lower steepness assump-
tions leading to higher estimates of Frecent/FMSY (Figure 62) and lower estimates of SBrecent/SBMSY

(Figure 63).

It is recommended that management advice is based on the estimated management quantities
including both the uncertainty grid and estimation uncertainty. The values of SBrecent/SBF =0 are
all above the LRP (20% SBF =0 SBF=0), and the values of Frecent/FMSY are all below 1.

7.5.4 Analyses of stock status

There are several ancillary analyses related to stock status that are typically undertaken on the
diagnostic model (e.g., dynamic Majuro and Kobe analyses, fisheries impact analyses etc.).

We do not present the results of all analyses for all models in the stock assessment paper. In this
section, we rely largely on the dynamic spawning depletions and spawning potential plots for the
models in the structural uncertainty grid (Figures 59 and 60). We also refer to the fished and
unfished spawning potential trajectories for the diagnostic model discussed previously (Figure 49)
and the dynamic Majuro and Kobe plots (Figure 65).

Dynamic Majuro and Kobe plots and comparisons with Limit Reference Points: The
section summarizing the structural uncertainty grid (subsubsection 7.5.2) presents terminal esti-
mates of stock status in the form of Majuro plots. Further analyses can estimate the time series
of stock status in the form of Majuro and Kobe plots, the methods of which are presented in sub-
subsection 5.7.4. The dynamic Majuro and Kobe plots for the diagnostic model are presented in
Figure 65.

Both the dynamic Majuro and Kobe plots show the steady increase in depletion of the stock since the
1950s, with an increase in fishing mortality from the 1960s. The dynamic Majuro plot indicates that
while depletion stabilised toward the end of the assessment time period, fishing mortality tended
to increase. However, the terminal spawning potential is well above both SBMSY and 20%SBF =0,
and the fishing mortality is well below FMSY (Figure 65).

Fishing impact: In addition to the above analysis, it is possible to attribute the fishery impact
with respect to depletion levels to specific fishery components (i.e., grouped by gear type), to esti-
mate which types of fishing activity have the most impact on the spawning potential (Figure 66).

63



Fishing impacts were estimated to be very minor in all regions before about 1970, resulting pri-
marily due to longline and pole and line fisheries. The impact of these gears has increased slightly
over the time series. In the early 1970s, catch information from the miscellaneous fisheries leads
to an increase in impact, with the onset of notable impacts due to purse seine fishing from the
1980s. Examining the overall impact, the miscellaneous and purse seine fisheries (associated and
unassociated sets) have the major impact, with that of the miscellaneous fisheries increasing in
the most recent period, and the impact of purse seine being equally split between associated and
unassociated sets towards the end of the time series.

The greatest fishing impact is in region 2, where the miscellaneous fishery in this region has the
largest proportional impact. The impact of the miscellaneous gears is also seen to a lesser extent
in other regions, due to movement. Impact in the other tropical regions (regions 3 and 4) are
primarily due to purse seine fishing, with a similar pattern seen in region 5.

Yield analysis: The yield analysis conducted in this assessment incorporates the spawner recruit-
ment relationship (Figure 46) into the equilibrium biomass and yield computations. Importantly,
in the diagnostic model, the steepness of the SRR was fixed at 0.8 so only the scaling parameter
was estimated. Other models in the one-off sensitivity analyses and structural uncertainty analyses
assumed steepness values of 0.65 and 0.95.

The yield distributions under different values of fishing effort relative to the current effort are
shown in Figure 67 for select models representing different axes of the structural uncertainty grid
(specifically, different levels of steepness). For the diagnostic model, it is estimated that MSY would
be achieved by increasing fishing mortality by a factor of 1.65, although the resulting increase in
yield would be relatively small (10%). The different example yield curves under the alternative
steepness assumptions display a similar pattern over the scale of fishing mortality although the
absolute value of the yield curve and behaviour of the descending limb differs significantly.

The yield analysis also enables an assessment of the MSY level that would be theoretically achievable
under the different patterns of age-specific fishing mortality observed through the history of the
fishery. We present a plot for the diagnostic case model in Figure 68. Prior to 1970, the WCPO
yellowfin fishery was almost exclusively conducted using LL gear, with a low exploitation of small
yellowfin. Fisheries other than longline were known to operate in the region before 1970, but no
catch estimates are available. The associated age-specific selectivity pattern resulted in a much
higher MSY in the early period compared to the recent estimates. A pronounced decline occurred
after the expansion of the juvenile fisheries in region 2 and, soon after, the rapid expansion of the
PS fishery which shifted the age composition of the catch toward younger fish.
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8 Discussion and conclusions

8.1 Stock status

The 2023 WCPO yellowfin tuna stock assessment estimated that the median recent spawning
depletion (SBrecent/SBF =0) at the stock-wide scale for all models in the grid are well above the
limit reference point (Figure 59) and F/FMSY is less than one.

The reference points calculated from the uncertainty grid results, incorporating estimation uncer-
tainty, suggest that the median SBrecent/SBF =0 is 0.47 (Table 5, Figure 59). F/FMSY is less than
one, with a median value of 0.50.

Estimated depletion and the spawning potential across the whole model region showed a long term
decline to around the mid-2000s and remained stable after that, while the spawning potential was
estimated to have increased slightly in the most recent period. The most notable declines are in
the tropical region, with slightly lesser declines in the temperate regions.

Overall, the outcomes of this assessment suggest that the yellowfin stock in the WCPO is not
overfished or undergoing overfishing.

CMM 2021-01 contains an objective to maintain the spawning biomass depletion ratio above the
average SB/SBF =0 for 2012-2015 (which is a value of 44% calculated across the unweighted grid).
Based upon the estimates of SBrecent/SBF =0 (47%SBF =0) this objective has currently been met.

8.2 Changes to the previous assessment

The addition of three more years of data (tagging, catch, effort, size compositions) and several
other model changes were introduced to the 2023 assessment. These included:

• Conversion from a catch-errors to a catch-conditioned approach, and the inclusion of a like-
lihood component for the CPUE from the index fisheries.

• Change from using VAST to sdmTMB to standardise the input CPUE series and the inclusion
of additional covariates in the CPUE model.

• Different CPUE variances used for the CPUE associated with each index fishery, applying a
new approach to estimate these variances.

• Internal estimation of natural mortality and application of the Lorenzen form of natural
mortality at age.

• Additional procedures implemented for achieving more reliable model convergence, including
jittering and checking positive definite Hessian status for all grid models.
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• Integration of parameter estimation uncertainty with model-based uncertainty across the
model grid for the key management reference points.

• Additional size composition filtering.

• Modifications to selectivity estimation settings, changes to fisheries with non-decreasing se-
lectivity.

• Adoption of revised tagger effect modelling framework, reverting to assumptions similar to
those used in 2017.

• Changes to size data weighting and downweighting the conditional age-at-length data for
internal growth estimation.

8.3 Model diagnostics and commentary

8.3.1 Mode of operation in early stepwise development

During the stepwise model development, diverse modelling options were explored and evaluated.
This involved checking the model fit to data, both visually and by tabulating the likelihood compo-
nents and maximum gradient to compare alternative models. When models achieved a low gradient,
Hessian calculations were sometimes run to see if it was positive definite, which would take another
day of computing time. By investing a little bit of human time, managing scripts and files, the
Hessian can be run in parallel on multiple cores to get the results on the same day. The workflow
to conduct Hessian calculations on dozens of models simultaneously has been streamlined by the
newly developed R package called hessian, tailored for MFCL and SPC-specific servers.

More often than not, though, the decision to adopt a certain stepwise modelling option was not
based on gradients or Hessians, or the total objective function, as changes in the model or data
treatment would cause the likelihood components to be not comparable. The reasoning behind the
adoption of each stepwise change is outlined in subsection 6.1.

It is worth noting that during the entire stepwise pathway from the 2020 diagnostic model to the
2023 diagnostic model, the yellowfin model showed consistently worse gradients than the bigeye
model, even though they are very similar models with only a few differences. The main difference
lies in the data, where the yellowfin data seem to pose a more irregular likelihood surface for
the model. This was confirmed in the likelihood profile analysis, where the same computational
approach for profiling resulted in more uneven likelihood surfaces (Figure 12.1) for the yellowfin
assessment than for bigeye.
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8.3.2 Mode of operation in late stepwise development

At the stepwise change when the estimation of M was introduced, it became apparent that this
change was resulting in noticeably worse gradients than from the earlier model with a fixed M . The
uncertainty about M can either be addressed by estimating M within the model or as a structural
uncertainty with a number of fixed M options. After explorations and evaluations, it was decided
that the best approach was to estimate M within the model.

At this point, it became clear that jittering was necessary to assist the model to find the best fit.
A set of 10, 20, or 50 jitters were used and the finding was that the very best likelihood is found in
a rough and uneven area of the likelihood surface, where gradients are high and the Hessians not
positive definite. A nearby model could often be found at a local minimum, with quite similar pa-
rameter values, a good gradient and a positive definite Hessian, but with a worse objective function
value and unfortunately often with substantially different estimates of management quantities.

One important lesson from this is that at least for the yellowfin assessment, a positive definite
Hessian is a highly unreliable indicator of having found the best model fit to the data for a specific
model configuration. Jittering is the tool to find the best fit, and in the case of yellowfin, the best
fit is unlikely to have a positive definite Hessian.

8.3.3 Refining the diagnostic model

In the best case, a model run that starts from a standard MFCL .ini file results in a fit whose
objective function value is not quite as good as a jittered version of the same model, but the parent
model before jittering has similar estimated parameter values and management quantities. The
2023 diagnostic model is such a model.

The 2023 diagnostic model has both an ancestor model and offspring models. All three ‘gener-
ations’ share the same model parametrization and data handling. The ancestor model, named
14_Five_Regions in the stepwise development, gave a very different estimate of depletion than the
main 15_Diag_2023 diagnostic model (Figure 19). The refinement from step 14 to 15 involved an
extensive exploration of the likelihood surface using jittering, revising initial parameter values, and
changing the estimation phases.

The main diagnostic model runs from a standard .ini file, converges to a good objective function
value and has a positive definite Hessian. However, when the diagnostic model is jittered from
its final .par file, slightly better fits can be found with a lower objective function value that have
similar estimates of management quantities. Such jitter offspring models can only be run from a
final .par file and not from a standard .ini file, where users generally specify initial values and
other model settings. Furthermore, these jitter offspring models have higher gradients and do not
have a positive definite Hessian. Overall, it does not seem that a positive definite Hessian should
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be seen as a strong requirement or guarantee of a well converged model.

8.3.4 Model reliability and challenges

The retrospective analysis (subsection 12.2) shows a pattern of a slight but consistent underestima-
tion of biomass and depletion, which is ‘corrected’ each time a year of data is added. These results
are similar to the retrospective analysis presented in the 2020 assessment.

During the stepwise model development, as well as jittering, two alternative models could often have
a comparable objective function value, but one had a better likelihood for the length compositions
and the other model had a better likelihood for the weight compositions. The likelihood profile in
Figure 12.1 shows the conflict between these data components very clearly.

Overall, it’s fair to say that the yellowfin assessment is subject to model convergence problems
that pose both statistical and operational challenges for the assessment. Simplifying the regional
structure has not solved the model convergence issues in terms of large final gradients and the
need for jittering, as well as estimating zero recruitment in region 3. One important benefit of the
simplified regional structure was to reduce the run time of a single model from around 17 hours to
12 hours, which allowed a substantially more rapid cycle of model development and testing.

8.4 Recommendations for further work

Changing the spatial structure from 9 regions to 5 regions involved some extra work that resulted
in benefits such as reducing both the number of parameters and the computational time each run
takes, as well as slight improvements in model convergence in terms of Hessians and gradients.
To simplify the model further, it is likely that the number of fisheries could be reduced, merging
similar fisheries that are now in the same region. Simplifying the fisheries could help with model
convergence and parameter estimability, as selectivities are a challenging aspect for the model
fitting, as spline node parameters frequently run into bounds. When deciding which fisheries could
be merged, one would compare the size frequencies of those fisheries, tagging data, as well as
fisheries management aspects. This would be a good topic to examine in the next assessment.

The large proportion of the stock biomass estimated in the higher latitude regions 1 and 5 are a
concern, given that there are almost no catches observed in those regions. Specifically, 41% of the
current biomass is estimated to be in regions 1 and 5, while 6% of the catches in tonnes are observed
in those regions. A research effort was made in this year’s assessment to examine whether there
is evidence in the data that such a large proportion of the biomass might be in regions 1 and 5.
Alternative approaches were explored for the CPUE data preparation, but did not lead to important
findings regarding this issue. The 2022 yellowfin assessment review recommended implementing an
equatorial-only model to examine this issue, which would exclude the higher latitude regions but
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would still contain 94% of the fishery catches. This regional study should be conducted outside of
the main assessment period.

This year’s stepwise model development included a stage where alternative options to model natural
mortality (M) were explored and evaluated. The options included: (1) same M -at-age as used in
the 2020 assessment; (2) an M -at-age curve that has the same shape as used in the 2020 assessment
but estimating the overall scale; (3) Lorenzen M curve estimating the overall scale; (4) a two-stage
M -at-age curve with the original scale tabulated in Hoyle et al. (2023); and (5) the same two-stage
M -at-age curve but estimating the overall scale. All options had some strengths and weaknesses
with respect to likelihoods, residual patterns, model convergence, and other model selection criteria.
A decision was made that the Lorenzen curve was the best option, noting that it would have been
good to have more time to explore the M options. This was at a stepwise development stage where
the assessment model had 9 regions and a few other model changes were also yet to be made. It
would be a worthwhile research topic to revisit the question of how best to model M in the yellowfin
assessment.

Another decision during the stepwise model development was to fix the L1 parameter, as a workaround
to prevent unreasonably low estimates of 9 cm that were occurring in the 9 region model at that
stage in the model development. As a very last check in the assessment analysis, at the time of
this writing, an unofficial model run was conducted where L1 was estimated in the 5 region model
and the result was that L1 was estimated as 18 cm. It is possible that with the simplified model
structure that L1 is now estimable and does not need to be fixed. In general, it is better to estimate
such parameters than to fix them, so this would be a good potential improvement to evaluate in
the next assessment’s stepwise development.

The biological data from the yellowfin stock assessment suffer from some geographic gaps in the
data. Ideally, all data components should be sampled so that the observations reflect the entire
stock. There are ongoing and planned research projects that relate to this objective, which will
directly improve the reliability of the yellowfin stock assessment results, including the estimation
of the relative stock status.

In the near future, there is a need to explore and develop alternative stock assessment software
platforms to succeed MFCL that are capable of appropriately utilising the data relevant to WCPFC
tuna stocks.

8.5 Main assessment conclusions

The general conclusions of this assessment are as follows:

• The spawning potential of the stock has become more depleted across all model regions until
around 2010, after which it has become more stable, or shown a slight increase.
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• Average fishing mortality rates for juvenile and adult age classes have increased throughout the
period of the assessment, although more so for juveniles which have experienced considerably
higher fishing mortality than adults. In the recent period a sharp increase in juvenile fishing
mortality is estimated, while adult fishing mortality has stabilised.

• Overall, median depletion from the model grid for the recent period (2018–2021; SBrecent/SBF =0)
is estimated at 0.47 (80 percentile range including estimation and structural uncertainty 0.42–
0.52, full range 0.36–0.59).

• No models from the uncertainty grid, including estimation uncertainty, estimate the stock to
be below the LRP of 20%SBF =0.

• CMM 2021-01 contains an objective to maintain the spawning biomass depletion ratio above
the average of 2012-2015, SB2012−2015/SBF =0, which is a value of 0.44 calculated across the
unweighted grid. Based upon the estimates of SBrecent/SBF =0 of 0.47, this objective has
currently been met.

• Recent (2017–2020) median fishing mortality (Frecent/FMSY) was 0.50 (80 percentile range,
including estimation and structural uncertainty 0.41–0.62, full range 0.26–0.78).

• Assessment results suggest that the yellowfin stock in the WCPO is not overfished, nor un-
dergoing overfishing.
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10 Tables

Table 1: Definition of fisheries for the 2023 yellowfin stock assessment in the WCPO.

% Catch % Catch
Fishery Fishery label Flag Region Sel group last 10 yrs all yrs
F1 1.LL.ALL.1 ALL 1 1 0.9 1.7
F2 2.LL.ALL.1 ALL 1 2 0.5 0.7
F3 3.LL.US.1 US 1 3 0.2 0.1
F4 4.LL.ALL.4 ALL 4 4 1.0 3.5
F5 5.LL.OS.4 OS 4 8 1.4 0.8
F6 6.LL.OS.2 OS 2 9 7.5 8.5
F7 7.LL.ALL.2 ALL 2 10 0.1 1.3
F8 8.LL.ALL.3 ALL 3 11 0.7 1.0
F9 9.LL.ALL.4 AU 4 5 2.6 4.7
F10 10.LL.AU.5 ALL 5 12 0.2 0.2
F11 11.LL.ALL.5 ALL 5 7 1.3 1.8
F12 12.LL.ALL.5 ALL 5 6 1.7 1.3
F13 13.PS.ASS.4a ALL 4 13 6.9 10.4
F14 14.PS.UNA.4 ALL 4 16 10.0 8.9
F15 15.PS.ASS.4b ALL 4 14 6.8 4.6
F16 16.PS.UNA.4 ALL 4 17 7.4 4.2
F17 17.MISC.PH.2 PH 2 19 5.6 10.6
F18 18.HL.PHID.2 ID.PH 2 20 6.2 4.0
F19 19.PS.JP.1 JP 1 21 0.7 1.3
F20 20.PL.JP.1 JP 1 22 0.5 1.3
F21 21.PL.ALL.4 ALL 4 23 0.0 0.1
F22 22.PL.ALL.3 ALL 3 24 0.0 0.3
F23 23.MISC.ID.2 ID 2 25 15.9 8.9
F24 24.PS.PHID.2 ID.PH 2 28 1.9 2.6
F25 25.PS.ASS.3 ALL 3 15 4.1 5.9
F26 26.PS.UNA.3 ALL 3 18 11.3 6.5
F27 27.LL.AU.5 AU 5 12 0.0 0.0
F28 28.PL.ALL.2 ALL 2 26 3.3 3.0
F29 29.LL.ALL.5 ALL 5 7 0.0 0.0
F30 30.PS.ASS.2 ALL 2 13 0.0 0.7
F31 31.PS.UNA.2 ALL 2 16 0.3 0.4
F32 32.MISC.VN.2 VN 2 27 0.8 0.5
Index fisheries
F33 LL-ALL-1 ALL 1 29
F34 LL-ALL-2 ALL 2 29
F35 LL-ALL-3 ALL 3 29
F36 LL-ALL-4 ALL 4 29
F37 LL-ALL-5 ALL 5 29
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Table 2: Definition of fisheries and associated tag recapture and reporting rate groupings (three
columns at right) for the 2023 MULTIFAN-CL yellowfin tuna stock assessment in the WCPO.
RTTP=Regional Tuna Tagging Program, PTTP=Pacific Tuna Tagging Program, JPTP – Japanese
Tagging Program. An asterisk (*) indicates groups with 5 or fewer tag returns for which reporting
rates were not estimated. The Recap group column indicates the fishery groupings for tag recapture
data that were necessary due to tag returns by purse seine fisheries rarely including information on
the set type (associated or unassociated) in which recaptures occurred.

Fishery Model Recap
Fishery label Flag region group RTTP PTTP JPTP
F1 1.LL.ALL.1 ALL 1 1 RTTP L RTTP L JPTP L
F2 2.LL.ALL.1 ALL 1 2 RTTP L RTTP L JPTP L
F3 3.LL.US.1 US 1 3 RTTP L(US)* RTTP L(US)* JPTP L(US)*
F4 4.LL.ALL.4 ALL 4 4 RTTP L RTTP L JPTP L
F5 5.LL.OS.4 OS 4 5 RTTP L RTTP L JPTP L
F6 6.LL.OS.2 OS 2 6 RTTP L RTTP L JPTP L
F7 7.LL.ALL.2 ALL 2 7 RTTP L RTTP L JPTP L
F8 8.LL.ALL.3 ALL 3 8 RTTP L RTTP L JPTP L
F9 9.LL.ALL.4 AU 4 9 RTTP L RTTP L JPTP L
F10 10.LL.AU.5 ALL 5 10 RTTP L(AU) RTTP L(AU) JPTP L(AU)*
F11 11.LL.ALL.5 ALL 5 11 RTTP L RTTP L JPTP L
F12 12.LL.ALL.5 ALL 5 12 RTTP L RTTP L JPTP L
F13 13.PS.ASS.4a ALL 4 13 RTTP S(a)-4 PTTP S(a)-4 JPTP S(a)-4*
F14 14.PS.UNA.4 ALL 4 13 RTTP S(a)-4 PTTP S(a)-4 JPTP S(a)-4*
F15 15.PS.ASS.4b ALL 4 14 RTTP S(b)-4 PTTP S(b)-4 JPTP S(b)-4
F16 16.PS.UNA.4 ALL 4 14 RTTP S(b)-4 PTTP S(b)-4 JPTP S(b)-4
F17 17.MISC.PH.2 PH 2 15 RTTP S(PH,ID)-2 PTTP S(PH,ID)-2 JPTP S(PH,ID)-2
F18 18.HL.PHID.2 ID.PH 2 15 RTTP S(PH,ID)-2 PTTP S(PH,ID)-2 JPTP S(PH,ID)-2
F19 19.PS.JP.1 JP 1 16 RTTP S(JP)-1* PTTP S(JP)-1* JPTP S(JP)-1
F20 20.PL.JP.1 JP 1 17 RTTP P(JP)-1* PTTP P(JP)-1* JPTP P(JP)-1
F21 21.PL.ALL.4 ALL 4 18 RTTP P-3-4 PTTP P-3-4 JPTP P-3-4*
F22 22.PL.ALL.3 ALL 3 19 RTTP P-3-4 PTTP P-3-4 JPTP S-3*
F23 23.MISC.ID.2 ID 2 15 RTTP S(PH,ID)-2 PTTP S(PH,ID)-2 JPTP S(PH,ID)-2
F24 24.PS.PHID.2 ID.PH 2 15 RTTP S(PH,ID)-2 PTTP S(PH,ID)-2 JPTP S(PH,ID)-2
F25 25.PS.ASS.3 ALL 3 20 RTTP S-3 PTTP S-3 JPTP P-3*
F26 26.PS.UNA.3 ALL 3 20 RTTP S-3 PTTP S-3 JPTP P-3*
F27 27.LL.AU.5 AU 5 21 RTTP L(AU) RTTP L(AU) JPTP L(AU)*
F28 28.PL.ALL.2 ALL 2 22 RTTP P-2 PTTP P-2 JPTP P-2*
F29 29.LL.ALL.5 ALL 5 23 RTTP L RTTP L JPTP L
F30 30.PS.ASS.2 ALL 2 24 RTTP S-2 PTTP S-2* JPTP S-2*
F31 31.PS.UNA.2 ALL 2 24 RTTP S-2 PTTP S-2* JPTP S-2*
F32 32.MISC.VN.2 VN 2 25 RTTP Z(VN)-2* PTTP Z(VN)-2* JPTP Z(VN)-2*
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Table 3: Structural uncertainty grid for the 2023 WCPO yellowfin tuna stock assessment. Bold
values indicate settings for the diagnostic model.

Axis Levels Option 1 Option 2 Option 3
Steepness 3 0.65 0.8 0.95
Tag mixing (# quarters) 2 1 2
Size data weighting divisor 3 10 20 40
Age data weighting 3 0.5 0.75 1

Table 4: Description of symbols used in the yield and stock status analyses.

Symbol Description
C latest Catch in the last year of the assessment (2021)
Frecent Average fishing mortality-at-age for a recent period (2017–2020)
YFrecent Equilibrium yield at average fishing mortality for a recent period (2017–2020)
fmult Fishing mortality multiplier at maximum sustainable yield (MSY)
FMSY Fishing mortality-at-age producing the maximum sustainable yield (MSY)
MSY Equilibrium yield at FMSY
Frecent/FMSY Average fishing mortality-at-age for a recent period (2017–2020) relative to FMSY
SBlatest Spawning biomass in the latest time period (2021)
SBrecent Spawning biomass for a recent period (2018–2021)
SBF =0 Average spawning biomass predicted in the absence of fishing for the period 2011–2020
SBMSY Spawning biomass that will produce the maximum sustainable yield (MSY)
SBMSY/SBF =0 Spawning biomass that produces maximum sustainable yield (MSY) relative to the average

spawning biomass predicted to occur in the absence of fishing for the period 2011–2020
SBlatest/SBF =0 Spawning biomass in the latest time period (2021) relative to the average spawning biomass

predicted to occur in the absence of fishing for the period 2011–2020
SBlatest/SBMSY Spawning biomass in the latest time period (2021) relative to that which will produce

the maximum sustainable yield (MSY)
SBrecent/SBF =0 Spawning biomass for a recent period (2018–2021) relative to the average spawning

biomass predicted to occur in the absence of fishing for the period 2011–2020
SBrecent/SBMSY Spawning biomass for a recent period (2018–2021) relative to the spawning biomass

that produces maximum sustainable yield (MSY)
20%SBF =0 WCPFC adopted limit reference point – 20% of spawning biomass in the

absence of fishing average over years t − 10 to t − 1 (2011–2020)
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Table 5: Summary of reference points over the 54 individual models in the structural uncertainty
grid, along with results incorporating estimation uncertainty.

Mean Median Min 10%ile 90%ile Max Diagnostic model
C latest 751657 751856 750785 750860 752268 752337 751908
FMSY 0.07 0.07 0.06 0.06 0.09 0.09 0.07
fmult 1.96 2.00 1.47 1.64 2.38 2.50 1.89
Frecent/FMSY 0.51 0.50 0.40 0.42 0.61 0.68 0.53
MSY 697874 700400 616800 644320 739560 771600 671600
SB0 5761796 5729000 4455000 4817200 6640900 7279000 5216000
SBF =0 5633743 5603267 4624645 4907798 6280841 6825888 5173954
SBlatest/SB0 0.49 0.50 0.41 0.44 0.54 0.56 0.49
SBlatest/SBF =0 0.50 0.50 0.41 0.45 0.55 0.58 0.49
SBlatest/SBMSY 2.49 2.48 1.78 1.91 3.11 3.16 2.44
SBMSY 1177733 1160500 740400 838260 1538200 1707000 1044000
SBMSY/SB0 0.20 0.20 0.17 0.17 0.23 0.24 0.20
SBMSY/SBF =0 0.21 0.21 0.16 0.17 0.24 0.25 0.20
SBrecent/SBF =0 0.47 0.47 0.38 0.42 0.52 0.54 0.46
SBrecent/SBMSY 2.31 2.30 1.68 1.77 2.89 2.94 2.27
YFrecent 157188 155300 141400 145150 172270 173300 152500
Including estimation uncertainty:

Mean Median Min 10%ile 90%ile Max
SBrecent/SBF =0 0.47 0.47 0.36 0.42 0.52 0.59
Frecent/FMSY 0.51 0.50 0.26 0.41 0.62 0.78
SBrecent/SBMSY 2.31 2.28 0.93 1.73 2.95 3.59
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Table 6: Overview of grid models. Each grid model was jittered 20 times and the model run that
had the best objective function value was selected. The columns show the final gradient, final
dynamic depletion, number of negative eigenvalues, and whether the Hessian was positive definite.

Grid model Njitters ObjFun Gradient Depletion Neigen PDH
1 m1_s10_a050_h65 20 -838059.98 0.00229 0.431 3
2 m1_s10_a050_h80 20 -838060.01 0.00018 0.468 3
3 m1_s10_a050_h95 20 -838060.02 0.00414 0.492 2
4 m1_s10_a075_h65 20 -837227.54 0.01139 0.430 4
5 m1_s10_a075_h80 20 -837227.56 0.01899 0.467 4
6 m1_s10_a075_h95 20 -837227.58 0.00139 0.491 4
7 m1_s10_a100_h65 20 -836390.85 0.00095 0.440 0 Yes
8 m1_s10_a100_h80 20 -836390.87 0.00016 0.476 0 Yes
9 m1_s10_a100_h95 20 -836390.89 0.00637 0.500 0 Yes
10 m1_s20_a050_h65 20 -747997.99 0.00398 0.455 3
11 m1_s20_a050_h80 20 -747998.01 0.00051 0.495 3
12 m1_s20_a050_h95 20 -747998.02 0.00034 0.521 3
13 m1_s20_a075_h65 20 -747182.59 0.00722 0.462 4
14 m1_s20_a075_h80 20 -747182.61 0.00077 0.501 4
15 m1_s20_a075_h95 20 -747182.62 0.00242 0.528 5
16 m1_s20_a100_h65 20 -746365.46 0.00184 0.464 3
17 m1_s20_a100_h80 20 -746365.49 0.00291 0.504 2
18 m1_s20_a100_h95 20 -746365.50 0.00804 0.530 2
19 m1_s40_a050_h65 20 -650118.01 0.00015 0.435 0 Yes
20 m1_s40_a050_h80 20 -650118.04 0.00540 0.478 0 Yes
21 m1_s40_a050_h95 20 -650118.05 0.00010 0.507 0 Yes
22 m1_s40_a075_h65 20 -649312.61 0.00044 0.470 3
23 m1_s40_a075_h80 20 -649312.63 0.00329 0.511 1
24 m1_s40_a075_h95 20 -649312.65 0.00181 0.539 3
25 m1_s40_a100_h65 20 -648510.68 0.00398 0.447 3
26 m1_s40_a100_h80 20 -648510.69 0.00235 0.490 1
27 m1_s40_a100_h95 20 -648510.71 0.00018 0.518 2
28 m2_s10_a050_h65 20 -839609.44 0.00024 0.396 3
29 m2_s10_a050_h80 20 -839609.46 0.00691 0.434 4
30 m2_s10_a050_h95 20 -839609.49 0.00025 0.460 3
31 m2_s10_a075_h65 20 -838777.79 0.00058 0.383 3
32 m2_s10_a075_h80 20 -838777.83 0.00534 0.422 3
33 m2_s10_a075_h95 20 -838777.85 0.00033 0.448 3
34 m2_s10_a100_h65 20 -837950.60 0.00546 0.383 4
35 m2_s10_a100_h80 20 -837950.64 0.00170 0.422 4
36 m2_s10_a100_h95 20 -837950.66 0.00231 0.448 3
37 m2_s20_a050_h65 20 -749472.93 0.00455 0.412 1
38 m2_s20_a050_h80 20 -749472.97 0.00109 0.454 1
39 m2_s20_a050_h95 20 -749472.98 0.00356 0.482 1
40 m2_s20_a075_h65 20 -748647.13 0.00236 0.417 1
41 m2_s20_a075_h80 20 -748647.17 0.00034 0.459 1
42 m2_s20_a075_h95 20 -748647.18 0.00147 0.487 1
43 m2_s20_a100_h65 20 -747819.87 0.00204 0.423 1
44 m2_s20_a100_h80 20 -747819.90 0.01627 0.464 1
45 m2_s20_a100_h95 20 -747819.92 0.00417 0.492 1
46 m2_s40_a050_h65 20 -651492.37 0.00078 0.426 0 Yes
47 m2_s40_a050_h80 20 -651492.41 0.00089 0.471 0 Yes
48 m2_s40_a050_h95 20 -651492.42 0.00748 0.501 0 Yes
49 m2_s40_a075_h65 20 -650675.52 0.00025 0.440 3
50 m2_s40_a075_h80 20 -650675.55 0.00049 0.484 3
51 m2_s40_a075_h95 20 -650675.56 0.00081 0.513 2
52 m2_s40_a100_h65 20 -649867.26 0.00464 0.443 3
53 m2_s40_a100_h80 20 -649867.29 0.00061 0.487 3
54 m2_s40_a100_h95 20 -649867.30 0.00279 0.516 376



11 Figures

Figure 1: The geographical area covered by the stock assessment and the boundaries of the model
regions for the 5 region structure that was used for 2023 WCPO yellowfin tuna assessment (top),
and (bottom) the previous 9 region model structure that was used as the base structure for the
stepwise model development.
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Figure 2: Map of tag recaptures. The panels show the distributions of release and recapture dis-
placements for the different tagging programs: Pacific Tuna Tagging Program (PTTP), Regional
Tuna Tagging Program (RTTP) and the Japanese Tagging Program (JPTP). Dots indicate recap-
ture locations. Red dots in RTTP plot are the targeted Coral Sea tagging cruises.
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Figure 3: Annual catches of yellowfin by gear type in the WCPO area covered by the assessment.
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Figure 4: Annual catches of yellowfin by gear type for each of the five model regions.
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Figure 5: Distribution and magnitude of yellowfin catches (mt) by gear type summed over the last
10 years (2012–2021) for 5 × 5 degree cells.
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Figure 6: Summary of data coverage by fishery for the WCPO 2023 yellowfin assessment. I=index fisheries, L=longline, P=pole
and line, S=purse seine (unspecified), SA=purse seine associated, SU=purse seine unassociated, Z=miscellaneous gears.
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Figure 7: Time series of annual catches (numbers of fish) by fishery: longline.
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Figure 8: Time series of annual catches (mt) by fishery: purse seine.
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Figure 9: Time series of annual catches (mt) by fishery: other.
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Figure 10: Spatial distribution of nominal longline CPUE (all fleets) for yellowfin in the Pacific.
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Figure 11: Standardised (black line) and nominal (orange) CPUE for the longline index fisheries
in each model. Gray band is 95% CI. Triangular moving average smoothing function applied to
demonstrate overall trend (green line; smoothing window = 10).
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Figure 12: Plots of samples sizes (capped at 1,000) for length composition for each fishery in the model across the model time
period.
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Figure 13: Plots of samples sizes (capped at 1,000) for weight composition for each fishery in the model across the model time
period.
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Figure 14: Summary plots of the number of releases, recaptures, and recapture rate of tags, by tagging program and region.
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Figure 15: Growth curves compared between the 2020 diagnostic model and 2023 diagnostic model
(top). Transposed version 2023 diagnostic model for conditional-age-at-length, vertical distribution
of the points indicates the distributions of observed ages for each length (bottom). Points are age-
length samples for the 2023 assessment.
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Figure 16: Maturity-at-age ogive compared between 2020 diagnostic model (red) and 2023 diag-
nostic model (black).
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Figure 17: Natural mortality-at-age (quarters) for the 2020 diagnostic model (red) and the 2023
diagnostic model (black).
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Figure 18: Estimated spawning potential, SBt, trajectories for each of the main steps in the stepwise model runs, final diagnostic
model is black.
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Figure 19: Estimated dynamic spawning depletion, SBt/SBt,F =0, trajectories for each of the main steps in the stepwise model
runs, final diagnostic model is black.
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Figure 20: Comparison of model estimated (black line) and observed standardised CPUE (blue
dots) for the longline index fisheries in each region.
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Figure 21: Plots of residuals between observed and predicted standardised CPUE for the longline
index fisheries in each region.
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Figure 22: Composite (all time periods combined), observed (blue histograms), and predicted (black
line) length frequency for fisheries with length frequency data for the diagnostic model.
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Figure 23: Composite (all time periods combined), observed (blue histograms), and predicted (black
line) weight frequency for longline fisheries for the diagnostic model.
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Figure 24: A comparison of the observed (red points) and predicted (black line) median fish length (FL, cm) for the fisheries with
length data in the diagnostic model. The uncertainty intervals (gray shading) represent the values encompassed by the 25% and
75% quantiles. Sampling data are by quarter and only length samples more than 30 fish per quarter are plotted.
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Figure 25: A comparison of the observed (red points) and predicted (black line) median fish weights (kg) for the longline fisheries
in diagnostic model. The uncertainty intervals (gray shading) represent the values encompassed by the 25% and 75% quantiles.
Sampling data are by quarter and only length samples more than 30 fish per quarter are plotted.
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Figure 26: Observed (black points) and model-predicted (blue line) tag attrition across all tag
release events for the diagnostic model.
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Figure 27: Observed (black points) and model-predicted (blue line) tag attrition by tagging pro-
gramme for the diagnostic model.
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Figure 28: Observed (black points) and model-predicted (blue line) tag attrition by region for the
diagnostic model.
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Figure 29: Observed (black points) and model-predicted (blue line) tag returns over time, with
returns in the mixing period removed, for the diagnostic model across all tag release events with
all tag recapture groupings aggregated.
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Figure 30: Observed (black points) and model-predicted (blue line) tag returns over time, with
returns in the mixing period removed, for the diagnostic model for longline fisheries.

106



Figure 31: Observed (black points) and model-predicted (blue line) tag returns over time, with
returns in the mixing period removed, for the diagnostic model for other (non-longline) fisheries.
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Figure 32: Sample locations of otoliths (n = 1471) used in the assessment model to inform internal
growth estimation. Single otoliths are shown as pink circles and overlapping otoliths as progressively
more saturated red circles.
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Figure 33: Age-specific selectivity coefficients for longline fisheries with shared selectivities, with
one panel for index fisheries which share selectivity across model regions.
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Figure 34: Weight-specific selectivity coefficients for longline fisheries with shared selectivities, with
one panel for index fisheries which share selectivity across model regions.
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Figure 35: Age-specific selectivity coefficients by groups of fisheries with shared selectivities for
miscellaneous and pole and line fisheries.
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Figure 36: Length-specific selectivity coefficients by groups of fisheries with shared selectivities for
miscellaneous and pole and line fisheries.
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Figure 37: (Top) Observed proportion of tags returned by region of release (columns), region
of recapture (rows), and quarter of recapture (panel) where the color of the tile indicates the
proportion of tags returned from the region of releases, numbers in boxes indicate the actual
numbers. (Bottom) Estimated movement probabilities by quarter for the diagnostic case model.
The red numbers (horizontal axis) indicate the source model region (From) and the green numbers
(vertical axis) indicate the receiving (To) regions. The color of the tile shows the magnitude of the
movement rate (proportion of individuals moving from region x to region y in that quarter), with
each column adding up to 1.
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Figure 38: Season-specific movement probabilities estimated by the diagnostic model.
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Figure 39: Stylised estimated movement rates between stock assessment regions (all ages and
seasons) for the diagnostic case. Estimated movement is shown FROM the model regions on the
left TO the model regions on the right.
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Figure 40: Estimated reporting rates for the diagnostic model (red lines) and the prior distribution
for each reporting rate group (black lines). The imposed upper bound (0.99) on the reporting rate
parameters is shown as a blue dashed line. Reporting rates can be estimated separately for each
release program and recapture fishery group but in practice are aggregated over some recapture
groups to reduce dimensionality.
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Figure 41: Time series of estimated annual recruitment summed across regions for the diagnostic
model.
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Figure 42: Time series of estimated annual recruitment by model region for the diagnostic model.
Note that the scale of the y-axis is not constant across regions.
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Figure 43: Estimated recruitment distribution by region and quarter.
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Figure 44: Proportional distribution of unfished total biomass in each region apportioned by the
source region of the fish, for the diagnostic model. The colour of the originating region is presented
in the legend. The biomass distributions are calculated based on the long-term average distribution
of recruitment between regions, estimated movement parameters, and natural mortality.
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Figure 45: Time series of estimated annual spawning potential, recruitment and total biomass by
model region for the diagnostic model, showing the relative proportions among regions. Note the
data represent the averages of the quarterly model time steps for each year for spawning potential
and total biomass and the sum of the quarterly recruitment estimates for annual recruitment.
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Figure 46: Estimated relationship between recruitment and spawning potential based on annual
values for the diagnostic model. The darkness of the circles changes from light (more recent) to
darker (earlier) through time.
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Figure 47: Estimated temporal spawning potential, SBt, by model region, and for all model regions
summed for the diagnostic model. Note that the scale of the y-axis is not constant across regions.
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Figure 48: Estimated temporal spawning potential depletion, SBt/SBt,F =0, by model region, and
for all model regions summed for the diagnostic model.
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Figure 49: Comparison of the estimated annual spawning potential trajectories (lower blue lines)
with the spawning potential trajectories predicted to have occurred in the absence of fishing (upper
red lines) for each region and overall, for the diagnostic model. Note the scales of the Y-axes vary.
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Figure 50: Estimated annual average adult (solid line) and juvenile (dashed line) fishing mortality
for the diagnostic model.
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Figure 51: Estimated age-specific fishing mortality for the diagnostic model, by region and overall.
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Figure 52: Estimated proportion at age (quarters) and fishing mortality at age (right), by year, at
decade intervals, for the diagnostic model.
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Figure 53: Estimated dynamic spawning depletion (top) and spawning potential (bottom) for
the one-off sensitivities from the 2023 diagnostic model for tag mixing period. m=tag mixing,
h=steepness, s=size data, a=age data.
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Figure 54: Estimated dynamic spawning depletion (top) and spawning potential (bottom) for
the one-off sensitivities from the 2023 diagnostic model for steepness of the stock recruitment
relationship. m=tag mixing, h=steepness, s=size data, a=age data.
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Figure 55: Estimated dynamic spawning depletion (top) and spawning potential (bottom) for
the one-off sensitivities from the 2023 diagnostic model for size data weighting. m=tag mixing,
h=steepness, s=size data, a=age data.
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Figure 56: Estimated dynamic spawning depletion (top) and spawning potential (bottom) for
the one-off sensitivities from the 2023 diagnostic model for age data weighting. m=tag mixing,
h=steepness, s=size data, a=age data.
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Figure 57: Box and violin plots summarizing the estimated Frecent/FMSY (top) and SBrecent/SBF =0
(bottom) for each of the models in the structural uncertainty grid grouped by uncertainty axes
(steepness, tag mixing, size data weighting, age data weighting). The horizontal lines are the 25th,
50th, and 75th percentiles. The shaded area shows the probability distribution (or density) of the
estimates for all models in the structural uncertainty grid. These plots only include the structural
uncertainty, not the estimation uncertainty.
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Figure 58: Box and violin plots showing the distribution of recruitment across model regions and
quarters for all models in the uncertainty grid. The horizontal lines are the 25th, 50th, and 75th
percentiles. The shaded area shows the probability distribution (or density) of the estimates of all
models of the structural uncertainty grid. These plots only include the structural uncertainty, not
the estimation uncertainty.
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Figure 59: (Left) Trajectories of spawning potential depletion for the individual model runs included in the structural uncertainty
grid over the period 1952-2021.(Right) Estimated spawning depletion across all models in the structural uncertainty grid over the
period 1952-2021. The dashed line represents the median, the lighter band shows the 25th and 75th percentiles, and the dark band
shows the 10th and 90th percentiles of the model estimates. The bar at the right of each ribbon indicates the median (black dots)
with the 10th and 90th percentiles for SBrecent/SBF =0.
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Figure 60: (Left) Trajectories of spawning potential for the individual model runs included in the structural uncertainty grid over
the period 1952-2021. (Right) Estimated spawning potential across all models in the structural uncertainty grid over the period
1952-2021. The dashed line represents the median, the lighter band shows the 25th and 75th percentiles, and the dark band shows
the 10th and 90th percentiles of the model estimates. The bar at the right of each ribbon indicates the median (black dots) with
the 10th and 90th percentiles for SBrecent.
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Figure 61: Distribution of SBrecent/SBF =0 integrating model and estimation uncertainty, presented
by uncertainty axis (panels) and axis element values (colours).
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Figure 62: Distribution of Frecent/FMSY integrating model and estimation uncertainty, presented by
uncertainty axis (panels) and axis element values (colours).

138



Figure 63: Distribution of SBrecent/SBMSY integrating model and estimation uncertainty, presented
by uncertainty axis (panels) and axis element values (colours).
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Figure 64: Majuro plot (top) and Kobe plot (bottom) summarising the results for each of the
models in the structural uncertainty grid for the recent period (2018-2021). The yellow point is the
2023 diagnostic model and the red point is the median.
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Figure 65: Time dynamic Majuro (top) and Kobe (bottom) plots summarising the results for the
diagnostic case model over the model period. The green point is the estimated 2021 status, the
redder the point the further back in time.
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Figure 66: Estimates of reduction in spawning potential due to fishing (Fishery Impact =
1− SBt/SBt,F =0) by region, and over all regions (lower right panel), attributed to various fish-
ery groups for the diagnostic model.
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Figure 67: Estimated yield as a function of fishing mortality multiplier for the diagnostic model
and a few of the one-off sensitivity models. The red dashed line indicates the equilibrium yield at
current fishing mortality.
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Figure 68: History of the annual estimates of MSY (red line) for the diagnostic model compared
with annual catch by the main gear types. Note that this is a ‘dynamic’ MSY which is explained
further in subsubsection 7.5.4.
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12 Appendices

12.1 Likelihood profiles

The approach for calculating a likelihood profile of the total population scaling parameter is outlined
in subsection 5.6. The profile reflects the loss of fit over all the data, i.e., the overall objective
function value, caused by changing the population scale from that of the maximum likelihood
estimated value. A range of fixed values were used until the best fit for each data source was found.
The likelihood profile for the diagnostic model is shown in Figure 12.1 for narrow and wide widows
around the maximum likelihood estimated value.

Likelihood profiles on the total population scaling parameter are also included for individual fish-
eries length and weight compositions to explore sources of conflict in these data, Figure 12.2 and
Figure 12.3.
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Figure 12.1: Profiles of the total log-likelihood with respect to average total biomass in million
mt across a range of fixed values for the model data sources, the black line indicates the total
likelihood. The top plot shows a narrow window around the maximum likelihood estimated value
and the bottom plot shows a wider window.
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Figure 12.2: Profiles of the total log-likelihood with respect to average total biomass in million mt
across a range of fixed values for the weight composition data by fishery and regions, the black line
indicates the total weight composition likelihood. The top plot shows a narrow window around the
total maximum likelihood estimated value and the bottom plot shows a wider window.
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Figure 12.3: Profiles of the total log-likelihood with respect to average total biomass in million mt
across a range of fixed values for the length composition data by fishery and regions, the black line
indicates the total length composition likelihood. The top plot shows a narrow window around the
total maximum likelihood estimated value and the bottom plot shows a wider window.
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12.2 Retrospective analyses

Retrospective analysis involves rerunning the 2023 diagnostic model by consecutively removing
successive years of data to estimate model bias. A series of 7 retrospective models were fitted
starting with the full dataset (through 2021), followed by models with the retrospective removal
of all input data for each year peel. Spawning potential and spawning depletion trajectories are
shown in Figure 12.4. Mohns rho is calculated for the retrospective models of spawning depletion.

Spawning potential and spawning depletion trajectories for each of these retrospective peels are
shown in Figure 12.4. Each peel produces estimates of spawning potential and spawning depletion
with very similar dynamics to the diagnostic model. The value of Mohn’s rho is 0.084 for the
spawning depletion retrospectives, and −0.101 for spawning potential (Figure 12.4). As a general
rule of thumb, values of Mohn’s rho higher than 0.20 or lower than −0.15 are cause for concern in
an assessment (Hurtado-Ferro et al., 2015). The values obtained for the 2023 yellowfin diagnostic
model indicate that there is no strong concern for retrospective bias with the 2023 diagnostic model.
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Figure 12.4: Estimated spawning potential (top) and spawning depletion (bottom) for the retro-
spective models.
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12.3 ‘Status quo’ stochastic stock projections for WCPO yellowfin tuna

These will be completed for the Tropical Tuna Measure meeting.
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