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Revision 2:

This revision of the paper adds:

• Corrected y-axis numbers on annual recruitment plots, calculated as the sum rather than the
average across seasons, effectively multiplying by four (Figures 45, 46, 49).

• Corrected y-axis labels on Majuro and Kobe plots, adding the subscript ‘recent’ (Figure 68).

Revision 1:

This is a revision of the first complete version, which was labelled 2.01. This revision of the paper
adds:

• Corrected proportion-by-source-region plot Figure 48

• Corrected Majuro and Kobe plots Figure 68

• New dynamic MSY plot Figure 72
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1 Executive Summary

This paper describes the 2023 stock assessment of bigeye tuna Thunnus obesus in the western
and central Pacific Ocean. An additional three years of data were available since the previous
assessment in 2020, and the model extends through to the end of 2021. The assessment applies the
same 9–region model structure that was used for management advice from the 2020 assessment.
New developments to the stock assessment include:

• Conversion from a catch-errors to a catch-conditioned modelling framework, and the inclusion
of a likelihood component for the CPUE from the index fisheries.

• Change from using VAST to sdmTMB to standardise the input CPUE series and the inclusion
of additional covariates in the CPUE model.

• Different CPUE variances used for the CPUE associated with each index fishery, applying a
new approach to estimate these variances.

• Internal estimation of natural mortality using the Lorenzen functional form for natural mor-
tality at age.

• Additional procedures adopted to achieve more reliable model convergence, including exten-
sive jittering and checking the Hessian status for all grid models.

• Integration of parameter estimation uncertainty with model-based uncertainty across the
model grid for the key management reference points.

• Additional size composition filtering.

• Modifications to selectivity estimation settings, changes to fisheries with non-decreasing se-
lectivity.

• Adoption of revised tagger effect modelling framework, reverting to assumptions similar to
those used in 2017.

• Changes to size data weighting used in the structural uncertainty grid.

• Use of conditional age-at-length data, and internal estimation of growth, with alternative
weighting of these data included in the structural uncertainty grid.

This assessment is supported by the analysis of catch and effort data for longline fisheries to provide
regional abundance indices (Teears et al., 2023), revised analysis of tagger effects and tag reporting
rates (Peatman et al., 2023a; Peatman, 2023), size composition data analyses and preparation
(Peatman et al., 2023b), improvement to data for length-weight conversion factors (Macdonald
et al., 2023b) and developments to MFCL software (Davies et al., 2023).
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The assessment implemented a more rigorous approach to achieve more reliable and stable model
convergence than seen in previous bigeye assessments, which was beneficial in achieving a positive
definite Hessian for the 2023 diagnostic model. Subject to the caveat that models in the step-
wise development did not involve the extensive level of jittering analysis that was applied to the
diagnostic and grid models and, as a result, stepwise models are unlikely to have converged, the
most influential steps in the development of the 2023 diagnostic model appeared to be: restricting
the constraint of non-decreasing selectivity to a single fishery and estimating growth internally,
which increased the final estimate of SB/SBF =0; and applying the revised tagger effects method
(as recommended by an expert workshop and supported by the Pre-assessment Workshop), which
decreased the final estimate of SB/SBF =0. The 2020 bigeye stock assessment estimated the median
SBrecent/SBF =0 across the model grid to be 0.41, where recent was the period 2015-2018. Calcu-
lating the equivalent median depletion from the 2023 stock assessment grid, SB2015−2018/SBF =0

is 0.35. Overall, the current diagnostic model estimates a more pessimistic stock status, or lower
SB/SBF =0, than the 2020 diagnostic model.

In addition to the diagnostic model, we report the results of one-off sensitivities to explore the
impact of key data and model assumptions for the diagnostic model on the stock assessment results
and conclusions. We also undertook a structural uncertainty analysis (for an uncertainty grid with
54 models) for consideration in developing management advice that includes combinations of those
areas of uncertainty considered important. Finally, we have also estimated the parameter (estima-
tion) uncertainty for the key management reference points SBrecent/SBF =0 and Frecent/FMSY which
is combined with the structural uncertainty to provide the full uncertainty for these management
quantities. The ability to include estimation uncertainty in addition to structural uncertainty for
the key management quantities, SBrecent/SBF =0 and Frecent/FMSY, is an improvement from previous
assessments. However, in this case including estimation uncertainty did not influence the manage-
ment advice. It is, however, recommended that management advice is formulated using the results
of the structural uncertainty grid combined with the estimation uncertainty for SBrecent/SBF =0

and Frecent/FMSY. The results below are based on equal weighting of all grid models.

Across the 54 models in the structural uncertainty grid, the most important factors when evaluating
stock status were; the assumed tag mixing period and the steepness of the stock recruitment rela-
tionship, followed by weighting of the size composition data. The move away from using the complex
fixed functional form for natural mortality at age function, as used in the previous assessment, to
estimating natural mortality internally with a Lorenzen functional form followed recommendations
from various reviews on stock assessment methods, and was supported by a recent tuna stock as-
sessment good practices workshop. The internal estimation of natural mortality allowed natural
mortality to be dropped from the structural uncertainty grid.

The general conclusions of this assessment are as follows:
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• The spawning potential of the stock has become more depleted across all model regions until
around 2010, after which it has become more stable.

• Average fishing mortality rates for juvenile and adult age-classes have increased throughout
the period of the assessment until around 2000, after which they have stabilised, but with
high inter-annual variability for juveniles. Juveniles have experienced considerably higher
fishing mortality than adults.

• Overall, the median depletion from the uncertainty grid for the recent period (2018-2021;
SBrecent/SBF =0) is estimated at 0.35 (80 percentile range including estimation and structural
uncertainty 0.30–0.40, full range 0.25–0.46)

• No models from the uncertainty grid, including estimation uncertainty, estimate the stock to
be below the LRP of 20% SBF =0.

• CMM 2021-01 contains an objective to maintain the spawning biomass depletion ratio above
the average for 2012-2015, SB2012−2015/SBF =0, which is a value of 0.34 calculated across
the unweighted grid. Based upon the estimates of SBrecent/SBF =0 of 0.35 this objective has
currently been met.

• Recent (2017–2020) median fishing mortality (Frecent/FMSY) was 0.59 (80 percentile range,
including estimation and structural uncertainty 0.46–0.74, full range 0.37–0.99).

• Assessment results suggest that the bigeye stock in the WCPO is not overfished, nor under-
going overfishing.

A number of key research needs have been identified in undertaking this assessment that should be
investigated either internally or through directed research. These include:

• Increased representative biological sampling, especially of age data.

• Continued resources to develop staff technical skills, improve software platforms and data
preparation and quality control.

• Greater time and resources to conduct these assessments, to explore these complex models
and data sources.

• Continued collection of more representative tagging data.

• A comprehensive review of size compositional data to ensure the data being used in the
assessment models is representative of the population.

Tag mixing is a key issue for a tag based model and one that deserves more time. Preliminary
analysis of individual tagging events was a good start, but more could potentially be achieved by
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extending this approach. Tags from region 9 are clearly influential and appear to behave differently,
when looking at preliminary Piner plot (which were not finished in time to include in this report).

Data weighting is an area that is difficult given the complexity and running time for these models.
Iterative schemes have been used elsewhere to weight compositional data and conditional age-at-
length data. While running these iterative approaches to convergence is clearly not practical, this
is an area that could be explored.

Additional biological sampling, including age samples, and potentially the use of epigenetic ageing
is very important for these models. The sample size of only 1004 otoliths is a major weakness in the
data input to this assessment. A well balanced statistically designed sampling program to achieve
representative temporal and spatial samples over the full range of the assessment area would be
beneficial to this assessment and an increase in investment will improve the reliability of the model
outputs. As always, quality control over the sampling and sampling protocols is important to avoid
“garbage in, garbage out”.

While the tagging data is very valuable for this assessment, the current tagging programs could be
better balanced spatially and temporally to inform the assessment.

Simpler regional structures are an area that deserves more attention. These assessments are large
and complex, some may say unwieldy, so there is potentially much to gain though judicious sim-
plification. While a simpler structure could have modelling benefits, there are also potential issues
with the eastern boundary. Recaptures of tagged fish demonstrate that fish cross this boundary
and the large catches of bigeye near this boundary warrant consideration of alternatives assessment
structures.
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2 Introduction

This paper presents the 2023 stock assessment of bigeye tuna (Thunnus obesus; BET) in the west-
ern and central Pacific Ocean (WCPO; west of 150◦ W). Assessment of WCPO bigeye tuna has
been conducted regularly since the late 1990s (Langley et al., 2008; Harley et al., 2009, 2010; Davies
et al., 2011; Harley et al., 2014; McKechnie et al., 2017a; Vincent et al., 2018; Ducharme-Barth
et al., 2020a). As in previous assessments, the objectives of the 2023 bigeye tuna assessment are to
estimate population level parameters which indicate the stock status and impacts of fishing, such
as time series of recruitment, biomass, biomass depletion and fishing mortality. We summarize the
stock status in terms of reference points adopted by the Western and Central Pacific Fisheries Com-
mission (WCPFC). The methodology used for the assessment is based on the general approach of
integrated modeling (Fournier and Archibald, 1982), which is carried out using the stock assessment
framework MULTIFAN-CL4 (MFCL version number 2.2.2.0; Fournier et al., 1998; Hampton and
Fournier, 2001; Kleiber et al., 2019). MFCL implements a size-based, age- and spatially-structured
population model. Model parameters are estimated by maximizing an objective function, consisting
of both likelihood (data) and “prior”5 information components (penalties).

Each new assessment of a WCPO tuna stock typically involves updates to fishery catch, effort, and
size composition data, updates to tag-recapture data when tagging data is used, implementation
of new features in the MFCL modeling software, changes to preparatory data analysis, such as
CPUE standardisations, and consideration of new information on biology, population structure
and potentially other population parameters. These changes are an important part of efforts
to continually improve the modeling procedures and more accurately estimate fishing impacts,
biological and population processes and quantities used for management advice. Advice from the
Scientific Committee (SC) on previous assessments, and the annual SPC pre-assessment workshops
(PAW) (Hamer, 2023) guide this ongoing process. Furthermore, due to changes in assessment
staff, new assessments often involves staff that did not participate in the previous versions and
this may also influence differences in how assessments are conducted. Changes to aspects of an
assessment can result in changes to the estimated status of the stock and fishing impacts, and
resultant management advice. It is important to recognize that each new assessment represents
a new estimation of the historical population dynamics and recent stock status, and each new
assessment team strive to provide the best possible assessment with the time and data available.

The assessment uses an ‘uncertainty grid’ of models as the basis for management advice. The
uncertainty grid is a group of models that are run to explore the interactions among selected

4http://www.multifan-cl.org
5Note that any mention of a “prior” in this report does not refer to a prior in the Bayesian sense, though the

effect on the parameter estimate is similar, but rather a penalty placed on the likelihood such that the estimated
parameter does not deviate too much from the specified “prior” value. The magnitude of the deviation from the
“prior” is dependent on the information content of the data and the strength of the likelihood penalty applied.

10



“axes” of uncertainty that relate to biological assumptions, data inputs and data treatment. The
axes are generally selected from one-off sensitivity models of a diagnostic (or base case) model
to indicate uncertainties that have notable effects on the estimates of key model parameters and
management quantities. The variation in estimates of the key management quantities across the
uncertainty grid represents the uncertainty in stock status and should be considered carefully by
managers. This structural or “model” uncertainty is usually more important than the uncertainty
in the estimation of parameters from individual models, referred to as “estimation uncertainty”,
however both are taken into account when documenting the uncertainty in the key management
quantities provided by the assessment.

The 2023 bigeye tuna assessment occurs after the 2022 peer review of the WCPO 2020 yellowfin
tuna assessment (Punt et al., 2023). The peer review outcomes have implications for the current
assessment and these are noted where relevant. Notable new features of the 2023 assessment are
summarised below and this assessment report should be read in conjunction with several supporting
papers, specifically the paper on CPUE analyses and other data inputs (Teears et al., 2023), the
paper size composition data preparations and weighting (Peatman et al., 2023b), the papers on tag
reporting rates and tagger effects estimations (Peatman, 2023; Peatman et al., 2023a), the paper
on improved conversion factors and data on fish weights and lengths (Macdonald et al., 2023a), the
paper on MFCL developments (Davies et al., 2023) and the paper on conceptual models of bigeye
and yellowfin population structure (Hamer et al., 2023). Finally, the planning for this assessment
was informed by the discussion at the 2023 SPC PAW (Hamer, 2023).

Significant changes and improvements to the analysis used in this assessment include the following,
which are discussed in more detail in relevant sections of this report.

• Conversion from a catch-errors to a catch-conditioned approach, and the inclusion of a like-
lihood component for the CPUE from the index fisheries (peer review supported this).

• Change from using VAST to sdmTMB to standardise the input CPUE series and increased
the spatial resolution of the mesh configuration. Various alternative CPUE model structures
and analyses explored resulting in the inclusion of additional covariates in the CPUE model
(peer review recommendation).

• Different CPUE variances were used for the CPUE associated with each index fishery, using
new approaches to estimate these variances. Modifications were required to MFCL to enable
the index fisheries to have separate CPUE variances while maintaining shared selectivity (peer
review recommendation).

• Internal estimation of natural mortality and application of the Lorenzen form of natural
mortality (recommendation of 2023 CAPAM Tuna Good Practices Workshop), also an MFCL
modification to allow input of Lorenzen start parameter values with improved parameter
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scaling.

• Additional procedures implemented for achieving more reliable model convergence, including
jittering and checking positive definite Hessian status for all grid models (improvements to
convergence criteria requested by SC18, recommendation by peer review to provide Hessian
diagnostics).

• Integration of estimation uncertainty with model-based uncertainty across the grid (SC18 re-
quest for inclusion of estimation uncertainty). An MFCL development to enable calculation
of variances only for the key derived quantities required for the uncertainty grid was imple-
mented, reducing the computational load to estimate uncertainty for management quantities.

• Use of MFCL tail compression feature, applied only to zero values (and could apply a further
tail compression proportion of 0.001 in future).

• Improve size composition data filtering approaches to reduce influence of low/unrepresentative
sampling. Also explored alternatives for specifying input samples sizes, such as numbers of
sets (but ran out of time to fully explore a range of filtering options). Applied a minimum
input sample size of 50 for size composition data in MFCL (peer review recommendation to
reduce unrepresentative size composition data).

• Reduce the number of fisheries with a non-decreasing selectivity constraint to a single extrac-
tion fishery.

• Ensure that tag reporting rate groups are not estimated for groups with zero tag recoveries,
and extending this to tag reporting rate groups with fewer than 6 tag recoveries.

• Adoption of revised tagger effect modelling framework (recommended by expert workshop)
with separate treatment of PTTP Central Pacific tag releases; use of multi-species models;
model selection based on predictive accuracy; and, reverted to assumptions similar to those
used in 2017.

• Initial explorations of the use of Dirichlet multinomial for self-scaling size composition data
weighting (peer review supported this), and modification to size composition data weighting
divisors in the grid as a result.

• Qualitative analysis of tag recapture data to inform tag mixing assumptions. (PAW recom-
mendation, and peer review).
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3 Background

3.1 Stock Structure

Bigeye are distributed throughout the tropical and sub-tropical waters of the Pacific, Indian and
Atlantic Oceans. Genetic studies indicate that Atlantic bigeye have minimal mixing with bigeye
in the Indo-Pacific regions (Chow et al., 2000; Gonzalez et al., 2008; Grewe et al., 2019). However,
there is currently no clear evidence for genetic population structure in the Pacific Ocean (Grewe and
Hampton, 1998; Moore et al., 2020; Natasha et al., 2022). While genetic studies are largely unin-
formative on the rates of mixing of bigeye tuna throughout the Pacific, they are broadly consistent
with the results of tagging experiments conducted by SPC and the Inter-American Tropical Tuna
Commission (IATTC) (Schaefer et al., 2015; Moore et al., 2020). These studies show that while the
majority of tagged bigeye have been recaptured in the general regions of their release (i.e. within
1,500 nautical miles) some tagged bigeye move large distances across the Pacific Ocean (i.e. >4,000
nautical miles). These occasional large-scale movements and the continuous distribution of bigeye
tuna across the Pacific would explain the lack of broad-scale genetic structure. The cumulative
information on movement from conventional and electronic tag-recapture data, particularly efforts
focused in the equatorial central Pacific, have indicated more extensive longitudinal, particularly
west to east, displacements with few movements between tropical tag release sites and temperate
zones (Schaefer et al., 2015; Moore et al., 2020; McKechnie et al., 2017a). While there is apparent
high movement throughout the equatorial Pacific and lack of genetic structure, this does not pre-
clude spatial structure in population processes that are important in stock assessment (i.e., growth,
mortality, recruitment). For example, growth rates have been shown to differ between bigeye tuna
in the WCPO and EPO, with smaller lengths-at-age observed for bigeye in the WCPO, and sug-
gestion of a clinal increase in growth rates from the west to east Pacific (McKechnie et al., 2015a;
Aires-da Silva et al., 2015; Farley et al., 2017). This is also reflected in observations of increased
size at maturity for bigeye in the EPO compared to the WCPO (Farley et al., 2017). Further,
there is some evidence from otolith chemistry studies for structuring of recruitment sources. For
example, Rooker et al. (2016) indicated that 1–2 year old fish sampled from the Marshall Islands
were derived from local sources, whereas fish caught off Hawaii were suggested to have originated
more broadly from the central equatorial region. In turn, otolith chemistry and genetic studies of
juvenile bigeye in the Indonesian archipelagic waters suggested juvenile residency and low mixing
with the broader western Pacific (Moore et al., 2019; Proctor et al., 2019).

The paper by Hamer et al. (2023) considers published information on genetic and non-genetics
indicators of population structure (mostly covered in the review by Moore et al. (2020)), plus
larval distribution patterns, and also includes analyses of spatial heterogeneities in size composi-
tion data and CPUE time series for the Pacific longline fisheries. That paper suggests bigeye are
likely one genetic stock in the Pacific, and that there is no clear boundary between the WCPO
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and EPO populations in the central Pacific region. However, there is indication of substructure
of bigeye across the Pacific, and that the populations across the west and east Pacific, and the
north and south Pacific are unlikely to be extensively mixed. The paper notes that the tropi-
cal region has several features that warrant it being considered as a separate spatial strata from
the northern and southern sub-tropical/temperate regions. Likewise the paper suggests that the
Indonesia/Philippines/Vietnam region warrants being considered a separate spatial strata. The
available information did not clearly imply a finer structure, however, it was noted that finer spa-
tial strata are likely required to accommodate tagging data and related assumptions. The review
recommended alternative simplified spatial stratification that could be considered for bigeye tuna
assessments in the WCPO and this is discussed further in Section 4.2. Continuing to improve our
understanding of spatial population structure and processes for bigeye in the WCPO, and more
broadly in the Pacific, remains an important area of research.

Despite uncertainties in population connectivity across the Pacific a sensitivity analysis by McK-
echnie et al. in 2015 showed that despite extensive longitudinal movements in the equatorial Pacific,
the discrete WCPO stock assumption was capable of accurately capturing the dynamics and stock
status indicators for WCPO bigeye. The current assessment continues the approach of a separate
assessment for the WCPO region and the stock within the domain of the model (essentially the
WCPO, west of 150◦ W) is considered to be a discrete stock unit (Langley et al., 2008; Harley
et al., 2009, 2010; Davies et al., 2011; Harley et al., 2014; McKechnie et al., 2017a; Vincent et al.,
2018; Ducharme-Barth et al., 2020a).

Spatial stratification of the WCPO bigeye assessment has changed over time (Hamer et al., 2023).
The 9 region spatial structure (Figure 1) applied in the 2020 assessment is the basis for the current
assessment and is a compromise between the limited knowledge of sub-regional population structure,
fishery spatial structures and the locations of major tag release events (i.e., regions 4, 8 and 9).
Ultimately we were able to succeed in improving the performance and convergence properties of
9 region structure and it has been maintained for this assessment. However, based on the review
and analyses in Hamer et al. (2023) and the recommendation from the peer review to explore
plausible simpler spatial structures (Punt et al., 2023), we do recommend a thorough exploration
of alternative spatial structures (prior to the next production assessment) if an alternative spatial
structure is to be considered as the basis for management advice in future assessments. We also
note that we did conduct a preliminary model with a 6 region structure, and this looked promising,
but required more time to explore thoroughly.

3.2 Biological characteristics

Bigeye tuna are moderately fast growing for tuna, and have a maximum fork length (FL) of about
200 cm (Aires-da Silva et al., 2015; Farley et al., 2017), with an estimated average maximum
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length of 157 cm in the WCPO (Eveson et al., 2020; Farley et al., 2020). The growth parameters
for bigeye tuna are influential biological inputs to the stock assessment (McKechnie et al., 2017a;
Vincent et al., 2018). Studies to improve growth information for bigeye have occurred in recent
years, notably by Eveson et al. (2020); Farley et al. (2020). There are no new studies of bigeye
growth to inform this assessment since (Farley et al., 2020). However, recent bomb radiocarbon age
work has validated the interpretation of growth bands in bigeye otoliths as annual growth bands
(Andrews et al., 2022) and confirmed the oldest ’validated’ age for a bigeye tuna in the WCPO at
13 years of age. This compares to the longest period at liberty for a recaptured bigeye tuna tagged
in the WCPO of approximately 14 years, for a fish estimated at 1-2 years old at release (SPC,
unpublished data). The oldest estimated fish aged from otoliths in the WCPO is approximately 15
years (Farley et al., 2020).

Bigeye tuna in the WCPO become reproductively active from about 80 cm FL, and nearly all
individuals >120 cm FL are reproductively mature (Farley et al., 2017). There is some evidence
for regional variation in maturity-at-length in the WCPO (Nicol et al., 2011; Farley et al., 2017),
and bigeye tuna appear to be reaching maturity at larger sizes, but at similar ages, in the EPO
(Schaefer et al., 2005). As with other tunas, the population sex ratio of bigeye tuna changes
at around the age/size of reproductive maturity to favor males at larger size (see Figure 8 in Sun
et al., 2006; McKechnie et al., 2017b). This information is used to define spawning potential (rather
than spawning biomass) as a product of maturity status, female sex-ratio in the population, and
fecundity. Spawning typical occurs in water temperatures above 24◦ C, with an approximate daily
cycle, and occurs all year in the tropical Pacific, but more seasonally in the warmer months in
sub-tropical regions (Sun et al., 2006; Farley et al., 2017). Areas of higher larval densities have
been found in the western Pacific from Papua New Guinea to Philippines, Chinese Taipei to the
Okinawa Islands, also several areas in the central Pacific, and in the eastern Pacific off Panama
and Colombia (Nishikawa et al., 1985; Ijima and Jusup, 2023).

The natural mortality (M) rate of bigeye tuna is likely to vary with size, with rates of < 0.5 yr−1

for bigeye >40 cm FL and >2 years age and higher rates for the youngest age-classes (<2 years)
(Hampton, 2000). Tag recapture and otolith data indicate that significant numbers of bigeye reach
at least eight years of age (Hampton and Williams, 2005; Farley et al., 2020) and can likely reach
15 years age in the WCPO (Farley et al., 2020). The 2020 bigeye assessment conducted a life-
history based meta-analysis (Piner and Lee, 2011) of natural mortality for bigeye and indicated
an envelope of potential average quarterly M rates of lower 95% confidence interval (0.109), mean
(0.127) and upper 95% confidence interval (0.146) (Ducharme-Barth et al., 2020a). Additionally,
natural mortality of female bigeye tuna is thought to increase at around the age of reproductive
maturity, due to the physiological stresses of spawning, which, as noted above, is hypothesized to
drive the occurrence of a male-biased sex ratio at larger sizes.
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3.3 Fisheries

Bigeye tuna are an important component of tuna fisheries throughout the Pacific Ocean. Larger
bigeye are targeted by longlines, predominantly in tropical regions of the WCPO. Smaller juveniles
are caught incidentally by purse seine vessels in association with Fish Aggregation Devices (FADs).
They are a principal target species in tropical waters for both the large, distant-water longline fleets
of Japan, Korea, China and Chinese Taipei and the smaller, fresh sashimi longline fleets based in
several Pacific Island countries and Hawaii. The prices paid for both frozen and fresh product on
the Japanese sashimi market are generally the highest of all the tropical tunas.

While they are not targeted by purse seine vessels, bigeye are taken almost exclusively from sets on
natural and artificial floating objects (FADs), and comprise mostly small juveniles. Estimation of
the bigeye tuna catch from associated sets has been the focus of considerable research over recent
years (Peatman et al., 2019, 2023c). This purse seine fishery expanded rapidly from the early 1980’s
and the estimated annual bigeye catches for this gear have been in the vicinity of 45,000-75,000
mt over the last 10 years in the WCPO (i.e., the region of this assessment which excludes the
overlap area with IATTC). This compares to the WCPO longline catch of between approximately
35,000-70,000 mt (Hare et al., 2022; Williams and Ruaia, 2023).

The highest estimated bigeye tuna total catch from the WCPO was approximately 175,000 mt in
2004 (195,000 mt in the same year for the entire WCPFC-CA). The WCPO bigeye catches have
declined since around 2010, after which they have ranged between around 110,000–160,000 mt
(135,000-175,000 mt for entire WCPFC-CA) (Hare et al., 2022; Williams and Ruaia, 2023). Over
the recent period (2015-2022), approximately 50% of the catch by weight, but 10% by numbers was
taken by longline, reflecting the selection of longline gear for larger fish. In contrast, 50% of the
catch by numbers, but only 35% by weight was taken by purse seine sets associated with FADs. A
small purse seine fishery also operates in the coastal waters off Japan with an annual bigeye catch
of less than 500 mt in recent years. A slightly higher level of bigeye catch is taken by the coastal
Japanese pole-and-line fishery relative to the coastal Japanese purse seine, however, overall these
catches are negligible.

In recent years, collaborative work between SPC, WCPFC, CSIRO (primarily in Indonesia), and
fisheries agencies in Indonesia, the Philippines, and Vietnam has resulted in improved catch statis-
tics for their fleets. In some instances data are available at the individual fisheries level (e.g.,
longline or large-fish handline), but often statistics are aggregated across a variety of gears that
typically catch small bigeye tuna, e.g., ring-net, handline, and troll. Data for these fisheries are
included in the assessment, and account for a significant component of the bigeye catch, particularly
in terms of numbers.
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3.4 Key changes from the last assessment

3.4.1 Catch conditioned approach

In previous MULTIFAN-CL (MFCL) assessments of bigeye tuna, catch was predicted by the model
(termed a “catch-errors” model) with observation error allowed, and the standard deviation of the
log-catch deviates assumed to be very small (equivalent to a CV of 0.002). This produced very
accurate predictions of observed catches and therefore only a small contribution of the catch to the
overall objective function. However, the cost of treating the catch in this way was that effort devia-
tion coefficients had to be estimated as model parameters for each catch observation. Additionally,
catchability deviation parameters were required for catch-effort observations for fisheries for which
time-series changes in catchability were allowed. While these parameters were constrained by prior
distributions and estimation was feasible, it resulted in very large numbers of parameters needing
to be estimated by the function minimiser and many of these were effort deviation coefficients and
parameters relating to catchability.

In an effort to reduce complexity and paramterisation this assessment makes use of a relatively new
feature of MFCL first applied to the 2022 skipjack tuna assessment in which catch is assumed to
have no error, i.e., the model is “catch-conditioned” (Davies et al., 2022). This makes it possible
to solve the catch equation for fishing mortality exactly, using a Newton-Raphson sub-iterative
procedure. The main benefit of this approach is that effort deviation coefficients and catchability-
related parameters do not require estimation as model parameters. Effort data for extraction
fisheries is not required at all but can be used if available to estimate catchability through regressions
of fishing mortality and effort, and this is important for making stock projections based on future
effort scenarios. The reduction in parameters has enabled more rapid model convergence and
Hessian matrix computation. The only cost of this approach is that missing catches, which could
be accommodated in the catch-errors version if there was an accompanying effort observation, are
no longer straight forward to account for. However, this is not an impediment for the key WCPO
tuna assessments. The catch conditioned approach allows (but does not require) the specification of
index fisheries to provide indices of relative abundance, these are discussed in section Section 4.4. In
the stepwise model development runs conducted for this assessment, the transition from a ‘catch-
errors’ to a “catch-conditioning” model, without implementation of the survey fisheries, did not
result in any appreciable change in the estimated quantities of relevance to management advice.

4 Data compilation

4.1 General notes

Data used in the bigeye tuna stock assessment using MFCL consist of catch, effort, length &
weight-frequency data for the fisheries defined in the analysis, and tag-recapture data. Conditional
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age-at-length data are also used directly as data in the assessment model, as was recommended by
the peer review of the 2020 yellowfin tuna assessment (Punt et al., 2023). Improvements in these
data inputs are ongoing and readers should refer to the companion papers highlighted at the end
of Section 2 for detailed descriptions of how the data and biological inputs were formulated as only
brief overviews are provided below. A summary of the data available for the assessment is provided
in (Teears et al., 2023), and in Figure 6.

4.2 Spatial stratification

The geographical area considered in the assessment corresponds to the WCPO (from 50◦N to 20◦S
between 120◦E and 150◦W) and oceanic waters adjacent to the east Asian coast (110◦E between
20◦N and 20◦S). The eastern boundary of the assessment excludes the WCPFC Convention area
component that overlaps with the Inter American Tropical Tuna Commission (IATTC) area. The
assessment area is stratified into 9 regions that are consistent with the 2020 assessment(Figure 1).
The 9 region stratification was first used in Harley et al. (2014), and was slightly modified in the
2020 assessment by moving the northern boundary of regions 3 and 4 from 20◦N to 10◦N to better
isolate the tropical region surface and longline fisheries (Ducharme-Barth et al., 2020a). Some small
regions are included, i.e., region 8 designed to approximate the archipelagic waters of Papua New
Guinea and Solomon Islands, where considerable tagging effort has occurred and the analyses show
more persistent residence compared to the wider western equatorial region, and region 9 that was
established in 2014, after the previous bigeye assessment peer review (Ianelli et al., 2012), to better
model the tagging data from the historical Coral Sea tagging cruises (Harley et al., 2014).

While the 9 region spatial stratification was the basis for the development of the diagnostic model
for this assessment, exploring simpler spatial stratifications was recommended by the peer review
of the 2020 yellowfin assessment (which applied the same 9 region stratification) and the authors of
the previous WCPO bigeye assessment. A revision of the 9 region stratification, and consideration
of alternative spatial stratification, based on a conceptual model, including additional analysis of
size composition data was suggested by the peer review panel. This work is described in Hamer
et al. (2023), which suggested a simpler 6 region model stratification could be considered for bigeye.
This was also discussed and received support at the SPC Pre-assessment Workshop (PAW) (Hamer,
2023), along with other possibilities. Under the time constraints and other difficulties posed by this
assessment, we could not complete a thorough investigation of the various alternative stratifications
discussed at the PAW. The review paper indicated that the current 9 region model remains suitable,
but alternative model structures may have advantages and further exploration of model spatial
stratifications is warranted. As we were able to improve the performance and convergence properties
of the 9 region model we chose to maintain it for the current assessment. We conducted preliminary
models of a 6 region spatial stratification but due to time constraints we could not include this in
the current assessment. We suggest a stand alone project is required to fully explore and compare
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the benefits and limitations of alternative spatial structures for WCPO bigeye assessment, with
review by SC and their advice on a preferred option for future assessments.

4.3 Temporal stratification

The time period covered by the assessment is 1952–2021 which includes all significant post-war
tuna fishing in the WCPO. Within this period, data were compiled into quarters (1; Jan–Mar,
2; Apr–Jun, 3; Jul–Sep, 4; Oct–Dec). As agreed at SC12, the assessment does not include data
from the most recent calendar year as this is considered incomplete at the time of formulating
the assessment inputs. Recent year data are also often subject to significant revision post-SC, in
particular the longline data on which this assessment greatly depends.

4.4 Definition of fisheries

MFCL requires “fisheries” to be defined that consist of relatively homogeneous fishing units. Ide-
ally, the defined fisheries will have selectivity and catchability characteristics that do not vary
greatly over time and space. For most pelagic fisheries assessments, fisheries are typically defined
according to combinations of gear type, fishing method and region, and for some, also flag or fleet.
There are 41 fisheries defined for the 9 region model in this assessment (Table 1) consisting of
two fishery types:“index fisheries”, that are used for generating indices of abundance (see further
below), and “extraction fisheries” that account for the catches removed from the stock. Extraction
fisheries include longline, purse seine, pole and line and various miscellaneous fisheries in Indone-
sia/Philippines/Vietnam region. The fisheries definitions for the 2023 assessment are consistent
with those used in the 2020 9 region assessment. A graphical summary of the availability of data
for each fishery used in the assessment model is provided in Figure 6.

Equatorial purse seine fishing activity was aggregated over all nationalities, but stratified by region
and set type, in order to sufficiently capture the variability in fishing operations and selectivity of
different purse seine set types. Set types were grouped into associated (i.e. log, FAD, whale, dolphin,
and unknown set types) and unassociated (free-school) sets. Additional fisheries were defined for
pole-and-line fisheries and miscellaneous fisheries (gillnets, ringnets, hook-and-line, handlines etc.)
in the western equatorial area. At least one longline index fishery was defined in each region,
although in regions 3 and 7 extraction longline fishing was separated into distant water and offshore
components to account for the apparent differences in fishing practices and selectivity for these fleets
in these regions.

Index fisheries: The catch-conditioned approach (Section 3.4.1) allows the specification of “index
fisheries” that are used to provide standardised CPUE indices of abundance. Index fisheries are
akin to “survey fisheries” as described for other software such as Stock Synthesis, and may be the
same fisheries as the extraction fisheries, but when used as index fisheries they do not take any
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catch, and must have effort data to allow modelling of CPUE. For this assessment one index fishery
is defined for each model region as a composite fishery composed of all longline fisheries operating
in each assessment region (Teears et al., 2023). Index fisheries may be grouped if it is felt that
the CPUE reflects differences in average abundance among regions. For this assessment, index
fisheries are grouped which allows the standardised CPUE to provide information on regional as
well as temporal relative abundance. The full longline operational data-set (described in McKechnie
et al., 2015b; Ducharme-Barth et al., 2020b) was used as the basis for developing the index fisheries
CPUE. The CPUE standardisation approach for the index fisheries is described in detail in (Teears
et al., 2023) (see further Section 4.5.3).

The standardised indices for each region are derived by summing outputs at the spatial scale the
spatio-temporal CPUE standardization model into each of the MFCL regions. Catchability for
the index fisheries is then assumed to be constant over time and shared across the assessment
regions in order to scale the population. This means that the assessment model estimates relative
abundance among spatial strata that is generally similar to the scaled CPUE relative abundance.
The regular longline extraction fisheries are based on the same data set, but are disaggregated into
the longline fisheries defined in Table 1. The size composition data (length and weight-frequency)
for the extraction fisheries is assumed to represent the actual composition of the removed fish for
any space-time strata, and in the data preparation process are weighted by the catch in order to
represent the fisheries extractions at the spatial (region) and temporal (quarter) resolution of the
model (Peatman et al., 2023b). However, for the index fisheries, while the same aggregation process
is conducted, the size data are weighted by standardised CPUE (rather than by catch) so that the
size data are more representative of the abundance of the underlying population in each region and
time period. Further, because the size data for the index and extraction fisheries are effectively being
used twice (but weighted differently), the likelihood weighting for the size composition is adjusted
such that the original intended weight (effective sample size) in the likelihood is preserved.

Alternative spatial stratification: For the exploration of the 6 region spatial stratifications
we maintained the fisheries definitions for the extraction fisheries as applied in the 9 region model.
That is gear/flag specific fisheries that were defined by separate regions in the 9 region stratification,
remained defined as separate fisheries within the larger regions of the simplified stratification, noting
that the simplified stratification involved merging regions of the 9 region models rather than altering
boundaries and creating entirely new regions. This is akin to a fleets-as-areas approach within the
larger simplified regions. Maintaining the extraction fisheries definitions was partly for efficiency
and partly to maintain the fishery definitions rather than changing both the spatial stratification
and fishery definitions together. This way the effects of simplified stratification could be isolated.
If a simpler model stratification is preferred in future, revision of fisheries definitions would be
considered.
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4.5 Catch and effort data

4.5.1 General characteristics

Catch and effort data were compiled according to the fisheries defined in Table 1. Catches by the
longline fisheries were expressed in numbers of fish, and catches for all other fisheries expressed in
weight (mt). This is consistent with the form in which the catch data are recorded and reported for
these fisheries. The catches are aggregated at 5◦ x 5◦ and quarterly resolution, with the aggregation
process either conducted by SPC, where operational data is available to inform this, or by the
particular countries following statistical procedures that are reported to the Commission. For some
fisheries, notably those in region 7 - Indonesian/Philippines/Vietnam - operational information on
quarterly or spatial patterns in catches is poor so the annual catches are aggregated evenly across
quarters and spatial cells. This is done by SPC.

In the catch conditioned model effort is not essential but is required (at least for a recent period of
time) for projection analyses involving fisheries managed under effort rather than catch controls.
The effort data are necessary to derive recent estimates of catchability for running the effort based
projections. In this case the main industrial purse seine fisheries operating in the tropical region
(i.e., regions 3, 4, 8) are managed under effort control. Effort data for these purse seine fisheries are
defined as number of sets specified by set type (associated or unassociated), and are included for
the last 12 quarters to facilitate projections. The period of 12 quarters is consistent with previous
projections using catch errors models. For this assessment several other fisheries also have effort
included to allow effort based projection for management purposes, these are the longline extraction
fisheries, with effort measured as numbers of hooks per set, and the Japanese pole and line fisheries
with effort measured in vessel fishing days.

Total annual catches by major gear categories for the WCPO are shown in Figure 3 and a regional
breakdown is provided in Figure 4. Catches by fishery groups are provided in Figure 7, Figure 8
and Figure 9. The spatial distribution of catches over the past ten years is provided in Figure 5.
Discarded catches are estimated to be minor and were not included in the analysis. Catches in the
northern region are highly seasonal and the annual catch has been relatively stable over much of
the assessment period. Most of the catch occurs in the tropical regions (3, 4, 7, and 8).

A number of noticeable trends in the fisheries have occurred over the model period, specifically:

• The steady increases in total bigeye catch over most of the assessment period in the equatorial
regions (regions 3, 4, 7, 8), and steady declines since around 2012.

• The relatively stable catches of bigeye in the northern temperate region by longline vessels
(regions 1, 2)

• The development of the equatorial purse-seine fisheries from the mid-1970s and the widespread
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use of FADs since the mid-1990s, allowing an expansion of the purse-seine fishery, and corre-
sponding increases in catch of bigeye, particularly in equatorial regions 3, 4 and 8.

• Large changes in the purse seine fleet composition and increasing size and likely efficiency of
the fleet.

• The steady increase in catch for the domestic fisheries of Indonesia and the Philippines (re-
gion 7) since 1970.

• The apparent stabilisation of catches of bigeye for most gears after the mid 2000’s, and
declines in overall catches since around 2010.

4.5.2 Purse seine

For the industrial purse seine fisheries predominantly operating in tropical regions 3, 4 and 8, catch
by species within each set type (associated or unassociated) is determined by applying estimates of
species composition from observer-collected samples to total catches estimated from raised logsheet
data (Hampton and Williams, 2016; Peatman et al., 2021, 2023c). For the Japanese (JP) fleet for
which there is greater confidence in species-based reporting, reported catch by species is used. Purse
seine catch for Philippines (PH) and Indonesian (ID) domestic purse seine fisheries, predominantly
operating in Region 7, was derived from raised port sampling data provided by these countries. We
note that the COVID-19 pandemic resulted in low observer coverage of the purse seine fleets for
the last two years of the assessment period. The implications of the low observer coverage on the
purse seine catch composition estimates could not be fully explored under the time constraints, but
preliminary analysis suggest the estimates have been relative robust to the lower observer coverage
(Hamer, 2023). A sensitivity exploring the effects of doubling the purse seine catch in regions 3, 4
and 8 was conducted to investigate this issue.

4.5.3 Longline

For the longline fisheries catches in number of fish by species are derived from raised logbook data
or annual catch estimates provided by specific countries. Effort is in terms of hooks per set.

The index fishery CPUE time series for the 2023 assessment were derived from the operational long-
line dataset for the Pacific region. This dataset is an amalgamation of operational level data from
the distant-water fishing nations (DWFN), United States, Australian, New Zealand and Pacific-
Island countries and territories (PICTs) longline fleets operating in the Pacific basin. It represents
the most complete spatiotemporal record of longline fishing activity in the Pacific, spanning from
1952 through to the present and is the result of collaborative ongoing data-sharing efforts from many
countries. This data-set was first created in 2015 in support of the Pacific-wide bigeye tuna stock
assessment (McKechnie et al., 2015b), and was subsequently analyzed to generate indices of relative
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abundance for the 2017 and 2020 WCPFC bigeye and yellowfin tuna stock assessments (McKech-
nie et al., 2017a; Vincent et al., 2018; Ducharme-Barth et al., 2020a). Since 2017 spatiotemporal
approaches (Thorson et al., 2015) have been used for CPUE modeling in WCPFC stock assess-
ments (Tremblay-Boyer et al., 2017; Ducharme-Barth et al., 2020b). For this assessment we build
on these previous efforts and have transitioned from using the VAST software (Thorson, 2019;
Thorson et al., 2015) for these analyses to using sdmTMB (Anderson et al., 2022). The sdmTMB
package is preferred over VAST due to greater computational efficiency, ease of use, and the ready
availability of online support from a larger user community than VAST.

A detailed description of the methods for generating the spatiotemporal abundance indices is pro-
vided in Teears et al. (2023). Briefly, it was first confirmed that the sdmTMB package could
closely replicate the previous VAST indices using the data from the 2020 assessment. After this
step a model was run with an increased density of mesh knots (371 versus 154) and the same
spatiotemporal subsampling design as the previous assessment. Following this, further exploration
of alternative models was conducted considering additional covariates in addition to those applied
in the 2020 assessment. These included density covariates of SST, depth of the 15°C isotherm, and
difference between the depth of the 12°C isotherm and the 18°C isotherm. As per the previous
assessment, catchability covariates of hooks between floats (HBF) and vessel FLAG were included.
A vessel ID covariate was considered, but there were over 6,000 unique vessel IDs and this was not
considered computationally feasible. El Niño Southern Oscillation data were also included as a po-
tential covariate but caused model instability and therefore, this was not included in the analyses.
A model selection process described in Teears et al. (2023) was followed and the final model for
bigeye included HBF, vessel FLAG, season, depth of 15°C isotherm and the difference between the
depth of the 12°C isotherm and the 18°C isotherm.

In response to the yellowfin peer review two additional analyses were conducted. One analysis
involved running separate models for northern, equatorial, and southern regions with “non-viable”
(poorly sampled) 5° x 5° grid cells removed and comparing the predictions to the results of the
same aggregated northern, equatorial, and southern regions from the Pacific-wide indices. Results
indicated differences in spatial characterization however, these differences were in areas with com-
paratively low abundance and had limited implications. An analysis was also conducted comparing
a principal-fleet model (Japanese fleet only) to the multi-fleet results to assess the effects of combin-
ing fleets. The indices derived from multiple fleets were very similar to the principal-fleet results.
It was decided that the outcomes of these additional analyses did not warrant changing the initial
approach (see Teears et al. (2023)).
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4.5.4 Other fisheries

Effort data for the ID, PH, and VN surface fisheries and Japanese research longline fisheries are un-
available. However, as these fisheries are not part of the index fisheries, with the catch-conditioned
approached effort data are not necessary for these extraction fisheries. Catch estimates for the
ID/PH/VN fisheries are derived from various port sampling programmes dating back to the 1960s
for ID and the PH, and early 2000s for VN (Williams and Ruaia, 2023).

4.6 Size data

Available length-frequency data for each of the fisheries were compiled into 95 x 2cm size classes
from 10–12 cm to 198–200 cm. Weight data were compiled into 200 x 1 kg size classes from 0–1 kg to
199–200 kg. Most weight data were recorded as processed weights (usually recorded to the nearest
kilogram). Processing methods varied between fleets requiring the application of fishery-specific
conversion factors to convert the available weight data to whole fish equivalents. Details of the
conversion to whole weight are described in Macdonald et al. (2023b). Data were either collected
onboard by fishers, through observer programs, or through port sampling. Each size-frequency
record in the model consisted of the actual number of bigeye tuna measured and Figure 6 provides
details of the temporal availability of length and weight-frequency data (also see Teears et al., 2023).
Note that a maximum effective sample size of 1,000 is implemented in MFCL when using the robust
normal likelihood for size composition data. The effective sample size was further down-weighted
as explained in Section 5.5.2. Summaries of the available size composition data by year and fishery
are provided in Figure 13 and Figure 14.

4.6.1 Purse seine

Only length-frequency samples are used in the bigeye assessment for purse seine fisheries. Prior to
2014, the assessments used only observer samples which had been corrected for grab-sample bias.
As observer coverage had been very low and unrepresentative in early years, there were many gaps
and the time series of size data did not show evidence of modal progression. Two major changes
were implemented for the 2014 assessment and are described in detail in Abascal et al. (2014): first
the long time series of port sampling data from Pago Pago was included, and second all samples
were weighted by the catch - both at the set and strata level, with thresholds applied to ensure
that small samples from important catch strata did not get too much weight (consistent with the
approach taken for the longline fishery). The pre-processing of the purse seine length composition
data for the current assessment is described in Peatman et al. (2023b). Length-frequency data
were unavailable for the “all flags” associated purse seine fishery in region 7 (Fishery 30). In the
model, it was assumed to share a selectivity with the “all flags” associated purse seine fishery in
the adjacent region 3 (Fishery 13).
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4.6.2 Longline

A review of all available longline length and weight-frequency data for bigeye was undertaken by
McKechnie (2014). Details on the data and analytical approach used to construct the size data
inputs for the current assessment are in Peatman et al. (2023b) and Teears et al. (2023). The key
principle used in constructing the size composition inputs was not to use weight and length data
at the same time, even if it was available, as it would either introduce conflict (if data were in
disagreement) or over-weight the model fit (if they were in agreement). The general approach used
in previous assessments for the “extraction” fisheries was that weight-frequency samples should be
weighted with respect to the spatial distribution of flag-specific catch within each region. This is
done so that catch is extracted from the population at the appropriate size and is not biased by
issues such as small catches with lots of weight frequency samples. Weight-frequency data were
used over length frequency based on the spatiotemporal coverage and number of samples. However,
despite additional weight frequency data being provided by Japan for the 2020 assessment, the
number of available weight-frequency samples has declined in recent years. The 2020 assessment
conducted a sensitivity analysis involving switching from weight to length-frequency data for the
longline fisheries in regions 4, 5, and 6 of the 9 region structure beginning in 2000. The results
were relatively insensitive to this change. We suggest that the next assessment could develop a
longline size composition data set that optimises to use of both length and weight frequency data
with respect of maximising spatial and temporal coverage, and transitioning to length composition
data for the recent years.

Size composition data were prepared similarly for the index fisheries (Peatman et al., 2023b). The
approach for the index fisheries differed from the one briefly described above for the extraction
fisheries in that the size-frequency samples were weighted with respect to the spatial distribution of
abundance as predicted by the spatiotemporal CPUE standardization model (Teears et al., 2023).
This is to allow size compositions to inform temporal variation in population abundance and size.
To generate the size composition data for the index fisheries, data were first subset to match the
nationalities of the “all flags” longline fisheries in each region. This was done to prevent shifts in
size composition as a result of a change in sampling between fisheries.

Given that the same data were used for both the extraction and index fisheries, the observed number
of size-frequency samples input into the assessment was divided by 2 for both the extraction and
index fisheries. The maximum effective sample size in the stock assessment model was also divided
by two for these fisheries (i.e. 500 as opposed to the default value of 1,000 assumed for the other
fisheries).
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4.6.3 Other fisheries

Size composition data for the Philippines domestic fisheries, both small-fish fisheries (Fishery 17)
and large-fish handline fisheries (Fishery 18), were derived from a number of port sampling programs
conducted in the Philippines since the 1980s. In more recent years, size-sampling data have been
substantially augmented by the work of the West Pacific East Asia (WPEA) data improvement
project. Additionally, recent data collection efforts in both Indonesia and Vietnam have provided
new length-frequency data for inclusion in the recent assessments for both the domestic Indonesia
small-scale fishery (Fishery 23) and the domestic Vietnam small-scale fishery in region 7 (Fishery
32).

Size data were missing for the Indonesian-Philippines ex-EEZ purse seine fishery in region 7 (Fishery
24). Based on an investigation of the length frequency data of the other tropical tunas (skipjack
and yellowfin) available for this fishery, selectivity was assumed to be shared with the Philippines
small-fish fishery in region 7 (Fishery 17) as this fishery had the most similar size composition for
the other tropical tuna species.

As in the previous assessments the length frequency samples from the Philippines domestic small
fish miscellaneous fishery (Fishery 17) were adjusted to exclude all reported fish lengths greater
than 90 cm from the current assessment. These large fish were also excluded from the new length-
frequency data for both the domestic Indonesia small-scale fishery in region 7 (Fishery 23) and the
domestic Vietnam small-scale fishery in region 7 (Fishery 32). This was done on the basis that it
is suspected that the presence of these large fish may be due to mis-reporting of the fishing gear in
some of the regional sampling programs.

The Indonesia–Philippines domestic handline fishery in region 7 (Fishery 18) consistently catches
the largest individuals in the WCPO. Handline fishing often takes place on mixed–gear trips with
other gears such as hook-and-line targeting smaller fish. To avoid “contaminating” the length-
frequency data for this fishery with fish that were mis-reported as being caught using a handline,
fish smaller than 70 cm were excluded.

Length data from the Japanese coastal purse-seine and pole-and-line fleets were provided by the
National Research Institute of Far Seas Fisheries (NRIFSF). For the equatorial pole-and-line fishery,
length data were available from the Japanese distant-water fleet (sourced from NRIFSF) and from
the domestic fleets (Solomon Islands and PNG). Since the late 1990s, most of the length data were
collected by observers covering the Solomon Islands pole-and-line fleet.

4.7 Tagging data

Of the three main tropical tuna species, bigeye tuna has the least amount of tagging data available.
Information on the bigeye tag data characteristics and the process of constructing the MFCL
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tagging file are available in Peatman et al. (2023a); Teears et al. (2023). A summary of the tagging
data is in Figure 15, and maps displaying tag displacements are in Figure 2. Data were available
from the Regional Tuna Tagging Project (RTTP) during 1989–92 (including affiliated in-country
projects in the Solomon Islands, Kiribati, Fiji and the Philippines), historical (1995, 1999-2001)
data from the Coral Sea tagging cruises by CSIRO (Evans et al., 2008), and the ongoing Pacific
Tuna Tagging Programme (PTTP) that began in 2006. Data for the PTTP is included up until
the end of 2021, with tag releases included until end of 2020 and recaptures until end of 2021. The
2020 assessment added data from the Japanese Tagging Programme (JPTP) conducted by NRIFSF
and the Ajinomoto Co. Inc, over the period 2000–2020, and these data are included in the 2023
assessment. The new tagging data for the 2023 assessment comes primarily from PTTP.

Tags were released using standard tuna tagging equipment and techniques by trained scientists and
technicians. Tags have been returned from a range of fisheries, having been recovered onboard or
via processing and unloading facilities throughout the Asia-Pacific region.

In this assessment, the numbers of tag releases input to the assessment model were adjusted for
a number of sources of tag loss, unusable recaptures due to lack of adequately resolved recapture
data, estimates of tag loss (shedding and initial mortality) due to variable skill of taggers (i.e.,
tagger effects), and estimates of base levels of tag shedding and tag mortality. These adjustments
are described in more detail in Peatman et al. (2023a). An additional issue for the bigeye assess-
ment is that there are a considerable number of tag returns that were released within the WCPO
but recaptured to the east of longitude 150◦W, outside the WCPO assessment region. The adjust-
ment or rescaling of releases for recaptures in the EPO preserves the recovery rates of tags from
individual tag groups that would otherwise be biased low given that a considerable proportion of
recaptures cannot be attributed to a recapture category in the assessment. These procedures were
first described in Berger et al. (2014) and McKechnie et al. (2016). For the current assessment,
Peatman et al. (2023a) and Teears et al. (2023) describe the approaches to prepare the tagging
data. Additionally, the model used to adjust tag releases due to variability in tagger ability or
“tagger effects” has changed from that used in the 2020 assessment. This change was the outcome
of an expert workshop to review and recommend the approach for modelling tagger effects and
providing the correction factors to adjust the tag release numbers (Peatman et al., 2022). The
approach recommend from that workshop was applied to the 2022 WCPO skipjack assessment
(Castillo Jordán et al., 2022) and is applied to this assessment. The new approach differs from that
applied in 2020, in that it reintroduces individual tagging events as a term in the model selection
process whilst also keeping cruise leg covariates, whose inclusion were supported for PTTP bigeye
releases. It also estimates separate models for central Pacific and western Pacific cruises, given their
difference in tagging platforms and associated station and tagger effects, but fits models pooling
both yellowfin and bigeye tuna releases, allowing species-specific differences in tagging effects to
be accounted for where supported by the data. This pooling of the two species also permitted
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estimation of correction factors for bigeye tuna released during the RTTP, which previously had
no detectable tagging effects. These changes result in stronger tagger effects being predicted and
therefore generally larger adjustment (reductions) to tag releases. This has an important effect of
increasing the recapture rates, which has implications for model estimation of fishing mortality and
population scale.

After tagged fish are recaptured, there is often a delay before the tag is reported and the data are
entered into the tagging databases. If this delay is significant then reported recapture rates for
very recent release events will be biased low and will impact estimates of fishing mortality in the
terminal time periods of the assessment. For this reason, any release events occurring after the end
of 2020 were excluded from the assessment, as noted.

For incorporation into the assessment, tag releases were stratified by release region, time period of
release (quarter) and the same size classes used to stratify the length-frequency data.

The likelihood penalties or “priors” used for the reporting rates of the grouped tag return fisheries
has been updated relative to those used in the previous assessment based on the analysis of tag
seeding experiments (Peatman, 2023). Tag reporting was assumed to be similar between the RTTP
and CSTP (which were actually targeted cruises of the RTTP) so reporting rates estimates were
shared across these two programs to reduce model dimensionality. For this assessment we have
also excluded tag release groups with 5 or less recaptures from the estimation of reporting rates, as
we felt there was insufficient information to inform model estimation of the reporting rates. Tag
reporting rate groupings are included in Table 2.

5 Model description

5.1 General characteristics

The model can be considered to consist of several components, (i) the dynamics of the fish popu-
lation; (ii) the fishery dynamics; (iii) the dynamics of tagged fish populations (iv) the observation
models for the data; (v) the parameter estimation procedure; and (vi) stock assessment interpre-
tations. Detailed technical descriptions of components (i)–(iv) are given in Hampton and Fournier
(2001) and Kleiber et al. (2019), and summarised below. In addition, we describe the procedures
followed for estimating the parameters of the model and the way in which stock status conclusions
are drawn relative to a series of reference points.

5.2 Population dynamics

The model partitions the population into spatial regions, depending on the specified spatial stratifi-
cation, and 40 quarterly age-classes. The last age-class comprises a “plus group” in which mortality
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and other characteristics are assumed to be constant. The population is “monitored” in the model
at quarterly time steps, extending through a time window of 1952–2021. The main population
dynamics processes are as follows.

5.2.1 Recruitment

Recruitment is defined as the appearance of age-class 1 quarter fish (i.e. fish averaging ∼ 24 cm
FL) in the population. Bigeye tuna spawning does not typically follow a clear seasonal pattern,
especially in the tropical waters where most of the spawning occurs. Rather it occurs sporadically
all year and is thought to be influenced by food availability (Schaefer et al., 2005; Sun et al.,
2006; Itano, 2000). The assessment model assumed that recruitment occurs instantaneously at
the beginning of each quarter. This is a discrete approximation to continuous recruitment, but
provides sufficient flexibility to allow a range of variability to be incorporated into the estimates as
appropriate.

In recent assessments of tuna in the WCPO, the last few recruitment deviations have little informa-
tion to inform them and these are usually fixed at the mean of the estimated recruitment deviations,
which also reduces problems with retrospective analyses. This approach has been continued here
with the last six recruitment deviations fixed at the geometric mean of the estimated recruitment
deviations, which is appropriate for a log-normally distributed random variable.

Spatially-aggregated (over all model regions) recruitment was assumed to have a weak relation-
ship with annual mean spawning potential via a Beverton and Holt stock-recruitment relationship
(SRR) with a fixed value of steepness (h). Steepness is defined as the ratio of the equilibrium
recruitment produced by 20% of the equilibrium unexploited spawning potential to that produced
by the equilibrium unexploited spawning potential (Francis, 1992; Harley, 2011). Typically, fish-
eries data are not very informative about the steepness parameter of the SRR parameters (ISSF,
2011); hence, the steepness parameter was fixed at a moderate value (0.80) and the sensitivity of
the model results to the value of steepness was explored by setting it to lower (0.65) and higher
(0.95) values. The high CV (2.2) of the log-recruitment deviates, computed annually, ensured that
the SRR had negligible impact on the estimation of recruitment and other model parameters, as
recommended by Ianelli et al. (2012). The SRR was estimated over the period 1962–2020 to prevent
the earlier recruitments (which may not be well estimated), and the terminal recruitments (which
are not freely estimated), from influencing the relationship.

The SRR was incorporated mainly so that yield analysis and population projections could be under-
taken for stock assessment purposes, particularly the determination of equilibrium- and depletion-
based reference points. We therefore applied a weak penalty (equivalent to a CV of 2.2) for devia-
tion from the SRR so that it would have negligible effect on recruitment and other model estimates
(Hampton and Fournier, 2001), but still allow the estimation of asymptotic recruitment. This
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approach was recommended (recommendation 20) by the 2011 bigeye assessment review (Ianelli
et al., 2012).

5.2.2 Initial population

The population age structure in the initial time period in each region was assumed to be in equi-
librium. In the 2020 assessment, the initial total mortality at the start of the model was set to the
average total mortality (Z) for the first 20 time periods. In the 2023 assessment, the initial fishing
mortality was assumed to be zero (Z = M). This change was introduced as part of the stepwise
model development. in order to implement the a catch conditioned model. As noted above, the
population is partitioned into quarterly age-classes with an aggregate class for the maximum age
(plus-group). The aggregate age class makes it possible for accumulation of old fish, which is likely
in the early years of the fishery when exploitation rates were very low.

5.2.3 Growth

The standard assumptions for WCPO assessments fitted in MFCL were made concerning age and
growth: i) the lengths-at-age are normally distributed for each age-class; ii) the standard devia-
tions of length for each age-class are a log-linear function of the mean lengths-at-age; and 3) the
probability distributions of weights-at-age are a deterministic function of the lengths-at-age and a
specified weight-length relationship6. These processes are assumed to be regionally and temporally
invariant.

In the previous assessment several approaches to growth estimation were explored, including an
external otolith based growth curve with a fixed Richards growth function based on high-readability
otoliths (Farley et al., 2020), a fixed external Richards growth curve based on the same high-
readability otolith data-set but with the addition of tag-recapture growth increment data (Eveson
et al., 2020), an internal MFCL growth estimation using a conditional-age-at-length (CAAL) dataset
from the otolith dataset including daily and annual ages (Farley et al., 2020), which also made
use of the modal progressions apparent in various size composition data (Ducharme-Barth et al.,
2020a). The assessment was sensitive to approaches used for growth and both the internal CAAL
and external otolith only growth curves led to unsatisfactory results, therefore the external fixed
tag-otolith integrated growth curve was the approach used for the diagnostic model.

The peer review of the yellowfin assessment (Punt et al., 2023) carefully considered the approaches
to estimating growth. They concluded that based on the otolith sampling protocols, with otoliths
selected according to length (i.e., attempting to achieve sufficient numbers of otolith samples across
the full length range, plus bias in otolith readability with age), that any external growth curves

6The length-weight relationship has been updated for the current assessment based on an analysis of current and
historical port sampling data under WCPFC Project 90 (Macdonald et al., 2023b)
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would likely be biased. They strongly recommended that for this type of otolith sampling regime
that age data should be conditional on length and the growth is estimated internally, using condi-
tional age-at-length data within MFCL. We also note that in exploring the internal growth estima-
tions we uncovered some features with the MFCL code for the internal Richards growth estimation
that require attention, however, this could not be dealt with under the time constraints. For this
assessment we use the CAAL and size composition data to estimate the von Bertalanffy growth
curve internal to the MFCL model.

5.2.4 Movement

Movement was assumed to occur instantaneously at the beginning of each quarter via movement
parameters that connect regions sharing a common boundary. Note that fish can move between non-
contiguous regions in a single time step due to the “implicit transition” computational algorithm
employed (see Hampton and Fournier, 2001 and Kleiber et al., 2019 for details). Movement is
parameterized by a pair of bi-directional parameters at each region boundary. Movement is therefore
possible in both directions across each regional boundary in each of the four quarters. Each of these
coefficients is estimated independently resulting in 104 estimated movement parameters for the 9
region spatial structure (2×no.region boundaries (13)×4 quarters). There are limited data from
which to estimate long-term, annual variation in movement or age-specific movement rates. As such,
the estimated seasonal pattern is assumed to be fixed across years and the movement parameters
are invariant with respect to age. A “prior” of 0 is assumed for all movement parameters, and a
low penalty is applied to deviations from the “prior”. We had hoped to explore different settings
for modelling movement, as this is an area of uncertainty, however, this was not possible to do
properly under time constraints. We ran a preliminary model with fixed movement parameters,
using outputs from the SEAPODYM model, but this model resulted in very poor fits to the CPUE
data and there was insufficient time to explore this further.

5.2.5 Natural mortality

The instantaneous rate of natural mortality (M) consists of an average over age classes and age-
specific deviations from the average M . Average M can be estimated internally by the model or
specified as a fixed value. Internal estimation can be constrained by providing a prior value and a
penalty weight for deviations from the prior. Age specific deviations from average M can also be es-
timated or input as a fixed M -at-age function. The later approach was taken in the 2020 assessment
for both bigeye and yellowfin (Ducharme-Barth et al., 2020a; Vincent et al., 2020) where M -at-age
was calculated using an approach applied to other tunas in the WCPO and EPO (Harley and Maun-
der, 2003; Hoyle, 2008; Hoyle and Nicol, 2008). The peer review had some difficulty with tracing the
sources of data for some of the inputs to the external M -at-age function applied in 2020 that requires
fitting a model that depends on empirical data on the sex-ratio at length, a growth curve, a base M
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assumption for males, assumptions on critical lengths for inflections and a multiplier that determines
the linear decline in M for young ages to the base M , plus a length at which female mortality is as-
sumed to begin to increase. There are uncertainties in all these empirical data and assumptions and
the data for sex ratio is limited especially for larger and older fish. While the peer review generally
supported the method, the construction of the external M -at-age function, notably the limitations
in some of the available data data required to estimate it, the complexity of the calculations and the
various assumption required are problematic. Furthermore, the external M -at-age function requires
re-estimation if different growth curves are applied, further complicating use of this method. After
the yellowfin peer review, a Tuna Stock Assessment Good Practices workshop run by the “Cen-
ter for the Advancement of Population Assessment Methodology” (CAPAM) was held (March 2023,
https://www.capamresearch.org/Tuna Stock Assessment Good Practices Workshop) and provided
a strong endorsement for applying a simpler Lorenzen functional form for estimation of M -at-age for
tuna. Other CAPAM reviews of approaches for estimating M have also, where possible, favoured
estimating M within the model, “let the data speak for themselves”, while being careful to review
model diagnostics and plausibility of model estimated M against external estimates (Hamel, 2023;
Punt, 2023).

In this assessment we chose to use the Lorenzen functional form for M -at-age (with M -at-age being
inversely proportional to the mean length at age) and to estimate the asymptotic value of M , i.e.
the M for the oldest fish. This change from the previous approach of setting a fixed value of M -at-
age to the Lorenzen form with internal estimation of the scalar was made as part of the stepwise
development of the 2023 diagnostic model.

5.2.6 Reproductive potential

The reproductive potential ogive is an important component of the assessment structure as it trans-
lates model estimates of total population biomass to the relevant management quantity, spawning
potential biomass (SB). Assumptions about maturity do not affect the process of fitting the
model, only the reference point values. The approach for calculating the reproductive potential at
length ogive in this assessment is the same as the 2020 assessment (Ducharme-Barth et al., 2020a).
MFCL estimates the reproductive potential at age ogive internally from the externally calculated
reproductive potential ogive at length. This length-based ogive is converted internally to the re-
productive potential-at-age using a smooth-spline approximation (Davies et al., 2019). This allows
for a more natural definition of reproductive potential as the product of three length-based pro-
cesses: proportion females-at-length7 (sex-ratio), proportion of females mature-at-length8, and the
fecundity-at-length of mature females9 (Figure 17). Another added benefit is that this reproductive

7For the current assessment, female sex-ratio-at-length was calculated from Regional Observer Program data in
SPC’s holdings through to 2018, consistent with the previous assessment as few data have been collected since 2018.

8Taken from Farley et al. (2017) as in the previous assessment.
9Taken from Sun et al. (2006) and standardized per kg of body weight at length as in the previous assessment.
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potential ogive is growth invariant. The previous stock assessments had to redefine the reproductive
potential-at-age ogive for each different growth curve included in the assessment. As in the 2020
assessment, we have not included spawning fraction in the reproductive potential calculation, as
these data are still not adequate for bigeye in the WCPO.

5.3 Fishery dynamics

5.3.1 Selectivity

Selectivity is estimated as a function of age within MFCL. Estimated selectivity curves at age are
included in Figure 36 and Figure 38. These selectivity curves can be transformed to equivalent
selectivity by length and these are shown in Figure 37 and Figure 39. Selectivity is modelled
using a cubic spline, as in the 2020 assessment. This allows for greater flexibility than assuming a
functional relationship with age (e.g. a logistic curve to model monotonically increasing selectivity
or double-normal curve to model fisheries with reduced selectivity for both the youngest and oldest
fish), and requires fewer estimated parameters than modelling selectivity with separate age-specific
parameters. This provides a form of smoothing, and the number of parameters for each fishery is
the number of cubic spline ‘nodes’ that are deemed sufficient to characterize selectivity over the age
range. The number of nodes may vary among fisheries to allow for reasonably complex selectivity
patterns, however we found that 5 nodes was sufficient for all fisheries in this case. Some other
modifications to selectivity curves were made to improve fits to size composition data and these
are noted in Section 6.1.

In all cases, selectivity is assumed to be time-invariant and fishery-specific. However, a single
selectivity function cab be “grouped” or “shared” among a group of fisheries that have similar
size compositions or were assumed to operate in a similar manner. This grouping of selectivity
facilitates a reduction in the number of parameters estimated and allows selectivity to be set for
fisheries with either limited or missing size composition data. Selectivity groupings are indicated
in Table 1.

Length-based selectivity is not currently implemented in MFCL. Efforts were made to implement
this feature in 2023 in response to a YFT peer review recommendation, but there was insufficient
time to implement and fully test this feature and apply it in 2023. To prevent a model from
producing a cryptic biomass unavailable to any fishery, which can produce good model fits and
likelihoods, but with little evidence to support the existence of these “invisible” fish, it is good
practice to set a “non-decreasing” penalty on selectivity for at least one fishery to encourage that
selectivity to be estimated as non-decreasing, as a function of age. The penalty is actually imposed
on decreasing selectivity with age, and it is important to note that this penalty can be overidden if
the improvement in likelihood obtained from fitting a decreasing selectivity outweighs the cost of
the penalty, in likelihood terms. In the 2020 assessment, this “non-decreasing” penalty was imposed
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on all of the longline fisheries and all of the index fisheries, so all of these fisheries were “encouraged”
to produce non-decreasing selectivity. For the 2023 assessment, a decision was made to only impose
this non-decreasing penalty on a single fishery, to allow improved fits to size composition data of
the other fisheries. The single fishery chosen for this purpose was an extraction longline fishery in
region 7. This fishery (6.LL.OS.7) catches both larger fish and larger quantities of large fish than
most other fisheries (it has a fat right hand tail) and it was considered the most suitable fishery for
this purpose (see Section 6.1 for further details).

5.4 Dynamics of tagged fish

Tagged fish are modelled as discrete cohorts based on the region, year, quarter and age at release
for the first 30 quarters after release. Subsequently, the tagged fish are pooled into a common
group. This helps to address computational and dimensionality constraints.

5.4.1 Tag reporting

In theory, tag-reporting rates can be estimated internally within the model. In practice, experience
has shown that independent information on tag-reporting rates for at least some fisheries tends to
be required for reasonable model behavior to be obtained. We provided reporting rate priors for
reporting groups (combinations of tagging programme and fishery) that reflect independent esti-
mates of the reporting rates and their variance (Peatman, 2023). We also make some assumptions
regarding fisheries that have similar characteristics to those with independent estimates, but in-
creased the prior variance for these fisheries. For others where there was very little information to
inform priors and variance, uninformative priors were allocated, or in cases where there were 5 or
less tag returns, tag reporting rates for these groups were not estimated. In these cases, the small
numbers of tag returns were removed from the tagging data input file and the reporting rate for
these groups set to a fixed value of zero. The prior reporting rates and penalty terms were informed
from analyses of tag seeding experiments reported in Peatman (2023). For the RTTP and PTTP,
relatively informative “priors” were formulated for the equatorial purse seine fisheries given that
tag seeding experiments were focused on purse seiners.

All reporting rates were assumed to be time-invariant, and have an upper bound of 0.99 (increased
from 0.9 in previous assessment, see Section 6.1). For this assessment, as previously noted, we did
not estimate reporting rates for tag reporting groups with five or fewer tag returns. Tag recapture
and reporting rate groupings are provided in Table 2. Previous assessments have assumed fishery-
specific reporting rates are constant over time. This assumption was reasonable when most of
the tag data were associated with a single tagging program. However, tag reporting rates may
vary considerably between tagging programs due to changes in the composition and operation of
individual fisheries, and different levels of awareness and follow-up. Consequently, fishery-specific

34



tag reporting rates that are also specific to individual tagging programs were estimated.

5.4.2 Tag mixing

The population dynamics of the fully recruited tagged and untagged populations are governed by
the same model structures and parameters. The populations differ in respect of the recruitment
process, which for the tagged population is the release of newly tagged fish, i.e., an individual tag
and release event is a recruitment event for the tagged population. Implicitly, we assume that
the probability of recapturing a given tagged fish is the same as the probability of catching any
given untagged fish in the same region and time period. For this assumption to be valid, either the
distribution of fishing effort must be random with respect to tagged and untagged fish and/or the
tagged fish must be randomly mixed with the untagged fish. The former condition is unlikely to
be met because fishing effort is almost never randomly distributed in space. The second condition
is also unlikely to be met soon after release due to the time required for mixing with the untagged
population to take place.

Depending on the distribution of fishing effort in relation to tag release sites, the probability of
capture of tagged fish soon after release may be different to that for the untagged fish. It is therefore
desirable to designate one or more time periods after release as “pre-mixed” and compute fishing
mortality for the tagged fish during this period based on the actual recaptures, corrected for tag
reporting and tagging effects, rather than use fishing mortalities based on the general population
parameters. This, in effect, desensitizes the likelihood function to tag recaptures in the specified
“pre-mixed” periods while correctly removing fish from the tagged population after the “pre-mixed”
period. Herein we refer to the “pre-mixed” period as the “mixing period”.

The allocation of appropriate “mixing periods” in stock assessments that use tag-recapture data
is problematic as model estimations are sensitive to this assumption and misspecification can bias
estimation of management quantities (Kolody and Hoyle, 2014). Mixing rates may vary depending
on release locations and times depending on various factors, including; oceanographic dynamics,
contexts of releases (e.g., FADs versus free schools, archipelagic waters versus oceanic), fishing
effort distribution and environmental/food conditions that influence movements. The yellowfin
peer review discussed mixing period assumptions and supported an approach applied to the 2022
skipjack assessment (Castillo Jordán et al., 2022; Punt et al., 2023). In this approach an external
individual based model was used to estimate mixing periods “specifically” for each release group,
taking into account the location and temporal varying conditions of each release event constituting
the group that may result in different rates of mixing of the released fish (Scutt Phillips et al., 2022).
It applied the individual-based Lagrangian model (IKAMOANA) (Scutt Phillips et al., 2018) to
simulate movement of individual fish (particles) and quantify the fishing pressure (observed) that
individuals experienced across their dispersal trajectories in comparison to a population of simulated
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untagged particles. While this approach is promising, it requires substantial work to develop and
it was not practical or possible to develop this approach for the current assessment, but such an
approach could potentially be used in future assessments.

The diagnostic model of the previous bigeye assessments assumed that tagged fish gradually mix
with the untagged population at the region-level and that this mixing process is complete by the
end of the second quarter following the quarter in which the fish are released (ie., “mixing period”
assumption is two quarters). A sensitivity model was included whereby the tag mixing period
assumption was one quarter (Ducharme-Barth et al., 2020a). Discussion at the PAW (Hamer,
2023) recommended that external analysis of tag-recapture patterns would be useful to inform
consideration of tag mixing assumptions for bigeye as previous work on skipjack suggested that
acceptable tag mixing may take longer than two quarters (Kolody and Hoyle, 2014). In response, the
background analysis paper for this assessment includes a series of maps (see appendices, Teears et al.
(2023)) that show tag release distributions and their related recapture distributions for individual
tagging cruise and model regions at 0, 1, 2, 3 and 4 quarters after release (0 quarters referring to
recaptures with the same quarter of release, 1 quarter referring to recaptures in the first quarter
after release etc.). The recaptures are scaled to the purse seine catches (the purse fishery accounts
for 90% of bigeye tag returns) and plotted as numbers of tags recaptured per 100 mt of catch in 1 x
1 degree grids cells. The maps provide spatial distributions of relative tag recapture rates within a
model regions, similar the approach of Langley and Million (2012). When recaptures are observed
in 1 x 1 degree cells spread throughout the model region in relation to the catch distribution, and
with roughly similar rates of recapture, it could be considered a qualitative diagnostic that full tag
mixing was achieved. These plots were used to assign indicative mixing periods for fish released from
the individual tag cruises and these were summarised to provide an indication of ’reasonable’ mixing
period assumptions to apply in sensitivity analyses (Teears et al., 2023). As further information to
support this qualitative assessment, the distributions of displacement distances of tag recaptures
at 1, 2, 3, 4, 5, and 6 quarters after release, for releases from model regions 3, 4, 7 and 8 of the 9
region model (see Teears et al. (2023)) were considered.

Overall, for tag releases with good numbers of recaptures, these qualitative analyses supported the
use of mixing periods of either 1 or 2 quarters (Teears et al., 2023), consistent with the previous
assessment. Some tag releases were likely not mixed until at least 3 quarters, which could be
considered as an additional sensitivity, although perhaps with less support than using 1 or 2 quarters
as a mixing period. It was noted that some tag release groups show more obvious evidence for mixing
than others depending on how many tags were released (i.e., the qualitative assessments were more
reliable for larger tag releases). While these qualitative assessments of mixing period assumption
could be improved with more time, they provide a stronger basis for mixing assumptions than the
basis used in the previous assessment.
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As per the 2020 assessment, the tag return files were created using a sliding window to calculate
the mixing period for each release group as per the recommendation of the 2020 PAW, which was
further endorsed by the yellowfin assessment peer review (Punt et al., 2023). This approach ensures
that the mixing periods are applied faithfully in respect of actual times at liberty. It means that
tags had to have a time at liberty of at least 182 days for a mixing period of 2 quarters as is assumed
in the diagnostic case, or 91 days for a mixing period of 1 quarter.

5.5 Likelihood components

There are four data components that contribute to the log-likelihood function for the bigeye stock
assessment: the index fishery CPUE data; the length and weight frequency data, the tagging data
and the conditional age-at-length data.

5.5.1 Index fishery CPUE likelihood

In previous catch-errors models, abundance indices were constructed for extraction fisheries by
assuming that catchability remained constant over time. In catch-conditioned models, a new ap-
proach has been implemented to directly model the CPUE for ‘index’ fisheries. While these index
fisheries exist in the model and in the data inputs as defined ‘fisheries’, they differ from the reg-
ular ‘extraction’ fisheries in that no catch is extracted and their CPUE is modelled directly as a
lognormal likelihood contribution. The CPUE index series for each region is assigned a likelihood
weight in the form of a region-specific σ, representing a variance term, describing the magnitude of
observation error. The procedure used for estimating σ is based on maximum likelihood estimated,
by calculating σ as the standard deviation of log-residuals from a model part way through the
stepwise development, at which stage this value is adjusted. The region-specific values for σ are
then set at these values for all subsequent models in the stepwise development, for the diagnostic
model, and for the structural uncertainty grid.

5.5.2 Length and weight frequency

The distributions for the length- and weight-frequency compositional data are assumed to be ap-
proximated by robust normal distributions, with the variance determined by the input sample size
and the observed length or weight-frequency proportion. Size composition distributions for each
time period are typically assigned input sample sizes lower than the number of fish measured.
Lower input sample sizes recognize that (i) length- and weight-frequency samples are not truly ran-
dom (because of non-independence in the population with respect to size) and would have higher
variance as a result; and (ii) the model does not include all possible process error, resulting in
further under-estimation of variances. The input sample sizes used by the model are capped at
1,000 within MFCL. The input sample size for the composition data used in the common index and
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extraction fisheries was divided by two as it is essentially being used twice, and then the sample
sizes were further divided by 20 before use within MFCL for the diagnostic model. Alternative di-
visors of 10 and 40 for the input sample size were explored in sensitivity analyses. We also explored
a self-scaling method for weighting the size composition data, the Dirichlet-multinomial likelihood
(Thorson et al., 2017). The Dirichlet-multinomial likelihood approach suggested relatively high
weights for the size composition data, which resulted in deterioration of the fits to the abundance
indices. We therefore decided not to apply the Dirichlet-multinomial likelihood weighting method,
and consider that this approach requires further investigation. However, based on the preliminary
results of the Dirichlet-multinomial approach suggest that a divisor of 10 is more consistent with
the Dirichlet-multinomial approach than the other two divisors used.

5.5.3 Tag data

A log-likelihood component for the tag data was computed using a negative binomial distribution.
The negative binomial is preferred over the more commonly used Poisson distribution because
tagging data often exhibit more variability than can be attributed by the Poisson. We employed
a parameterisation of the overdispersion parameter (τ) such that as it approaches 1, the negative
binomial approaches the Poisson. In the current assessment we assume τ = 2, which corresponds
to a variance twice that of the Poisson distribution. If the tag return data show high variability
(for example, due to contagion or non-independence of tags), then the negative binomial is able to
deal appropriately with this. While this should provide a more realistic weighting of the tag return
data in the overall likelihood and allow this source of variation to affect the confidence intervals
of estimated parameters, the model estimation may be sensitive to the value assumed for (τ). We
conducted a sensitivity analysis with values for τ of 1 and 4. A complete derivation and description
of the negative binomial likelihood function for tagging data is provided in Kleiber et al. (2019).

5.5.4 Conditional age-at-length data

A further likelihood component involves using conditional age-at-length (CAAL) data, as recom-
mended by the yellowfin tuna assessment peer review (Punt et al., 2023). These data are included
in the assessment and con contribute to estimation of the growth parameters, as they provide direct
observations of the distribution of ages, generally measured with some error, within each observed
length class. For each each fishery and time period (quarter) aged fish are separated into observed
(measured) length classes, with the distribution of ages tabulated as a function of the known length
(ideally with ageing measurement error). The measured age distribution within each length interval
is assumed to be multinomially distributed, and this forms the basis of the likelihood component for
these data. However, despite the otolith data being collected across a range of locations and times
the conditional age-at-length data generally not independent has a degree of non-independence, as
is the case for size compositional data, so these conditional age-at-length data are downweighted by
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a factor of 0.75. We also ran sensitivities with weighting factors of 0.5 and 1. The latter is consistent
with the weighting used for conditional age-at-length data in the 2020 yellowfin assessment.

5.6 Parameter estimation and uncertainty

The parameters of the model were estimated by minimising the sum of the negative log-likelihoods
associated with each of the data components plus the negative log of the probability density func-
tions of the priors and penalties specified in the model. The optimisation is continued either until
a pre-specified minimum gradient is achieved or until a maximum number of iterations is reached.
This optimisation is performed by an efficient algorithm using exact derivatives with respect to
the model parameters (auto-differentiation, Fournier et al. (2012)). Estimation was conducted in a
sequence of phases, the first of which uses somewhat arbitrary starting parameter values. A bash
shell script, or “doitall”, implements the phased sequence for gradually estimating more and more
parameters for the model. Some parameters were assigned starting values consistent with available
biological information. The values of these parameters are provided in the .ini input file or within
the MFCL code.

Generally, models were run with a gradient criterion of 10−5 and a with the maxium iteration
criterion of greater than 10 000. This generally ensures that model runs complete in less than 24
hours, allowing a routine of continuous model development. During the stepwise development,
some model runs were later demonstrated to achieve sub-optimal local minima. This was demon-
strated when fits with improved objective functions were subsequently obtained by running several
replicates where selected parameters were perturbed during the optimisation process, in a process
known as jittering. Following these adjustment to parameter values, the optimisation was contin-
ued with additional iterations for each replicate jitter. In many cases, the new jittered solution
achieved an improved objective function value, and a set of estimated model parameters that pro-
duced notable changes to derived management quantities. This was cause for considerable concern
and demonstrated that additional work was required to find more accreptable solutions to these
parameter estimates that clearly provided suboptimal solutions, and which provide reliable and
stable estimates of the derived quantities of most interest for management advice. A thorough
jittering process was therefore adopted for the both the diagnostic model and the structural uncer-
tainty grid, exploring the parameter space more thoroughly and selecting the parameter estimates
possible to exlpain the data, those parameter values that produced the best likelihood, or best
value for the objective function. These improved solutions may sometimes have poor gradients
and Hessian properties than models at sub-optimal local minima. Thus, a positive definite Hessian
(PDH) solution was considered less important in this process than achieving the best value for
the objective function, and stable estimates of management quantities. We reached this conclusion
after obtaining several apparently well-converged model solutions with a PDH, wher the objective
function was subsequently improved, in some cases substantially, through jittering.
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Additional steps were incorporated in the process adopted to find estimated model parameters with
the best possible objective function value, compared to those solutions obtained without jittering.
Due to the sensitivity of these models to initial conditions, an iterative process was adopted where
key parameters for growth and mortality were reset close to values obtained from a previous run of
the model. These values could either be reset at the initial phase or in an intermediate phase of the
optimisation. This process was combined with repeated cycles of jittering, with up to 60 replicate
jitters, and on occasions a secondary round of jittering on the best jittered solution found from the
primary jitter. Typically, improvements in likelihood were routinely found in the primary round
of jitters, sometimes with improvements to the objective function of tens to hundreds of units of
log likelihood. Improvements in the secondary round of jittering (also referred to as “twerking”)
could sometimes be found, but these were often less than 10 units of log likelihood and typically
the secondary round of jittering produced little change to the stock status. However the initial
round of jittering produced changes to spawning biomass depletion of 5% or more. This iterative
process was used to select the 2023 diagnostic model and resulted in improvements to the objective
function and overall likelihood. However, this added significant time to the assessment work. Once
a stable “good fit” model was obtained, we calculated the Hessian. This process resulted in a well-
converged, jittered diagnostic model with a PDH (see Section 6.1). While there is no guarantee that
this is the optimal solution, it was clearly a better solution than those obtained without jittering.

The 2020 assessment ran jitters on the diagnostic model but did not find the same instability in
relation to changes to the stock status. This greater stability noted in 2020 may relate to that
model using fixed (external) M -at-age and a fixed (externally estimated) growth curve, or perhaps
there was insufficient time to investigate jittering more thoroughly.

This exhaustive process adopted to achieve a suitable diagnostic model in 2023, also meant that a
single fit to a model in the structural uncertainty grid, while perhaps indicative, could not really
be trusted, reagardless of the objective function value, gradient or Hessian status. While the grid
models based on the diagnostic model are generally expected to have good starting parameter
values, jittering each model in the grid is now considered important to increase confidence that
these models achieve stable solutions, both in terms of an improved objective function value and
reliable management quantities. However, under time constraints the jittering of models in the grid
was restricted to 20 jitters per model, with the Hessian calculated on the best jittered solution,
where “best” is judged solely on the objective function values achieved. The requirement to jitter
and run Hessians on grid models again compounded the already heavy workload and computational
requirements for this assessment. However, this was all required to meet recommendations of the
yellowfin peer review and the SC18 requests for greater attention to model convergence.

Finally, we considered the SC18 concerns over a PDH being a mandatory diagnostic that needs to be
achieved for a model to be included for management advice. We argue that while a PDH is desirable
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it is not as important as the best possible objective function value and stable management quantities
for these complex assessment models. Often the lack of PDH in these models with several thousand
parameters estimated, is due to one or a few very small negative eigenvalues that have little influence
on the estimations of key management quantities. MFCL has advanced methods for computing
estimation uncertainty for Hessians with negative eigenvalues, allowing the parameter estimation
uncertainty to be calculated for Hessians with small numbers of small negative eigenvalues. We
have shown by comparing pairs of similar models with the same structure, but with slightly different
solutions, one with and one without a PDH, that the estimation of parameter uncertainty is very
similar (e.g., appendix 15.3 Castillo Jordán et al. (2022)). While we expect that a PDH solution
is an important diagnostic to meet for the diagnostic model, this criterion may not be essential (or
practicable) for all grid models, especially if only a small non-influential number of small negative
eigenvalues are found and if estimates of the parameter variances can be obtained anyway.

Estimation uncertainty A positive definite Hessian is desirable to calculate parameter or esti-
mation uncertainty for individual models, although as noted, MFCL has advanced procedures for
computing estimation uncertainty in the absence of a positive definite Hessian. with negative eigen-
values. Hessian calculations can take considerable computer time for these models, however, SC18
requested the Hessian status be reported for all models used for management advice (which includes
all grid models). This has been completed for this assessment but this request has added significant
time, and computational burden, leading to delays in finishing the assessment and leaving some
model explorations unfinished.

Structural uncertainty This structural uncertainty grid attempts to describe the main sources
of structural and data uncertainty in the assessment. Previous experience has shown that overall
uncertainty is dominated by the structural uncertainty grid. For this assessment we have continued
with a factorial grid of model runs which incorporates selected uncertainties explored in one-off
sensitivity analyses.

The combined structural and estimation uncertainty is recommended to form the basis for assessing
uncertainty and risk for the key stock status indicators.

Likelihood profiles For highly complex population models fitted to large amounts of often con-
flicting data, absolute estimates of total abundance can be unstable. Therefore, a likelihood profile
analysis was undertaken of the marginal penalized likelihood in respect of population scaling, fol-
lowing the procedure outlined by McKechnie et al. (2017a) and Tremblay-Boyer et al. (2017). The
results of these procedures are presented in the appendices (Appendices Section 12.1). Likelihood
profiles are only presented for the diagnostic model.

Retrospective analyses were conducted as a general test of the stability of the model, as a robust
model should produce similar output when rerun with data for the terminal quarters sequentially
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excluded (Cadigan and Farrell, 2005). Retrospective analyses for the 2023 diagnostic model are
presented in the appendices (Appendices Section 12.2).

5.7 Stock assessment interpretation methods

5.7.1 Depletion and fishery impact

Many assessments estimate the ratio of recent to initial biomass (usually spawning biomass) as
an index of fishery depletion. The problem with this approach is that recruitment may vary
considerably over the time series, and if either the initial or recent biomass estimates (or both)
are “non-representative” because of recruitment variability or uncertainty, then the ratio may not
measure fishery depletion, but simply reflect recruitment variability.

This problem is better approached by computing the spawning potential time series (at the model
region level) using the estimated model parameters, but assuming that fishing mortality was zero.
Because both the estimated spawning potential SBt (with fishing), and the unexploited spawning
potential SBF =0[t], incorporate recruitment variability, their ratio at each quarterly time step (t) of
the analysis, SBt/SBF =0[t], can be interpreted as an index of fishery depletion. The computation
of unexploited biomass includes an adjustment in recruitment to acknowledge the possibility of
reduction of recruitment in exploited populations through stock-recruitment effects. To achieve
this the estimated recruitment deviations are multiplied by a scalar based on the difference in the
SRR between the estimated fished and unfished spawning potential estimates.

A similar approach can be used to estimate depletion associated with specific fisheries (fisheries
impact analysis) or groups of fisheries. Here, fishery groups of interest - longline, purse seine
associated sets, purse seine unassociated sets, pole and line and “other” fisheries, are removed in-
turn in separate simulations. The changes in depletion observed in these runs are then indicative
of the depletion caused by the removed fisheries.

5.7.2 Reference points

The unfished spawning potential (SBF =0) in each time period was calculated given the estimated
recruitments and the Beverton-Holt SRR. This offers a basis for comparing the exploited population
relative to the population subject to natural mortality only. The WCPFC adopted 20% SBF =0 as a
limit reference point (LRP) for the bigeye stock where SBF =0 for this assessment is calculated as the
average over the period 2012–2021. There is no agreed WCPFC target reference point for the bigeye
tuna stock however CMM 2021-01 states in para 11 “Pending agreement of a target reference point
the spawning biomass depletion ratio (SB/SBF =0) is to be maintained at or above the average
SB/SBF =0 for 2012–2015”. Stock status was referenced against these points by calculating the
reference points; SBrecent/SBF =0 and SBlatest/SBF =0 where SBF =0 is calculated over 2012–2021
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and SBrecent and SBlatest are the mean of the estimated spawning potential over 2018–2021, and
2021 respectively (Table 4).

The other key reference point, Frecent/FMSY , is the estimated average fishing mortality at the full
assessment area scale over a recent period of time (Frecent; 2017–2020 for this stock assessment)
divided by the fishing mortality producing MSY which is a product of the yield analysis and is
detailed in Section 5.7.3.

Several ancillary analyses using the converged model/s were conducted in order to interpret the
results for stock assessment purposes. The methods involved are summarized below and the details
can be found in Kleiber et al. (2019).

5.7.3 Yield analysis

The yield analysis consists of computing equilibrium catch (or yield) and spawning potential, condi-
tional on a specified basal level of age-specific fishing mortality (Fa) for the entire model domain, a
series of fishing mortality multipliers (fmult), the natural mortality-at-age (Ma), the mean weight-
at-age (wa) and the SRR parameters. All of these parameters, apart from fmult, which is arbitrarily
specified over a range of 0–50 (in increments of 0.1), are available from the parameter estimates of
the model. The maximum yield with respect to fmult can be determined using the formulae given
in Kleiber et al. (2019), and is equivalent to the MSY. Similarly, the spawning potential at MSY
SBMSY can be determined from this analysis. The ratios of the current (or recent average) levels
of fishing mortality and spawning potential to their respective levels at MSY are determined for all
models of interest. This analysis was conducted for all models in the structural uncertainty grid
and thus includes alternative values of steepness assumed for the SRR.

Fishing mortality-at-age (Fa) for the yield analysis was determined as the mean over a recent period
of time (2017–2020). We do not include 2021 in the average as fishing mortality tends to have high
uncertainty for the terminal data year of the analysis and the catch and effort data for this terminal
year are potentially incomplete. Additionally, recruitments for the terminal year of the model are
constrained to be the geometric mean across the entire time series, which affects the F for the
youngest age classes.

MSY was also computed using the average annual Fa from each year included in the model (1952–
2021). This enabled temporal trends in MSY to be assessed and a consideration of the differences
in MSY levels under historical patterns of age-specific exploitation.

5.7.4 Kobe analysis and Majuro plots

For the standard yield analysis (Section 5.7.3), the fishing mortality-at-age, Fa, is determined as the
average over some recent period of time (2017–2020). In addition to this approach the MSY-based
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reference points (Ft/FMSY ), and SBt/SBMSY ) are computed by repeating the yield analysis for
each year in turn. This enabled temporal trends in the reference points to be estimated and a
consideration of the differences in MSY levels under historical patterns of age-specific exploitation.
This analysis is presented in the form of dynamic Kobe plots and “Majuro plots”, which have been
presented for all stock assessments in recent years.

5.7.5 Stock projections from the structural uncertainty grid

Projections of stock assessment models can be conducted within MFCL to ensure consistency
between the fitted models and the simulated future dynamics, and the framework for performing
this exercise is detailed in Pilling et al. (2016). Typically, stochastic 30 year projections of recent
catch and effort (2019-2021) are conducted from each assessment model within the uncertainty
grid developed. For each model, 100 stochastic projections, which incorporate future recruitments
randomly sampled from historical deviates, are performed. The results of stock projections are
included in the appendices.

6 Model runs

6.1 Developments from the last assessment

The progression of the model development (referred to as the “stepwise”) from the 2020 diagnostic
model to the 2023 diagnostic model is described here. Most steps in the stepwise model development
process use the data inputs from the 2020 assessment and implementing the main changes to the
modelling methods used for the 2023 assessment on this old dataset. This development of the
model using old data is necessary as there is insufficient time to complete these analyses using
updated data between the finalisation of WCPFC data submissions and the SC meeting. These
time constraints made it impossible to rerun the stepwise model development on the updated data
inputs. As a result, updating the data is incorporated into the last steps in the development of a
new 2023 diagnostic model.

6.1.1 Stepwise model development

The major changes incorporated at each step in the diagnostic model development are summarised
below, including the model names used in the figures listed to describe each step. Each step builds
from the previous step, and in most cases retains all the previous changes. Many of the steps
listed in this stepwise model development include a number of sub-steps, which result in negligible
changes in model outcomes. Each sub-step incorporates the smallest practical number of changes
to the model to allow any changes in model outcomes to be fully attributed. The steps listed
here include details on sub-steps, but a step is only named and listed here if it involves important
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structural changes, or if there is a notable change in the model outcomes.

1. [00BETDiag2020] The 2020 bigeye diagnostic model, using data from 2020.

2. [01SingleStep] The 2020 bigeye diagnostic model featured a two stage optimisation, with an
additional “FixSelBump” step added in stage two, after all other parameters were estimated
in stage one. In 2020, FixSelBump constrained the selectivity for large fish to ensure better
fits to length data for a group of miscellaneous fisheries (17, 21, 22, 23, 28 and 32). This
additional stage was added just before the 2020 diagnostic model was finalised. At the
start of the stepwise in 2023, this change to selectivity was incorporated into a single stage
optimisation, with the timing of this modification to selectivity also altered in the sequence
when parameters were introduced to the estimation. This selectivity change was moved from
the last phase, in 2020, to the first phase of estimation in 2023. As a result, constraints on
selectivity for all fisheries are now set in the same phase (Phase 1).

3. [02NewExe] This step updates the MULTIFAN-CL (MFCL) executable. This step incorpo-
rates a number of changes, removing some redundant MFCL flag settings and setting maturity
for very young ages to a very small non-zero value (1 × 10−9), moving these values away from
the bound of zero, as required by the most recent version of MFCL, version 2.2.2.0.

4. [03PreCatchCond] Multiple changes are required to the model structure to enable the
transition to a catch-conditioned model, and to ensure stable model behaviour. These changes
include two initial sub-steps of relaxing a bound on the total mortality level in later phases of
the model, and assuming zero initial fishing mortality, prior to the initial year of data input
to the model, rather than setting the initial fishing mortality to the average fishing mortality
estimated from the first few years of data. The third sub-step involved decreasing the penalty
on non-zero regional movement and this substep resulted in notable changes. These three
sub-steps were incorporated separately prior to the catch-conditioning steps, to enable the
effects of catch-conditioning to be examined in isolation. These steps all involve running
catch-errors models without using index fisheries and their associated CPUE likelihood.

5. [04aCatchCondOldCPUE] This step implements an initial catch-conditioned model, by
removing many of the catch-errors specific MFCL flags, introducing grouped index fisheries
with common catchability but retaining the old-style catch-errors CPUE likelihood, through
estimating the relationship between fishing mortality level and effort. This step represents a
major change in the model structure.

6. [04bCatchCondNewCPUE] This step takes the initial catch-conditioned model, with
grouped catchability for the index fisheries, but no longer estimates the relationship between
fishing mortality level and effort. Instead it incorporates the CPUE likelihood component
from the index fisheries and again is a significant change to the model structure.
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7. [05SelChanges] This step incorporates a number of sub-steps which have negligible impact
including: adding the real effort data for the last 12 quarters for some extraction fisheries to
enable effort projections for these fisheries at a later step; relaxing a constraint on estimation of
recruitment in region 9; setting the period for maximum sustainable yield (MSY) calculations
to the last 212 quarters; adjusting selectivity (forcing it to zero) for the youngest age classes
for some longline fisheries; and adjusting selectivity (forcing it to zero) for the five youngest
age classes for fishery 18.HL.PHID.7. The important change in this step involved adjusting
the choice of fisheries which were constrained to have non-decreasing selectivity. In the 2020
bigeye diagnostic model, all the index fisheries and all of the longline fisheries were constrained
to have non-decreasing selectivity, to prevent the model from having dome-shaped selectivity
for all fisheries which could allow a large cryptic biomass to be estimated. An intermediate
sub-step was initially examined where only the nine index fisheries were constrained to have
non-decreasing selectivity (relaxing this constraint for all longline fisheries). After further
examination of the length data, a decision was made to apply this non-decreasing selectivity
only to a single longline extraction fishery, 6.LL.OS.7, a fishery which has some of the largest
fish and the best representation of large fish in the weight composition data. Unsurprisingly,
this relaxation allowed for considerable improvements in the objective function.

8. [07Growth] Once again, this step includes two sub-steps with negligible changes, both re-
lating to tags. The first sub-step involved relaxing the upper bound on estimated tag group
reporting rates from 0.9 to 0.99 and the second sub-step excludes any tag release groups with
five or fewer recaptures from the set of groups for which tag reporting rates are estimated.
An attempt after this sub-step to estimate the tag overdispersion parameter τ , in a separate
exploration resulted in an estimate of τ on the lower bound. This suggests that it is not
possible to get a plausible estimate of τ , so it was fixed at a value of 2 which represents a
moderate level of overdispersion relative to the Poisson distribution. The important change
in this step was the final sub-step, where all the von Bertalanffy growth parameters were
estimated, in contrast to the 2020 diagnostic model which used fixed growth parameters (es-
timated externally) and only estimated two variances parameters for growth. This sub-step
required inclusion of conditional age-at-length data (from a total of 1004 otolith readings) and
estimation of growth within the model, so this is a major structural change using additional
data. As a result, the total likelihood is not comparable to the previous step. The starting
values for growth parameters can be important for complex models when there are sensitivi-
ties to initial conditions, and sometimes optimisation algorithms can have difficulty exploring
the parameter space to find the optimal solution. This sensitivity to initial conditions when
trying to estimate growth was a problem identified in the 2020 assessment (Ducharme-Barth
et al., 2020a). As part of this sub-step, the starting values for the growth parameters were
updated to set them closer to the estimated values, in an iterative process, to improve the
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chances of the model finding a “good” solution and avoid being stuck in a section of the
parameter space with a sub-optimal local minimum. Jittering analysis showed that more
complex models, discussed later in this stepwise development, are particularly sensitive to
these starting values, and starting close to the estimated optimal values improved model per-
formance and stability. Once this instability was identified, and to increase the chance of
finding a “good” solution at each step of the stepwise, the starting growth parameter values
were reset at this step, and for all successive steps, and all subsequent steps rerun with these
new starting values for the growth parameters.

9. [08DataWeights] Again this step involved an exploratory sub-step that was not adopted
in the full stepwise. In this case, the Dirichlet multinomial approach to estimate a scalar
to weight the length and weight composition data was explored. This approach suggested
that the composition data should be upweighted, but this was at the expense of deterioration
in the fits to the CPUE data. While it would be useful to adopt a self scaling approach to
weighting this composition data, the consequences to the fits to the CPUE were considered
to be unacceptable. The 2022 yellowfin peer review (Punt et al., 2023) recommended that the
age data was previously overweighted in the 2020 yellowfin assessment. Due to computational
and time constraints, it was not possible to consider an iterative reweighting of either the size
composition data (Francis, 2011) or of the conditional age-at-length data Punt (2015) in this
assessment, but further exploration of this approach could prove useful in future assessments.
Alternative data weightings were included in the uncertainty grid, with diagnostic model
choices made for the default divisors of 20 for the composition data (unchanged from 2020),
based partly on initial results from exploring the Dirichlet multinomial approach, and 0.75
for the conditional age-at-length data (changed from the value of 1.0 which was used for
the yellowfin assessment in 2020 where conditional age-at-length data was used with growth
estimated internally in that assessment). The sub-step including changes to the weighting of
the conditional age-at-length data produced minimal change to the final stock status and the
changes to the likelihood are not comparable. The important change in this step involved
allowing different values for the input CPUE variance for each index fishery, and hence for
each region. Note that this feature was not available in the MFCL version used in 2020.
The value of the input variance for each index fishery is set by calculating the maximum
likelihood estimate of the variance of the observed CPUE data points compared to a modelled
(expected) value from a CPUE fit from a previous step in the stepwise development, fitting
to the log-residuals. This allows this variance to be estimated from the input data and the fit
to a similar model, rather than using an estimate of variance obtained directly from CPUE
analysis, which can often be unrealistically small due to the large samples sizes involved, and
which may not adequately represent the process error observed. Again, the total likelihood
is not comparable to the previous step.
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10. [09NatMort] The first sub-step used the same shape for natural mortality as used in the
2020 diagnostic model, but estimated the scale for this mortality form. This sub-step re-
sulted in minimal change. The second sub-step used the Lorenzen form of natural mortality,
again with the scale estimated. This form features a much higher mortality rate for young
fish than was used in the 2020 diagnostic model, and also features monotonically decreas-
ing mortality with age. The mortality form used for the 2020 diagnostic model featured
an increase in mortality at around 3 years of age that was used to model observed changes
in sex-ratio (and implied changes in mortality by sex) for older bigeye. The use of Loren-
zen mortality and estimating the scale, if possible, was recommended as good practice in
the recent CAPAM tuna stock assessment good practices workshop held in March 2023,
https://www.capamresearch.org/Tuna Stock Assessment Good Practices Workshop.

11. [10TaggerEffect] The recommended tagger effects model based on the 2022 workshop and
simulation study (Peatman et al., 2022, 2023a) with the recommended separate tagger effects
models for the western Pacific and central Pacific tagging cruises, was applied to the old
(2020) tagging data. This revised model uses different assumptions to the model used in
2020, reverting to a model with assumptions similar to those used in 2017. This update to
the method results in changes to the 2020 input data, so the objective functions can not be
meaningfully compared.

12. [11NewCPUEMethod] The updated CPUE method using sdmTMB with new covariates
(Teears et al., 2023) was applied to the 2020 dataset. With different data inputs, the objective
function is not comparable with the previous step.

13. [12aLengthWeight] This step incorporates the updated length-weight conversion factors
(Macdonald et al., 2023b).

14. [12bNewIniM] Like the growth parameters, the starting values for the mortality scale pa-
rameter can be important for complex models that have sensitivities to initial conditions. In
this step, the starting value for the mortality scalar was updated, and in all following steps,
with values subsequently reset closer to estimated values from a later step, again through an
iterative process, to improve the chances of the model finding a “good” solution.

15. [12cNewData] This step incorporates all the new data and historical data revisions up to
the end of 2021, applying all the previous structural changes to the model. This included
revisions to data from 1952-2018, and three years of new data from 2019-2021, including new
tagging data, minor revisions to data filtering protocols for composition data, new length and
weight composition data, new CPUE data and applies the updated tagger effects model to
the new tagging data. There is no new conditional age-at-length data available since the 2020
assessment. There are also an additional 3 years of recruitment deviations estimated as part
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of this step. Ideally, all of these changes would be separated and incorporated one at a time,
but this was not possible due to the limited time between receiving the finalised new data,
with associated quality checks and exploration of various filtering options, and producing the
assessment report. The unjittered comparable final stock status (at the start of 2019) was
very similar to both the previous step and the 2020 diagnostic case, initially suggesting that
further separation of this step was not critical. The objective function is not comparable
between this step and the previous step because all components of the data have changed,
with the single exception of the conditional age-at-length component.

16. [12dF17 24ungp] With the new data first included in the previous step, length composition
data became available for fishery 24.PS.PHID.7 for the first time. Previously this fishery had
been grouped with fishery 17.MISC.PH.7 for selectivity, as it appeared to be the most similar
fishery. New composition data makes it possible to ungroup these two fisheries and estimate
selectivity separately for each fishery.

17. [13a0TailCompress] Tail compression is commonly applied in stock assessments to avoid
problems with zero observations for either end of the size composition data (i.e. for very large
or very small fish). Tail compression is often used to aggregate a small fraction of the total
distribution into one size bin, at either end of the distribution, to minimise the number of
zero observations and to avoid problems with likelihood calculations and was recommended
by the 2012 bigeye peer review (Ianelli et al., 2012), and subsequently introduced to MFCL
in 2015 (Davies et al., 2015). Tail compression was not applied in the 2020 bigeye assessment,
so all zero “observations” were included in the likelihood calculation. Using 2 cm length bins
in the range 10 cm to 200 cm and 1 kg weight bins from 0 kg to 200 kg resulted in many
quarterly size composition records having long zero tails, especially on the upper end of the
distributions. Without compression of these tails, these zero “observations” are compared to
the expected values with each size bin contributing to the likelihood. While it is preferable
to also include a small non-zero fraction, such as 0.001, in the tail compression, as a first step
to dealing with tail compression, zero tail compression was applied to both the observations
and to the corresponding expected values matching each zero tail compressed observation, to
prevent these strings of zeros from contributing to the likelihood. This step had a large effect
on the likelihood values for the composition data, but due to the effective ”change in data”
these likelihood values are not comparable.

18. [13bMinSamp50] This step utilises an MFCL filter on input sample sizes for length and
weight composition data, excluding all samples with an input sample size of 50 or fewer. As
with tail compression, it is common practice to exclude small samples from size composition
data, as they are often unrepresentative of the catches of population and this was also in-
troduced to MFCL in 2015 (Davies et al., 2015). As with tail compression, the likelihood
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components from the composition data are not comparable, so the objective function cannot
be compared with the previous step.

19. [13cNewInitVal] An early version of the previous step was jittered, to see if a better solution
could be found. As a result of these jitters and subsequent analysis, initial values for growth
and mortality were updated to try to improve the solution found.

20. [14Diagnostic2023] This final step involves jittering the previous model, with updated
initial values for mortality and growth, followed by a further round of jittering.

6.2 Sensitivity analyses and structural uncertainty

6.2.1 Sensitivities

One-off sensitivity models were explored to understand the sensitivity of the diagnostic model
estimations to structural and data uncertainties. Each one-off sensitivity model was created by
making a single change to the 2023 diagnostic model. Due to the time constraints and additional
requirements to run hundreds of models to achieve a well fit and reliable diagnostic model, plus the
need run jitter analyses on all grid models, there was limited time to explore sensitivities. We note
that additional models were explored with alternative size data filtering ((Peatman et al., 2023b)),
SEAPODYM movement coefficients, and simpler spatial structure but we did not have sufficient
time to fully explore these models with additional steps required to achieve a reliable and stable
convergence as described in Section 5.6.

One additional sensitivity was conducted regarding purse seine catches. Estimates of purse seine
catches rely on statistical analysis of species composition data provided by the regional observer
programme. As a result of COVID restrictions, purse seine observer coverage was very low in
2020 and 2021 compared to previous years (Peatman et al., 2023b). This affected the precision of
estimates of species composition, and therefore there is greater uncertainty in purse seine catches
of bigeye in these years than previously. To test the impact of any substantial under-estimation of
bigeye catch in 2020 and 2021, we undertook a one-off sensitivity in which the purse seine catches for
both associated and unassociated fisheries in regions 3, 4 and 8 were doubled from their estimated
values.

We primarily focused on the key sensitivities that form the structural uncertainty grid.

1. Steepness: 0.65, 0.95

2. Tag mixing: 1 quarter

3. Size data weighting: 10, 40

4. Conditional age-at-length data weighting: 0.50, 1
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6.2.2 Structural uncertainty

Stock assessments of pelagic species in the WCPO use an approach to assess the structural uncer-
tainty in the assessment model by running a “grid” of models that explore the interactions among
selected “axes” of uncertainty. The grid contains all combinations of levels of several model quan-
tities, or assumptions, and allows the sensitivity of stock status and management quantities to this
uncertainty to be determined and factored into management advice. The axes are generally selected
from factors explored in the one-off sensitivities with the aim of providing an approximate under-
standing of variability in model estimates due to assumptions in model structure not accounted for
by statistical uncertainty estimated in a single model run, or over a set of one-off sensitivities.

The structural uncertainty grid for the 2023 bigeye stock assessment was constructed from 4 axes
of uncertainty with 1–3 levels for each (below), resulting in a total of 54 models (Table 3). The pre-
vious assessment included axes for steepness (same values as current assessment), growth (internal
estimate based on length modes, external otolith growth curve, conditional age-at-length internal),
size data weighting (20, 60, 200, 500), and tag mixing (1 quarter, 2 quarter).

The values for the diagnostic model are in bold and the alternative values used in the grid are in
italics.

1. Steepness [0.65, 0.8, 0.95 ]

2. Tag mixing [1 quarter, 2 quarter]

3. Size data weighting [10, 20, 40 ]

4. Conditional age-at-length data weighting [0.50, 0.75, 1 ]

6.2.3 Integrated model and estimation uncertainty for key management quantities

For a full picture of uncertainty for the key management quantities (SBrecent/SBF =0, SBrecent/SBMSY

and Frecent/FMSY) we attempted for the first time to integrate estimation uncertainty for individ-
ual grid models with the variability in the best estimates of these quantities across the grid. The
procedure that we adopted involved the following:

1. Obtain the best estimates of the key management quantities for each of the 54 grid models;

2. Obtain Hessian-based estimates of the standard deviations for these quantities using the
variance-covariance matrix of the model parameters and the Delta Method;

3. Generate 1,000 random draws from normal distributions with mean and standard devia-
tion specified as per steps 1 and 2, above, for each of the 54 grid models; in the case of
SBrecent/SBF =0, which was estimated on the log scale, transform the random deviates to
normal space by taking their exponent;
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4. Compute the mean, median, and 10, 25, 75 and 90 percentiles of the 54,000 values of each
management quantity.

Note that the above procedure implicitly gives equal weight to each of the 54 grid models, which we
felt was appropriate for this assessment. However, different relative weights could easily be given
by varying the number of random draws of the management quantities from each grid model.

With respect to step 2, we were able to derive SDs even in cases where the Hessian matrix was
not positive definite, but with a small number of very small negative eigenvalues, using a Hessian
“positivisation” process that has been coded in MFCL. By comparison of similar models from the
grid that did and did not have zero negative eigenvalues, we were able to establish that the estimates
of standard deviations of the key management quantities were completely unaffected by the Hessian
not being positive definite, but with a small number (maximum of 1 in the case of bigeye) of very
small negative eigenvalues. Therefore, we opted to include the estimates of estimation error from
the few models that did not have positive definite Hessians.

7 Results

7.1 Consequences of key model developments

The progression of model development from the 2020 diagnostic model to the 2023 diagnostic model
is described in Section 6.1 and the results are displayed in Figure 19 and Figure 20. Traditionally,
the stepwise analysis is presented simply by running MFCL at each step, plotting the results
and attributing the change in results to changes in the modelling, the data or structural changes
involved. Through the process of building this stepwise development, it became apparent that model
convergence is a significant issue for these complex models for which thousands of parameters are
estimated, and jittering is an important process to refine and improve the best solution found from
any of these models. As these issues with model convergence were not well understood at the
start of this process, and due to constraints in both time and computational resources, we were
unable to conduct a jitter analyses for each step in the stepwise development. Such analysis was
completed for the diagnostic model, the final step in the stepwise development, and for all of the
models in the uncertainty grid, but there was not sufficient time to return to the stepwise and jitter
each step. As a result, the successive estimations of spawning potential SB and dynamic spawning
potential depletion SB/SBF =0 in the stepwise development should only be considered indicative of
potential changes. Ideally, all steps would be jittered to be confident that any changes are a result
of the model changes and not a result of variable levels of convergence. We also note the stepwise
development of the 2023 diagnostic model involved running a large number of models, with running
times typically ranging between 12 and 48 hours. In addition, we explored a range of additional
models which were deemed unsuitable for a variety of reasons. It is impractical to detail the results
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of all of these investigations. A total of 19 significant steps are described here, with steps which
involve either notable changes in the model structure or changes in the model outcomes. These
steps incorporate an additional 16 potentially important sub-steps that were ultimately included
in the 19 major steps (Section 6.1). A brief description of the consequences of this progression
through the major steps is provided below, focusing on the key management quantities of spawning
potential SB and dynamic spawning potential depletion SB/SBF =0. As noted, care needs to be
taken in drawing definitive conclusions from these stepwise changes in the absence of jittering.

1. [00BETDiag2020] The 2020 bigeye diagnostic model, using data from 2020.

2. [01SingleStep] This step produces a small decrease in both SB/SBF =0 and SB and a minor
improvement to the objective function.

3. [02NewExe] This step results in no change in SB/SBF =0 or SB, and a minor deterioration
in the objective function.

4. [03PreCatchCond] This step results in a small decrease in SB/SBF =0 and SB, and negli-
gible change to the objective function.

5. [04aCatchCondOldCPUE] This step represents a change in the model structure, using
index fisheries, and is an intermediate step towards a fully catch-conditioned model, resulting
in a small decrease in SB/SBF =0 and SB, with a change in shape for the SB/SBF =0 time
series and in the unfished biomass time series. The objective function for this intermediate
step is not comparable to the objective functions from either the previous or subsequent steps.

6. [04bCatchCondNewCPUE] This step represents a major change to the model structure
incorporating CPUE likelihood from the index fisheries and a reduction from 11,421 to 2,950
parameters estimated, compared to the 03PreCatchCond step. There is another small de-
crease in SB/SBF =0 and SB, contributing to a moderate change from the previous catch-
errors model (03PreCatchgCond). Once again, changes to the objective function are not
meaningful given the structural changes to the model.

7. [05SelChanges] This step resulted in considerable improvements in the objective function,
mostly to the weight component of the likelihood but also to the penalties, and also a con-
siderable increase to both SB/SBF =0 and SB, largely reversing the incremental decreases in
SB/SBF =0 from earlier steps.

8. [07Growth] The changes in this step include the use of additional conditional age-at-length
data, so comparison of the objective function with the previous step is not meaningful. As a
result, the total likelihood is not comparable to the previous step, but estimation of growth
parameters saw improvements to the CPUE, length composition data and tag components
of the likelihood and a deterioration to the weight component of the likelihood. There is
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also another increase in both SB/SBF =0 and SB at this step, similar in magnitude to the
increases seen in the previous step. This step features the second largest values for SB/SBF =0

in Figure 20.

9. [08DataWeights] Once again, the total likelihood is not comparable to the previous step,
but unsurprisingly there were improvements in the CPUE likelihood component. There is
also a further increase in both SB/SBF =0 and SB although smaller than the increases in
the previous two steps. The increases in this step and the previous two steps are shown
in successively lighter shades of green in Figure 19 and Figure 20, with each of these steps
reflecting a shift upwards in these plots. This step features the largest values for SB/SBF =0

in Figure 20, and the second largest values for SB in Figure 19.

10. [09NatMort] This step resulted in a deterioration in the objective function, but with im-
provements in the tag likelihood component. There is also a decrease in both SB/SBF =0

and SB, shown as the palest shade of green in Figure 19 and Figure 20.

11. [10TaggerEffect] This update to the tagger effects model results in changes to the 2020
input data, so the objective function cannot be meaningfully compared. This step results
in a deterioration in the objective function and also produces a decrease in SB/SBF =0 but
with a corresponding increase in SB, resulting in a similar final SB/SBF =0 outcome to that
produced by the 2020 diagnostic model. Changes in the tagger effects model resulted in a
reduction in the effective number of tag releases seen by the model due to the estimation of
larger tagging effects.

12. [11NewCPUEMethod] With different data inputs, once again the objective function is not
comparable with the previous step. This step produces a small increase in SB/SBF =0 and a
larger increase in SB. This step features the largest values for SB in Figure 19.

13. [12aLengthWeight] The objective function deteriorated in this step, largely due to the
weight composition component, but likelihood values cannot be used to reject these updated
conversion factors. There was also a decrease in both SB/SBF =0 and SB.

14. [12bNewIniM] Jittering analysis showed later stepwise models to be particularly sensitive
to these starting values, and starting close to the estimated optimal values improved model
performance. This step had minimal impact on SB/SBF =0 and SB. However the objective
function improved, largely through improvements to the weight component of the likelihood,
although in contrast, the tag and length composition components of the likelihood deterio-
rated slightly. This indicates some instability in the model and was an early indication that
jittering would be an important part of this stepwise development.

15. [12cNewData] The unjittered comparable final values of SB/SBF =0 (at the start of 2019)
was very similar to both the previous step and the 2020 diagnostic case, initially suggesting
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that further separation of this step was not critical. The objective function is not comparable
between this step and the previous step because all components of the data have changed,
with the single exception of the conditional age-at-length component. Considering only the
steps which incorporate new data (i.e. those with data 2019–2021), this step has the largest
values for SB/SBF =0 in Figure 20 and likewise the largest values for SB in Figure 19.

16. [12dF17 24ungp] This step had a large effect on the likelihood values for the composition
data, but due to the effective ”change in data” these likelihood values are not comparable. The
fits to both the age and CPUE components of the likelihood were improved considerably as
well as the penalties, with a smaller deterioration in the fits to the tag component of the like-
lihood. The estimation of separate selectivity for fisheries 24.PS.PHID.7 and 17.MISC.PH.7
is desirable due to the clear differences in the distribution of the length composition data
for these two fisheries, and led to improvements to the objective function and in particu-
lar to the length composition component of the likelihood. This improvement is also clear
when simply looking at aggregated fits to the length composition data for these two fisheries.
This step produces a considerable apparent decrease in SB/SBF =0 and SB. Further inves-
tigation of this somewhat surprising difference, by jittering the previous step, 12cNewData,
indicated convergence issues with that model, which suggest that the apparent changes re-
sulting from minor changes to selectivity actually occurred in previous steps. The jittered
version of 12cNewData produced very similar results in terms of SB/SBF =0 and SB to the
results from this step, albeit without also jittering this step. Considering only the steps which
incorporate new data (i.e. those with data from 2019–2021), this step has the smallest values
for SB/SBF =0 in Figure 20 and likewise the smallest values for SB in Figure 19.

17. [13a0TailCompress] With zero tail compression, the zero size frequency observations in
each tail are excluded, so that the observed size frequencies in each tail are compressed to the
smallest, and largest, interval having a non-zero observation. Accordingly, the corresponding
predicted sample composition is also compressed according to the corresponding minimum
and maximum size class intervals of the tails of the compressed observed distribution. This
approach excludes a large number zeros in the tails. This step had a large effect on the
likelihood values for the composition data, but due to the effective ”change in data” these
likelihood values are not comparable. The fits to both the age and CPUE components of the
likelihood were improved considerably, as well as the penalties, with a smaller deterioration
in the fits to the tag component of the likelihood. This resulted in an increase in both
SB/SBF =0 and SB.

18. [13bMinSamp50] As with tail compression, the likelihood components from the composition
data are not comparable, so the overall objective function cannot be compared with the
previous step. There is a small improvement in the tag data component of the likelihood,
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with a slightly larger deterioration in the fit to the age component at this step. This resulted
in a decrease in both SB/SBF =0 and SB.

19. [13cNewInitVal] An early version of the previous step was jittered, to see if a better solution
could be found by modifying key parameter values in an additional phase of estimation. Out
of 60 jitters conducted, 48 models produced a better objective function, with improvements
in the objective function of up to 141 likelihood units. These improved fits also showed a
considerable decrease in the estimated final SB/SBF =0, indicating that the unjittered model
had not converged to a reliable stable solution. As a result, initial parameter values for growth
were reset to values close to the estimated values at this stage, with changes made to the
starting values, and the stepwise development repeated for all steps from 07Growth onwards.
As already described, the initial value of the scalar for natural mortality had already been
updated from step 12bNewIniM. With these new starting values, the requirement to jitter
this step to ensure better convergence was reduced. To ensure continued stability the starting
values for natural mortality and growth parameters were again reset at 13cNewInitVal, using
updated starting values close to the values estimated from 13bMinSamp50. The objective
function obtained by updating these starting values shows an improvement of 4.8 likelihood
units over the best solution obtained from jittering 13bMinSamp50 with alternative starting
values for the growth and natural mortality parameters (even with 60 separate jitters), high-
lighting the general sensitivity to initial conditions for this model, and the highly complex
likelihood surface. Unlike the large changes seen in SB/SBF =0 and SB at 13cNewInitVal in
a preliminary version of this stepwise development, resetting some initial parameter values in
earlier steps, resulted in small changes at 13cNewInitVal in this final stepwise development
and resulted in a considerable improvement to the overall objective function, largely through
improvements to the weight composition component of the likelihood, with a small improve-
ment in the CPUE component as well. There was a very small decrease in the estimated
SB/SBF =0 and SB at this step.

20. [14Diagnostic2023] The 2023 diagnostic model was obtained by running a final round of
60 jitters on the previous step. Out of 60 new jittered model runs, 10 runs produced a
better solution than the previous step, with the best jittered solution having a maximum
improvement of 8.87 likelihood units. Notably, there were no changes to SB/SBF =0 and SB,
for any of these 10 jittered solutions with improved objective functions, or for the model that
these jittered runs were derived from in the previous step (13cNewInitVal).

The 2020 and 2023 diagnostic models estimate similar values for SB/SBF =0 for the first half of the
estimated time series, with the trajectories starting to diverge around 1985, with the 2023 stock
assessment estimating a value for SB/SBF =0 between 5-10 percentage points lower than the 2020
diagnostic model from 1990 onwards.
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Overall, the 2023 diagnostic model estimated the recent SB/SBF =0 at 34.2% to 2021 compared to
42.3% for the 2020 diagnostic model to 2018 (Figure 20). Note that the trajectory of SB/SBF =0

is fairly flat over the period 2018–2021, so the estimated value of SB/SBF =0 in 2021 for the 2023
diagnostic model is similar to the value in 2018.

From 1960 onwards, the 2023 diagnostic model estimated a slightly increased spawning potential
SB compared to the 2020 diagnostic model, with a very similar estimated spawning potential prior
to that (Figure 20). Both the 2020 and 2023 diagnostic models indicated a declining trend in
spawning potential since around 1960, with a relatively steep decline until the mid 1970s and then
a gradual decline through to 2010 with a relatively stable trend since 2010.

Subject to the caveat that none of the steps in the stepwise development involved jittering, the
most influential steps in the development of the 2023 diagnostic model appear to be restricting
the constraint of non-decreasing selectivity to a single fishery and estimating growth internally,
in terms of increasing the estimate of final value of SB/SBF =0 and applying the revised tagger
effects method, in terms of decreasing the estimate of the final value of SB/SBF =0 (Figure 19,
Figure 20). However, these indicative influential steps should be treated with considerable caution,
and to be definitive about the most influential steps, the full stepwise development would need to
be appropriately jittered.

7.2 Fit of the diagnostic model to data sources

7.2.1 Standardized CPUE: index fisheries

The model fits to the index fishery standardised CPUE data were generally very good for all model
regions (Figure 21, Figure 22). The model was able to predict the longer term trends and short-
term variation at the sub-decadal scale. The residual plots (Figure 23, Figure 24) do not show any
clear periods of bias or trends in the patterns of the residuals, although there tends to be a greater
spread in the residuals earlier in the time series associated with the higher CPUE levels. There are
a number of positive residuals of larger magnitude around the late 1990s and early 2000s for regions
8 and 9. However, region 8 is relatively small and region 9 is tiny, in relation to the spatiotemporal
standardisation method and there is imprecision around that period (Figure 12).

7.2.2 Size composition data

This discussion is focused on aggregated fits to the weight and length composition, aggregated over
all time periods, rather than the individual quarterly based size composition fits that contribute
directly to the likelihood. Supplementary information to show length and weight composition fits
for each quarter will hopefully be provided soon via a link on the WCPFC website, including
bubble plots indicating the residuals for each length and weight category for all time periods for
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each fishery in a single plot, in addition to individual plots for each quarter showing fits to the size
composition data for every fishery.

Longline fisheries: The aggregate model fits to the weight composition data for the longline
extraction fisheries (fisheries 1-29, Figure 26), were good for all fisheries, and most importantly for
those fisheries accounting for the majority of catches, e.g., fisheries 9, 2, 1, 4 and 6, listed in order of
the size of the catch from each fishery, (Figure 7), and also noting the variable y-axis scale in these
figures, where the absolute size can be used to indicate the relative size of composition samples
for each fishery in these figures. Fisheries 1, 7, 8, and 10 show some multi-model structure in the
aggregated weight composition, particularly with some peaks at smaller weights that the model
could not closely fit, although the relative sample size in fisheries 7, 8 and 10 is comparatively low.
Fisheries 1, 7 and 8 occur in the western model region, that encompass the Philippines, Indonesia,
Vietnam, Papua New Guinea and Solomon Islands where smaller bigeye are expected to be more
abundant.

The index fisheries all have a common shared selectivity, and while the fits are still relatively good,
they are not quite as good as the fits for the extraction fisheries, with a slight over-prediction of
larger fish for fisheries 33 (region 1), 34 (region 2) and 40 (region 8), and an under prediction of
small fish in fisheries 33 (region 1) and 39 (region 7).

Other fisheries: The aggregated length composition fits are also quite good for most of the non-
longline fisheries, with the exception of fisheries 19 and 20 (Figure 25). These two fisheries in region
1 are the Japanese purse seine and pole and line fisheries respectively. Both fisheries feature multi-
modal distributions in the input data, and both fisheries catch relatively small amounts of bigeye,
so the inability to fit those compositions is not so important compared to other fisheries with larger
catches. There is a considerable improvement in the length fits to fishery 17 (a miscellaneous fishery
in the Philippines), compared to similar fits from the 2020 assessment, and similarly for fishery 22
(pole and line in region 8).

7.2.3 Tagging data

When aggregated, the model tag attrition estimates fit the observed tagging data relatively well
(Figure 29), albeit overestimating the number of tag returns after 2 quarters at liberty, and under-
estimating the returns in periods 3 and 4. When compared at the tag program scale, there are some
differences in the quality of fit (Figure 30). The fit to the PTTP generally reflects the fit to the
aggregated scale, as this represents a large majority of the tags used in the assessment. The RTTP
program is the second largest in terms of tag input data for bigeye, and this series is difficult to fit
well, with a pattern that appears to show some seasonal cycles. The fit to the JPTP program is
relatively good, especially given the increase in the number of tag returns between periods 2 and 4
seen in the data. At the regional scale, the fits are good for those regions with the most recaptures,
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respectively regions 4, 3 and 8, with adequate fits for region 1 (Figure 31). The observed return
data for region 9 seem to show a strong seasonal pattern, making these data difficult for the model
to fit well, given there is no seasonal component in the modelled tag recaptures.

For the tag returns by quarter of recapture, aggregated over all programs, the model predicted tag
returns show relatively good agreement with the observed data, albeit with some spikes missed and
some over and under-prediction at various periods (Figure 32). The number of tag returns is low
for most longline fisheries, so the fits to this patchy data are of minor consequence to the likelihood
(Figure 33). The one exception to the small number of tag returns in the longline fisheries is
fishery 27, the Australian longline fishery in the Coral Sea, whch has a noticeably higher number
of tag recaptures than any other longline fishery. Here, tag recaptures seem to be influenced by
fish returning regularly and seasonally to a potential spawning area, producing a noisy data series
with some notable spikes, which is difficult to fit well.

The fits to the fisheries other than longline are good for those fisheries with the most observed tag
returns, namely fisheries 13, 14, 15 and 16 (purse seine in regions 3 and 4). The fits are acceptable,
albeit with some spikes missed, for fisheries 25 and 26 (purse seine in region 8) and reasonable for
the other fisheries with small numbers of tag returns (Figure 34).

7.2.4 Conditional age-at-length

The available conditional age-at-length data is restricted to only 1004 otoliths in the 2023 assessment
and hence has limited spatial and temporal coverage. There is a critical need to age existing otoliths
and to collect additional ongoing conditional age-at-length data as a part of a structured spatial
and temporal sampling plan in order address data gaps (e.g., lack of samples from the north central
Pacific ocean) and help resolve issues with estimating growth in future assessments.

Aggregated fits to the conditional age-at-length data are shown in Figure 16. For most length
bins, the variance around the fitted growth curve covers the mean and the distribution of ages
adequately, noting that the conditional age-at-length data are not the only data source contributing
to the estimation of growth in this integrated assessment.

7.3 Population dynamics estimates

7.3.1 Selectivity

A range of selectivity curves are estimated for the different fisheries in the model and can be
largely classified by gear type. The age-specific selectivity is shown in Figure 36 and weight-specific
selectivity is shown in Figure 37.

Fishery 6 (OS in region 7) is the only fishery with a penalty imposed on non-decreasing selectivity
and as a result this is the only fishery with an asymptote at full selectivity for the oldest fish.
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All other longline fisheries have estimated selectivity with a peak at around 10 to 15 quarters,
with selectivity then declining to some asymptote at an intermediate value between zero and full
selectivity for the oldest fish, with the value of this asymptote varying from fishery to fishery. The
selectivity by weight shows similar patterns, but expressed in weight rather than age, with fishery
6 reaching full selectivity at around 60 kg and the other fisheries typically achieving maximum
selectivity at around 30–40 kg.

Of the non-longline fisheries, only fishery 18 (handline in the Philippines and Indonesia) is estimated
to have non-decreasing selectivity, with the asymptotic selectivity approaching full selectivity for
the oldest age and length classes, with zero selectivity for the first 5 quarters, or up to around 70
cm, and relatively low selectivity between quarters 5 and 15, or around 75–125 cm length. All other
non-longline fisheries have estimated selectivity which is high for young fish, with full selectivity
achieved before 5 quarters or about 60 cm in length and then declining to zero, mostly somewhere
between 5 and 10 quarters of age, or equivalently around 100 cm in length. Some older and large
fish are caught in purse seine fisheries, especially unassociated, in regions 3, 4 and 8 and by Japanese
pole and line fisheries in region 1. Fisheries in region 7 often catch younger and smaller fish, with
the exception of fishery 18 as noted.

7.3.2 Movement

Observed patterns of tag releases and returns among regions are compared to the estimated move-
ment coefficients between regions for each quarter from the diagnostic model in Figure 40 and in
Figure 42. The tag return data shows generally low movement between most regions, with notable
movement, as a proportion of the number of tags returned from each region of release, recorded
from region 8 to 3, from region 5 to region 8, especially in quarter 1, and some movement from
region 4 to region 3. Movement between regions estimated by the model most closely matches
the observed movement from region 8 to region 3, especially in quarters 1 and 2. This is also the
most significant proportional movement between any two regions (Figure 43). Small amounts of
movement are estimated from regions 3 to 8, from 3 to 4, and from 7 to 3, albeit with the latter
estimated from very low numbers of tags released in region 7. There are very small estimates of
movement from region 8 to 7, with otherwise very limited movement estimated between regions.
While region 9 represents only a very small area and a small proportion of the total population,
the proportion of movement estimated from region 9 to region 5 is similar to that from region 3 to
region 8, but is much less than the estimated proportion of movement from region 8 to region 3.

Figure 48 shows the proportional region of estimated recruitment of the equilibrium bigeye tuna
biomass for each region. This suggests that the majority of estimated recruitment is local for
two of the temperate regions (regions 1 and 6) and these same temperate regions (regions 1 and
6) provide the largest proportion of estimated recruits for adjacent temperate regions (regions 2
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and 5 respectively), albeit with significant local contributions within these regions as well. The
recruitment in region 9 is estimated to be entirely local. There is more movement for the tropical
regions (3, 4, 7 and 8). However, the majority of estimated recruitment is local in region 7, and this
region also provides the largest proportion of estimated recruits to all the other tropical regions,
regions 3, 4 and 8. MFCL has considerable freedom to trade-off recruitment and regional movement,
so care should be taken in drawing conclusions on one of these estimates without considering the
other.

7.3.3 Natural mortality

The Lorenzen form of natural mortality is used in the 2023 assessment, with the scale of this curve
estimated. As noted in the methods, this is considered good practice. This is in contrast to the
2020 diagnostic model which used a different form for natural mortality with the scale fixed. The
comparison between the estimated natural mortality at age in the 2023 diagnostic model and the
fixed natural mortality at age is shown in Figure 18. Compared to the fixed mortality used in the
2020 diagnostic model, the Lorenzen form of natural mortality features considerably higher levels
of natural mortality at age for very young fish, and a slightly lower asymptote for mortality at age
for the oldest age classes.

7.3.4 Maturity

Maturity-at-age is derived from the fixed maturity-at-length (fixed at the same values used in the
2020 diagnostic model) and applying the estimated growth curve to this to get maturity-at-age
for the 2023 diagnostic model. This maturity-at-age curve differs slightly from the 2020 diagnostic
model (Figure 17) due to the differences in growth curves in these two models.

7.3.5 Tag reporting rates

The estimated tag reporting rates by fishery recapture groups (see groupings in Table 1) are shown
in Figure 44. As expected, the reporting rate estimates differ among fisheries groups and across
tagging programs. In most cases, the reporting rate estimates for those groupings that received
higher penalties were relatively close to the prior mean. Any fishery recapture groups for which
there are no reported tag recaptures have tag reporting rates fixed at zero. This removed 21 out of
41 tag reporting rate groups, and an additional three groups with low numbers of tag recaptures
(less than six) were also fixed at zero and those recaptures removed from the input file. This left 17
tag reporting rate groups where the reporting rates were estimated. Three of these had estimated
tag reporting group rates on the upper bound (0.99), RTTP tags captured by the Australian longline
fishery, PTTP tags captured by domestic fisheries in Indonesia and the Philippines and JPTP tags
captured by the Japanese pole-and-line fishery in region 1. There is a case that tag reporting is

61



genuinely high in the Australian longline fishery and for JPTP tags recaptured in the pole-and-
line fishery close to Japan because of good industry cooperation. In the case of the Indonesian and
Philippines domestic fisheries, the estimated reporting rate is likely to be positively biased, but this
involves relatively low bigeye tuna catches by these fisheries and just 130 tag recaptures, therefore
the over-estimated reporting rate is not likely to be consequential.

7.3.6 Growth

Growth was estimated in the 2023 diagnostic model using a von Bertalannfy growth form, estimat-
ing the three standard parameters and two variance parameters. The difference in the internally
estimated 2023 diagnostic model growth curve and the fixed (externally estimated) 2020 diagnostic
model growth curve are shown in Figure 16.

7.4 Stock assessment results

7.4.1 Recruitment: diagnostic model

While the estimated total annual recruitment across all regions (Figure 45) shows considerable inter-
annual variation, the trend in recruitment is stable since 1960. The high recruitment estimated in
the first few years (1952-1958) may be a result of the assumptions made on initial fishing mortality
prior to 1952. To implement a catch conditioned model, the 2023 diagnostic model assumes that
there is no fishing mortality prior to 1952. This estimated high early recruitment may simply allow
the model to settle into a more stable age and size structure. The estimates of high early recruitment
on quantities of management interest will have no effect on the model after 1980, once these early
cohorts have passed through the population. As in the 2020 diagnostic model assessment, the
final 6 quarterly estimates of recruitment at the aggregated WCPO scale are constrained to equal
the geometric mean of recruitment over the entire assessment period (Rice et al., 2014). This has
little impact on the spawning potential or other reference points as recruits from these most recent
quarters have not yet entered the spawning biomass. Overall, the 2023 model estimates a smaller
average annual recruitment than the 2020 diagnostic model, at around 120 million fish per year
compared to a value closer 200 million, although with changes in mortality, comparison of absolute
recruitment numbers is not that meaningful.

Figure 47 shows the estimated recruitment by region and quarter, averaged over all time periods,
indicating some seasonal variation in recruitment in the temperate regions 1 and 2 and also shows
the relative contribution to recruitment from each region. At the regional scale, the patterns in
recruitment in the 2023 diagnostic model (Figure 46) are largely similar to those seen in the 2020
diagnostic model, albeit at a reduced scale, although some patterns have changed a little. As an
example, the 2020 diagnostic model features a spike in recruitment very close to the start for many
of the regional recruitment time series, and this good early recruitment seems to be spread over
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more years in the 2023 diagnostic model. Recruitment in region 4 featured an early spike around
1960, which is no longer present at all in the 2023 diagnostic model. The 2023 diagnostic model
features a recruitment outlier, a late spike in estimated recruitment in 2020, which is more than
twice the value of any other estimated annual recruitment from this time series in region 4. Further,
this occurs in a year for which recruitment is only estimated in two of the four quarters. In contrast
the 2020 diagnostic model featured a series of good recruitment events for each of the last five years
in which recruitment was estimated in region 4. The relative changes in regional recruitment are
also shown in Figure 49, which highlights the good overall recruitment at the start of the time
series, a single year in the late 1970s with notably poor recruitment, and the spike in recruitment
in 2021 for regions 4 and 7. Figure 49 also highlights changes in the overall recruitment over time
and shows that in some years, there can be considerable change to the relative distribution of
recruitment among regions, without changing the overall recruitment level. Recruitment in region
3 was estimated to be strong from 2004-2013, but appears to have dropped considerably since then
(Figure 46, Figure 49). Recruitment in region 2 is estimated to be strong prior to 1960, to fit the
strongly declining CPUE index in that region when fishing mortality is not sufficient to explain
this decline. This contributes to estimates showing region 2 initially comprising a large relative
proportion of the spawning potential (Figure 49), with this proportion moderating over time as the
recruitment in region 2 also reduces, relative to the early years.

The fit to the stock recruitment relationship for the 2023 diagnostic model is shown in Figure 50.

7.4.2 Biomass: diagnostic model

The 2023 diagnostic model estimates an initial decline in both the total biomass and spawning
potential, from the late 1950s through until the mid 1970s, followed by a more gradual decline
through to the present (Figure 49, Figure 51).

The pattern in the decline in spawning potential over time, which is consistent with the CPUE
indices, is generally similar in all regions, with the early decline through to the mid 1970s perhaps
a little more noticeable in regions 1 and 2 than in the other regions (Figure 51).

7.4.3 Depletion: diagnostic model

The 2023 diagnostic model shows an initial gradual decline in spawning potential depletion, SB/SBF =0

through to the mid 1970s, followed by a faster decline through to about 2010, at a level of around
0.34, followed by a 10 year period of stability to 2021 (Figure 52). This pattern varies regionally,
with the lowest values for SB/SBF =0 in the equatorial regions (3, 4, 7 and 8), with SB/SBF =0

approaching values close to 0.2 for all four of these equatorial regions from around 2010 onwards.
In contrast, in the temperate regions (1, 2, 5, 6 and 9) SB/SBF =0 is higher than 0.6 for the entire
time series
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7.4.4 Fished (SB) versus unfished (SBF =0) spawning potential: diagnostic model

To fully interpret the trends in spawning depletion it is important to compare individual trends in
spawning potential, SBt, with the predicted spawning potential in the absence of fishing (unfished)
SBF =0, at both the spatially aggregated level and for each region separately (Figure 53). At the
spatially aggregated level SBF =0 declines from the late 1950s to the mid 1970s and then gradually
increases, before stabilising from about 2005 onward, at a level a little lower than in the late 1950s.
This pattern is not repeated at the regional level, where typically the equatorial regions feature the
same general overall shape as the spatially aggregated trajectory, but they finish/stabilise with a
value of SBF =0 higher than the level in the late 1950s, with the divergence between the fished and
unfished trajectories beginning around 1970 and increasing progressively until the end of each time
series. In contrast, in the temperate regions, there is typically a general decline in SBF =0 over the
full time series and generally a small difference between the fished and unfished trajectories. This
suggests that the equatorial regions have become more productive from 1970 onwards, with the
temperate regions either simply maintaining their productivity or seeing a slight decline. Regional
differences in the behaviour of the unfished trajectory are an important component in subsequent
differences in SB/SBF =0.

7.4.5 Fishing mortality: diagnostic model

Differences over time in the estimated adult and juvenile fishing mortality are shown in Figure 54,
with a gradual increase in adult fishing mortality up until around 2000, with relatively stable adult
mortality since then. Fishing mortality in juveniles starts to increase from around 1970 with the
expansion of the pole-and-line fisheries, then increases at a faster rate with the expansion of the
purse seine fisheries from 1980–2000. This is followed by a period of relative stability in estimated
annual juvenile mortality, albeit with considerable variability from year to year, from 2000 onwards,
with annual juvenile mortality in this period around 0.35, compared to values of around 0.1 for
adults in the same period.

The relative instantaneous fishing mortality by age varies by region as shown in Figure 55, with
higher fishing mortality for older fish in the temperate regions generally, particularly regions 2, 5, 6
and 9, and higher instantaneous fishing mortality for juveniles in the equatorial regions 3, 4, 7 and
8. The trends in fishing mortality-at-age by decade (Figure 56) show a general increase in fishing
mortality for all age-classes over the assessment period, although the increase for the youngest age
classes is notably larger. There has been a temporal shift in the age distribution towards younger
age classes as the stock has been fished down (Figure 56).
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7.5 Multi-model inference: sensitivity analyses and structural uncertainty

7.5.1 One-off sensitivity analyses

Comparisons of the spawning depletion and spawning potential trajectories for the diagnostic model
and the related one-off sensitivity models are provided in Figure 57, Figure 58, Figure 59 and
Figure 60. These comparisons show that estimates of both spawning depletion and spawning
potential, were somewhat sensitive to the choice of tag mixing period (Figure 57), while spawning
depletion was also somewhat sensitive to the assumed steepness value (Figure 58), and spawning
potential to the assumed size data weighting (Figure 59).

Under the alternative assumptions for tag mixing periods, the depletion trajectories were compa-
rable up until the late 1990s, when the trajectories diverge, with the results from the 1 quarter
mixing scenario indicating a slightly higher value for SB/SBF =0. The 2 quarter mixing period
scenario scales the spawning potential higher over the whole the time series, compared to the 1
quarter mixing period (Figure 57). The different steepness scenarios had no impact on the esti-
mated spawning potential, while the estimated value for SB/SBF =0 increased with increased values
for steepness (Figure 58). The scalar for weighting the size data had little effect on the estimated
spawning depletion trajectory, but had some effect on the estimated spawning potential, with in-
creasing the weight on the size composition data (or a lower scalar value) resulting in lower values
for the estimated spawning potential (Figure 59). The age data weighting also had little effect on
the estimated spawning depletion trajectory. While the estimated spawning potential for the age
data weightings of 1.0 and 0.75 were comparable, the spawning potential for the weighting of 0.5
was scaled slightly lower (Figure 60).

A sensitivity to the tag overdispersion parameter (τ), with alternative values of τ set to 1 and 4,
was compared to a value of 2 for the diagnostic model. This showed very little effect either on
spawning depletion or spawning potential trajectories for the diagnostic model, and the results are
not shown here.

The sensitivity on doubling purse seine catches in regions 3, 4 and 8 in 2020 and 2021 resulted in
a model with a large spike in estimated recruitment, mainly in region 4, with that spike occurring
just before these catches were doubled, and just prior to the point where recruitment is no longer
estimated (the third quarter of 2020) and fixed to the historical mean value. As a result, the fit to
the CPUE series in region 4 deteriorates further towards the end of time series, with an increased
spike at the end of this series, which is not supported by increases in the input CPUE data. The
status of spawning potential and spawning potential depletion is not substantially changed by this
spike in recruitment as neither these additional recruits predicted by the model, nor the purse-
seine-sized bigeye caught in the last two years of the time series in this sensitivity, have begun
to contribute to the spawning potential by the end of the model time period. Therefore purse
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seine catch uncertainty in 2020 and 2021 has not impacted the main stock status indicators in this
assessment, but may become an issue in future assessments.

Some preliminary sensitivities to regional structure were also investigated. A 5 region model using
the same regional structure as proposed in the 2023 yellowfin stock assessment was explored for
bigeye, combining regions 1 and 2 into a single region, combining regions 3 and 4 into another single
region and combining three regions, region 7, 8 and 9 into further single region. This resulted in
a model with problems fitting the tag data from releases in the Coral Sea area (region 9 in this
model). Similar problems were noted by the 2012 bigeye peer review (Ianelli et al., 2012), which
resulted in the introduction of a new small region in the Coral Sea (region 9) in later bigeye
assessments, to specifically address the problem of poor fits to tagging data from that region when
it was a small component of a larger region. It was not considered appropriate to reintroduce
these problems, especially given the information these tags provide through some observations of
long periods between release and recapture. An alternative simplified structure with 6 regions,
maintaining the current region 9 separate to the combined southern region (including regions 5
and 6) was examined and this model gave qualitatively similar results to the 9 region model and
resulted in a model with a positive definite Hessian. While it would be useful to explore this model
in greater detail, given a positive definite Hessian had already been obtained for a potential 9 region
diagnostic model, there was not the same incentive, or at that point, the time, to adopt a simpler
regional structure for bigeye as there was for yellowfin, and this 6 region model was not developed
further in this assessment.

We ran a one off sensitivity using fixed movement parameters derived from the SEAPODYM model.
This model resulted in very poor fits to the CPUE data and there was insufficient time to explore
this in greater detail.

7.5.2 Structural uncertainty grid

We chose to maintain the original proposed structural uncertainty grid, with axes for tag mixing,
data weighting (separated for age and size composition) and steepness. While steepness may not
be that influential on spawning potential reference points it can be quite influential on spawning
depletion through unfished biomass and MSY based reference points. As such it is standard practice
to include steepness as an uncertainty axis in tuna assessments. While growth and mortality are
often included in an uncertainty grid, the growth parameters were able to be estimated internally,
which is an approach which is supported by Punt et al. (2023). Using the Lorenzen functional form
for mortality with the scale parameter estimated is also considered good practice and this approach
is implemented for this stock assessment. Therefore we considered it unnecessary to include axes
for growth or mortality in the uncertainty grid.

While in previous assessments, constructing the uncertainty grid has been computationally expen-
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sive, but relatively routine. The process of establishing grid models in 2023 involved first running
each model, followed by running 20 jitters on each model and for some models running extra eval-
uations, or making small manual jitter steps to allow a model to move to a better solution, usually
based on a known better likelihood achieved for a similar grid model with difference only to the
steepness settings. Changes to steepness typically result in changes to the spawning depletion, but
typically with minimal change to the objective function.

The grid can be separated into two tag mixing halves. Each half needs a base model used to
construct the grid. For the mix 2 half of the grid, the base model used was the model found in the
penultimate step before settling on the 2023 diagnostic model. This is a model which runs from
(modified) initial starting values and gives a likelihood around 10 likelihood units worse than the
diagnostic model. Given every model in the grid was to be jittered, this “almost diagnostic” model
was used as the basis for the mix 2 half of the grid.

For the mix 1 half of the grid, a new base model was required, as a different tag input file and
model structure is used with a different tag mixing period. This mix 1 base model was derived from
the mix 2 base model. After modifying the tag input file, this models was jittered 60 times, initial
growth and mortality parameters were adjusted and the model was “twerked”, or jittered again.
For this half of the grid, it was not possible to find a base model that was close to the best jittered
solution. In contrast to the mix 2 half of the grid, the base grid entries were based on a jittered
solution, which required starting each model from a partially converged solution, albeit from a
different model. We took advantage of the similarities between “steepness triplets” and proceeded
to jitter one third of the grid, with steepness set to 0.8, and then used the jittered solutions to
derive the grid members for steepness set to 0.65 and 0.95, for each “triplet”, with extra iterations
to try to achieve a model with a suitable gradient. On occasions, some of the grid members still had
poor gradients, or objective functions worse than other members of the triplet, and extra iterations
were run on these until a suitable likelihood value and gradient had been obtained. This process
was time consuming, and required manual intervention at several steps.

Once the structural uncertainty grid was finalised, which was a journey in itself, the Hessian was
calculated for every element of the grid and the results for each element were tabulated, showing
results for the initial objective function, SB/SBF =0, the initial gradient achieved, the number of
negative eigenvalues, the value of the minimum eigenvalue if it was negative, as an indication of how
close the model was to having a positive definite Hessian, and then all of these same parameters
calculated for the jittered and improved result. This allows investigation of the gains achieved from
jittering, in terms of changes to the objective function and the effects on SB/SBF =0. The changes
to SB/SBF =0 were both increases and decreases and were all less than 4 percentage points change,
remembering that these base models were already highly jittered and twerked. Larger changes to
SB/SBF =0 were found for models that were only jittered in a single cycle (no twerking), but the

67



starting point for the grid models (the base models) were already highly refined models. These
results are listed in great detail in Table 6.

For the unjittered uncertainty grid, we started with 46 grid models which had a positive definite
Hessian. Given that the objective function was improved for every one of these grid models through
the process described above, none of the grid models was at a global minimum, even those 46 models
which started with positive definite Hessians.

After jittering 48 of the 54 grid elements had positive definite Hessians, including all 8 of the base
models that started without a positive definite Hessian. Of the 6 grid elements which started with
a positive definite Hessian and ended without one after jittering, the improvement in objective
function ranged from 29 to 52 likelihood units, so in each case there was a significant improvement
in the fit obtained form jittering, even with the loss of PDH status. In each case, there was only
one negative eigenvalue, and the absolute size was less than 10−6 in each case, so it was a very
small in absolute size, so an excellent candidate for positivisation though MFCL, to get a workable
estimate of estimation uncertainty.

These hard fought 54 grid models formed the structural uncertainty grid, representing an uncer-
tainty grid that has probably never been worked so hard in the history of WCPO stock assessments,
but a grid where it was possible to calculate estimation uncertainty. Phew!

Results of the structural uncertainty analysis are summarized in box and violin plots of Frecent/FMSY

and SBrecent/SBF =0 for the different levels of each of the four axes of uncertainty. Tag mixing and
steepness have the largest influence in the uncertainty grid, with the size and age data weighting
relatively less important (Figure 61).

The distribution of recruitment across model regions and quarters for all models in the structural
uncertainty grid is summarised in Figure 62. Proportionally, recruitment is predicted to be highest
in temperate Regions 1, 2 with notable seasonal variation, with relatively high recruitment also in
Regions 6 and 7, and proportionally low recruitment in region 9, the smallest region. Quarters 1
and 4 tend to exhibit a greater proportion of recruitment in key regions (Figure 62).

The time series for spawning depletion (SBrecent/SBF =0) and spawning potential SBt across grid
models are shown in Figure 63 and Figure 64. Majuro and Kobe plots showing the estimates of
Frecent/FMSY, SBrecent/SBF =0, SB/SBMSY , along with SBlatest/SBF =0 and SBlatest/SBMSY across
all models in the grid (Figure 68, Figure 69). The averages and quantiles across the 54 models in
the grid for all of the reference points and other quantities of interest are shown in (Table 5). For
key management quantities (SBrecent/SBF =0, SBrecent/SBMSY and Frecent/FMSY) we also include the
additional estimate of estimation uncertainty for management advice (Table 5).

The general features of the structural uncertainty analyses are as follows:
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• The grid contains 54 models with a moderate range of estimates of stock status and reference
points, and suggest that, overall, the stock is slightly more depleted (lower SBrecent/SBF =0)
and with higher spawning potential than the estimates from the 2020 assessment (Table 5).

• The most influential axis is the tag mixing period with an assumed mixing period of 2 quarters
resulting in slightly greater levels of depletion (lower SBrecent/SBF =0) and higher Frecent/FMSY

than those in the 1 quarter mixing period (Figure 61).

• The second most influential axis of uncertainty in the grid is steepness, which displayed results
consistent with previous structural uncertainty grids. Models with steepness of 0.95 were the
more optimistic compared to the steepness of 0.8 assumed in the diagnostic model, while a
steepness of 0.65 was the most pessimistic. The lower the steepness the more depleted the
stock and the higher the fishing mortality with respect to FMSY (Figure 61).

• Estimates of SBrecent/SBF =0 and fishing mortality were relatively insensitive to the as-
sumed size data weighting. Assuming a scalar of 40 led to marginally lower estimates of
SBrecent/SBF =0 than those for scalars of 20 and 10 (Figure 61).

• The conditional age-at-length data weighting axis also had limited impact on management
quantities, with the tail of the 0.50 age data weighting scenario producing slightly lower
estimates of SBrecent/SBF =0 (Figure 61).

• The decline in SBrecent/SBF =0 has been continuous across most of the time series, with
SBrecent/SBF =0 stabilising around 2010.

• Spawning depletion estimates in the tropical regions show notable declines across the time
period through to 2010, approaching 20% SBF =0 in the most recent model years for some of
the grid models (Figure 63). In the most recent period, depletion levels have stabilised, with
some regions showing a slight increase in SB/SBF =0 at the end of the time series. Temperate
regions have tended to show slow but steady declines in SB/SBF =0 across the time period
(Figure 63).

• Estimated spawning potential shows earlier declines in the time series by region than seen
for SB/SBF =0, with the estimated spawning potential subsequently stabilising later in the
time series for many regions. Historically, region 2 is estimated to have the greatest spawning
potential (Figure 64).

• None of the models in the structural uncertainty grid have an overall spawning potential
depletion below the LRP (20% SBF =0) with the median SBrecent/SBF =0 at 0.35 and varying
from 0.31–0.40 between the 10th to the 90th percentiles (Table 5).

• All models in the structural uncertainty grid show exploitation to be below FMSY. Median
Frecent/FMSY is 0.68 and varying from 0.53–0.86 over the 10th to the 90th percentile range
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(Table 5).

7.5.3 Integration of estimation and model uncertainty for key management quantities

Estimation uncertainty across the grid of 54 models was calculated for the key management quan-
tities SBrecent/SBF =0, Frecent/FMSY and SBrecent/SBMSY (Table 5). Distributions of the resulting
quantities broken down by element for each of the four grid axes are presented in Figure 65 for
SBrecent/SBF =0, Figure 66 for Frecent/FMSY and Figure 67 for SBrecent/SBMSY.

Presenting the estimates arising from these two approaches to incorporating uncertainty separately,
both the results from the uncertainty grid and from incorporating estimation uncertainty, allows
the impact of the additional estimation uncertainty to be examined.

The median values for SBrecent/SBF =0 from the grid and that incorporating estimation uncertainty
are identical, with slight differences seen when considering the 80th percentile range values. As
expected, the tails of the distribution are slightly longer when incorporating estimation uncertainty.

For MSY-related quantities, incorporation of estimation uncertainty had larger impacts than the
changes seen when incorporating estimation uncertainty into SBrecent/SBF =0. Median Frecent/FMSY

is lower and median SBrecent/SBMSY is slightly lower when incorporating estimation uncertainty.
While the 80th percentile range values for SBrecent/SBMSY are comparable, both bounds for the
Frecent/FMSY 80th percentile range are lower when incorporating estimation uncertainty. The over-
all distribution of Frecent/FMSY and SBrecent/SBMSY values are also wider, with some values of
SBrecent/SBMSY falling below 1. These values are influenced by the levels of mixing and assumed
steepness with mix 2 and lower steepness assumptions leading to higher estimates of Frecent/FMSY

(Figure 66) and lower estimates of SBrecent/SBMSY (Figure 67).

It is recommended that management advice is based on the estimated management quantities
including both the uncertainty grid and estimation uncertainty. The values of SBrecent/SBF =0 are
all above the LRP (20% SBF =0 SBF=0), and the values of Frecent/FMSY are all below 1.

7.5.4 Analyses of stock status

There are several ancillary analyses related to stock status that are typically undertaken on the
diagnostic model including dynamic Majuro and Kobe analyses and fisheries impacts analyses.

We do not present the results of all analysis for all models in this report. In this section, we
rely largely on the tabular results of the structural uncertainty grid (Table 5) and the dynamic
spawning depletion and spawning potential plots for the models in the structural uncertainty grid
(Figure 63 and Figure 64). We also refer to the fished and unfished spawning potential trajectories
for the diagnostic model discussed previously (Figure 53) and the dynamic Majuro and Kobe plots
(Figure 69).
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Dynamic Majuro and Kobe plots and comparisons with Limit and Target Reference
Points: The section summarising the structural uncertainty grid (Section 7.5.2) presents terminal
estimates of stock status in the form of Majuro plots. Further analyses can estimate the time-series
of stock status in the form of Majuro and Kobe plots, with methods are discussed in Section 5.7.4.
The dynamic Majuro and Kobe plots for the diagnostic model models are shown in Figure 69.

Both the dynamic Majuro and Kobe plots show the steady increase in depletion of the stock since
the 1950s with an increase in fishing mortality from the late 1960s. The dynamic Majuro plot
indicates that while SB/SBF =0 stabilises toward the end of the assessment time period, fishing
mortality has varied notably. However, the terminal spawning potential is well above both SBMSY

and 20% SBF =0, and the fishing mortality is well below FMSY (Figure 69).

Fishing impact: In addition to the above analysis, it is possible to attribute the fishery impact
with respect to depletion levels to specific fishery components (i.e., grouped by gear-type), in order
to estimate which types of fishing activity have the most impact on the spawning potential (Fig-
ure 70). Fishing impacts were estimated to be very minor in all regions before about 1970, resulting
primarily due to the longline fishery. The impact of this and pole and line gears has increased very
slightly over the time series. In the early 1970s, catch information from the miscellaneous fisheries
(Region 7) leads to an increase in impact, particularly in that region. Subsequently, the onset of
notable impacts due to purse seine associated fishing occurs from the 1980s in all tropical regions.
Examining the overall impact, the purse seine associated fishery has the most impact, with that of
the miscellaneous and longline fisheries also notable.

The greatest fishing impacts are in the tropical regions, by the purse seine associated fishery and
miscellaneous fishery, dependent on the region. Impacts in other regions are primarily due to
longline fishing, with that of the other fishery components also present.

Yield analysis: The yield analyses conducted in this assessment incorporates the spawner re-
cruitment relationship (Figure 50) into the equilibrium biomass and yield computations. Impor-
tantly, in the diagnostic model, the steepness of the SRR was fixed at 0.8 so only the scaling
parameter was estimated. Other models in the one-off sensitivity analyses and structural uncer-
tainty analyses assume steepness values of 0.65 and 0.95.

The yield distributions under different values of fishing effort relative to the current effort are
shown in Figure 71 for select models representing different axes of the structural uncertainty grid
(specifically, the two levels of tag mixing). For the diagnostic model, it is estimated that MSY
would be achieved by increasing fishing mortality by a factor of 1.3, although the resulting increase
in yield would be relatively small (3%). The different example yield curves under the alternative
mixing assumption display a similar pattern over the scale of fishing mortality although the absolute
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value of the yield curve and behaviour of the descending limb differs.

The yield analysis also enables an assessment of the MSY level that would be theoretically achievable
under the different patterns of age-specific fishing mortality observed through the history of the
fishery (Figure 72). Prior to 1970, the WCPO bigeye fishery was almost exclusively conducted
using longline gear, with a low exploitation of small bigeye. The associated age-specific selectivity
pattern resulted in a much higher MSY in the early period compared to the recent estimates. This
pronounced decline occurred after the expansion of the small-fish fisheries in region 7 and, soon
after, the rapid expansion of the purse seine fishery which shifted the age composition of the catch
towards much younger fish. This lower MSY is due to a combination of fish being removed from
the system at smaller sizes and also before they have the chance to reproduce.

8 Discussion and conclusions

8.1 Stock Status from the uncertainty grid

The 2023 WCPO bigeye tuna stock assessment estimates that the median recent spawning depletion
(SBrecent/SBF =0) is well above the limit reference point, at the stock-wide scale, for all models in
the in the uncertainty grid (Figure 63) and Frecent/FMSY is less than one (Table 5).

Considering reference points calculated from the uncertainty grid results, which also incorporate
estimation uncertainty, the median value for SBrecent/SBF =0 is 0.35 (Table 5). Frecent/FMSY is less
than one, with a median value of 0.59.

The estimated depletion across the whole model region shows a long-term decline to around 2010
and then stabilising, while the spawning potential shows a steeper initial decline before also sta-
bilising in the recent period. The most notable declines are in the tropical regions, with slightly
smaller relative declines in the temperate regions.

Overall, the outcomes of this assessment suggest that the bigeye stock in the WCPO is not overfished
and is not undergoing overfishing.

CMM 2021-01 contains an objective to maintain the spawning biomass depletion ratio above the
average SB/SBF =0 for 2012-2015 (which is a value of 34% calculated across the unweighted grid).
Based upon the estimates of SBrecent/SBF =0 (35% of SBF =0) this objective has currently been met.

8.2 Changes to the previous assessment

The major changes from the 2020 assessment assessment include the following.

• Conversion from a catch-errors to a catch-conditioned modelling framework, and the inclusion
of a likelihood component for the CPUE from the index fisheries.
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• Change from using VAST to sdmTMB to standardise the input CPUE series and the inclusion
of additional covariates in the CPUE model.

• Different CPUE variances used for the CPUE associated with each index fishery, applying a
new approach to estimate these variances.

• Internal estimation of natural mortality and application of the Lorenzen functional form of
natural mortality at age.

• Additional procedures adopted to achieve more reliable model convergence, including exten-
sive jittering and checking the Hessian status for all grid models.

• Integration of parameter estimation uncertainty with model-based uncertainty across the
model grid for the key management reference points.

• Additional size composition filtering.

• Modifications to selectivity estimation settings, changes to fisheries with non-decreasing se-
lectivity.

• Adoption of revised tagger effect modelling framework, reverting to assumptions similar to
those used in 2017.

• Changes to size data weighting used in the structural uncertainty grid.

• Use of conditional age-at-length data, and internal estimation of growth, with alternative
weighting of these data included in the structural uncertainty grid.

An additional three years of data (including new catch, effort, size composition and tagging data)
was incorporated in this assessment. The conversion from a catch-errors model, with 11,421 es-
timated parameters, to a catch-conditioned model, with 3,067 estimated parameters, significantly
reduced the complexity of the model and resulted in many intermediate models in the stepwise de-
velopment having positive definite Hessians. Estimating mortality and growth parameters allowed
a change in the axes selected for the uncertainty grid, removing growth but including tag mixing
period, and data weighting of the age data.

8.3 Stock status incorporating estimation uncertainty

The assessment approach in 2023 has allowed the inclusion of estimation uncertainty, in addition
to the standard approach of applying a structural uncertainty grid. This allows a more complete
representation of the uncertainty in the estimation of key quantities of interest for management
advice (Table 5) and is a significant advance in the history of bigeye stock assessments in the
WCPO.
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8.3.1 Model diagnostics

Of the 54 models in the structural uncertainty grid, 48 of them had positive definite Hessians.
Retrospective analyses (Section 12.2) indicate that there are no retrospective patterns of concern.
Likelihood profiles and Piner plots indicate that there is some conflict in the data, both between
major data source, with weight composition data in conflict with the length composition and the
tag data, but also within fisheries for some of these likelihood components.

Fits to the CPUE data were generally very good, and fits to the composition data were acceptable,
with some notable improvements to the time aggregated fits, compared to those achieved in the
2020 assessment. Fits to the tagging data were acceptable, given the limitations of this dataset and
the peculiarities in tagging data from some regions.

While we would like to have had time to examine more model diagnostics, there was not sufficient
time to expand this list of diagnostics any further.

8.3.2 Further information to consider

The sensitivity using fixed movement parameters derived from the SEAPODYM model seemed like
a promising approach, given the apparent differences in the estimated movement between regions,
and regional movement present in the input data. We hoped this may provide an alternative
perspective to possible movement in this model. The model has considerable freedom to adjust
movement and recruitment parameters, which can sometimes be used to provide better fits to
components of the data other than tag data, and indeed to trade off regional recruitment with
movement between regions. It is not clear that the movement estimates produced by this model
best describe movement of the actual population as a result. Alternative approaches looking at fine
scale modelling of tagged fish would be worth exploring in future.

Sensitivities were explored to alternative options for refining the fits to size composition data
(Peatman et al., 2023b), with stronger filtering of size composition data in the hope of improving
fits to size composition data and exploring the use of sets as a measure of the raw input sample
sizes, rather than number of fish, for the purse seine fisheries. This work was initiated in response
to recommendations from the 2022 yellowfin peer review (Punt et al., 2023). While this approach
also looks promising, it became apparent that this required more time than was available for this
assessment, although considerable progress has been made in setting up data structures required
to explore these options. This initial work provides a solid basis for a possible future project to
explore these options and to find an objective method to select from the multiple options available.
Models were explored with stronger data filtering, but it is clear that more dedicated time and
research is required to examine this thoroughly.

Tag mixing is another area in which we hoped to explore more sensitivities, either looking at
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a period of three quarters for tag mixing, or assigning different mixing periods for different tag
release groups, based on analysis of spatial and temporal recapture patterns from these tag release
events. Once again, there was insufficient time to explore these options in more detail, but it is clear
that there are some issues that require further research in converting the definitions of quarters at
liberty from the difference between quarters of release and recapture, to considering the number of
days at liberty for tagged fish recaptured, both within the mixing period, but also beyond the tag
mixing period tag

8.4 Recommendations for further work

Consideration could be given in the next assessment to modifying the number of years at the end
of the series for which recruitment is no longer estimated, to avoid high recruitment estimates at
the end of the time series which may be an artifact of trying to fit other components of the model
and with insufficient number of cohorts observed in the size composition data to confirm a high
recruitment, with little support in the size composition data. The sensitivity on potential COVID
affected purse seine catch records highlighted the potential need to examine the variance of the last
few estimated recruitment deviations, and to consider revising the number of quarters for which
recruitment is no longer estimated (set to the mean) at the end of the time series. The combination
of high final recruitment estimates with poor fits to the CPUE at the end of the time series in
this sensitivity, was also observed in region 4 for other models. Examining the variance of the last
few estimated recruitment event is good practice to justify the decision of when to stop estimating
recruitment deviations, and it may be worthwhile to look more closely at this in future assessments

Additional one-off sensitivities were explored looking at alternatives to the tag mixing assumptions,
using either the number of days at liberty for the mixing period only, or the number of quarter
boundaries crossed as a quarterly demarcation, as used prior to 2020. This appears to be an
influential decision, and alternative assumptions may be worth testing, as there appear to be some
issues with both methods. Dealing with tag recaptures that need to be moved across recapture
boundaries is problematic when that moves recaptures into periods which may not have any fishing
by the fishery that recaptured that tag. There are also potential issues with only applying this
correction to tags within the mixing period, which requires careful consideration. Preliminary
sensitivities were run looking at this and the initial results suggest that this modelling decision is
influential.

This assessment includes large quantities of size data which is difficult to explore and understand. It
would be useful to have a comprehensive review of size compositional data to ensure the data being
used in the assessment models is representative of the population and to ensure the appropriate
filtering and catch-weighting of this data is carried out. Collecting representative data is very
important given the scale of the assessment area, and would allow greater investigation into issues
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such as potential regional variation in growth.

There were a number of other sensitivities that were “aspirational” which we would have liked to
have had the time to explore. These include a single area model, an equatorial only model, a no tag
model, input compositional sample sizes using sets rather than fish numbers, datasets with various
degrees of filtering to try to improve fits to compositional data.

Tag mixing is a key issue for a tag based model and one that deserves more time. Preliminary
analysis of individual tagging events was a good start, but more could potentially be achieved by
extending this approach. Tags from region 9 are clearly influential and appear to behave differently,
when looking at preliminary Piner plot (which were not finished in time to include in this report).

Data weighting is an area that is difficult given the complexity and running time for these models.
Iterative schemes have been used elsewhere to weight compositional data and conditionals age-at-
length data. While running these iterative approaches to convergence is clearly not practical, this
is an area that could be explored.

Additional biological sampling, including age samples, and potentially the use of epigenetic ageing
is very important for these models. The sample size of only 1004 otoliths is a major weakness in the
data input to this assessment. A well balanced statistically designed sampling program to achieve
representative temporal and spatial samples over the full range of the assessment area would be
beneficial to this assessment and an increase in investment will improve the reliability of the model
outputs. As always, quality control over the sampling and sampling protocols is important to avoid
“garbage in, garbage out”.

While the tagging data is very valuable for this assessment, the current tagging programs could be
better balanced spatially and temporally to inform the assessment.

Simpler regional structures are an area that deserves more attention. These assessments are large
and complex, some may say unwieldy, so there is potentially much to gain though judicious sim-
plification. While a simpler structure could have modelling benefits, there are also potential issues
with the eastern boundary. Recaptures of tagged fish demonstrate that fish cross his boundary
and the large catches of bigeye near this boundary warrant consideration of alternatives assessment
structures.

8.5 Main assessment conclusions

The general conclusions of this assessment are as follows:

• The spawning potential of the stock has become more depleted across all model regions until
around 2010, after which it has become more stable.

• Average fishing mortality rates for juvenile and adult age-classes have increased throughout
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the period of the assessment until around 2000, after which they have stabilised, but with
high inter-annual variability for juveniles. Juveniles have experienced considerably higher
fishing mortality than adults.

• Overall, the median depletion from the uncertainty grid for the recent period (2018-2021;
SBrecent/SBF =0) is estimated at 0.35 (80 percentile range including estimation and structural
uncertainty 0.30–0.40, full range 0.25–0.46)

• No models from the uncertainty grid, including estimation uncertainty, estimate the stock to
be below the LRP of 20% SBF =0.

• CMM 2021-01 contains an objective to maintain the spawning biomass depletion ratio above
the average for 2012-2015, SB2012−2015/SBF =0, which is a value of 0.34 calculated across
the unweighted grid. Based upon the estimates of SBrecent/SBF =0 of 0.35 this objective has
currently been met.

• Recent (2017–2020) median fishing mortality (Frecent/FMSY) was 0.59 (80 percentile range,
including estimation and structural uncertainty 0.46–0.74, full range 0.37–0.99).

• Assessment results suggest that the bigeye stock in the WCPO is not overfished, nor under-
going overfishing.
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10 Tables

Table 1: Definition of fisheries for the 2023 bigeye stock assessment in the WCPO.

Fishery
No Fishery Flag Region Sel

Group
% catch last
10 yrs

% catch all
yrs

F1 LL-ALL-1 ALL 1 1 4.41 7.92
F2 LL-ALL-2 ALL 2 2 4.67 9.17
F3 LL-US-2 US 2 3 3.55 1.75
F4 LL-ALL-3 ALL 3 4 3.00 6.62
F5 LL-OS-3 OS 3 8 3.83 2.34
F6 LL-OS-7 OS 7 9 7.40 6.57
F7 LL-ALL-7 ALL 7 10 1.13 2.26
F8 LL-ALL-8 ALL 8 11 0.42 0.56
F9 LL-ALL-4 AU 4 5 14.88 19.08
F10 LL-AU-5 ALL 5 12 0.30 0.24
F11 LL-ALL-5 ALL 5 7 1.12 1.51
F12 LL-ALL-6 ALL 6 6 2.69 2.07
F13 SA-ALL-3 ALL 3 13 11.59 12.05
F14 SU-ALL-3 ALL 3 16 2.86 1.77
F15 SA-ALL-4 ALL 4 14 17.98 8.08
F16 SU-ALL-4 ALL 4 17 1.08 0.47
F17 Z-PH-7 PH 7 19 1.20 3.33
F18 Z-ID.PH-7 ID.PH 7 20 1.29 0.51
F19 S-JP-1 JP 1 21 0.26 0.47
F20 P-JP-1 JP 1 22 0.96 1.92
F21 PL-ALL-3 ALL 3 23 0.01 0.05
F22 PL-ALL-8 ALL 8 24 0.00 0.01
F23 Z-ID-7 ID 7 25 8.10 3.34
F24 S-ID.PH-7 ID.PH 7 26 0.68 1.06
F25 SA-ALL-8 ALL 8 15 2.13 3.34
F26 SU-ALL-8 ALL 8 18 1.90 0.84
F27 L-AU-9 AU 9 12 0.02 0.04
F28 P-ALL-7 ALL 7 27 1.29 1.83
F29 L-ALL-9 ALL 9 7 0.00 0.02
F30 SA-ALL-7 ALL 7 13 0.03 0.31
F31 SU-ALL-7 ALL 7 16 0.05 0.05
F32 Z-VN-7 VN 7 28 1.20 0.41

Index fisheries
F33 LL-ALL-1 ALL 1 29
F34 LL-ALL-2 ALL 2 29
F35 LL-ALL-3 ALL 3 29
F36 LL-ALL-4 ALL 4 29
F37 LL-ALL-5 ALL 5 29
F38 LL-ALL-6 ALL 6 29
F39 LL-ALL-7 ALL 7 29
F40 LL-ALL-8 ALL 8 29
F41 LL-ALL-9 ALL 9 29
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Table 2: Definition of fisheries and associated tag recapture and reporting rate groupings (three
columns at right) for the 2023 MULTIFAN-CL bigeye tuna stock assessment in the WCPO. RTTP–
Regional Tuna Tagging Program, PTTP–Pacific Tuna Tagging Program, JPTP - Japanese Tagging
Program. The Recap Group column indicates the fishery groupings for tag recapture data that
were necessary due to tag returns by purse seine fisheries rarely including information on the set
type (associated or unassociated) in which recaptures occurred. * Indicates groups with 5 or fewer
tag returns for which reporting rates were not estimated.

Fishery
No. Fleet Codes Flag Model

Region
Recap
Group RTTP PTTP JPTP

F1 LL-ALL-1 ALL 1 1 RTTP L RTTP L JPTP L
F2 LL-ALL-2 ALL 2 2 RTTP L RTTP L JPTP L
F3 LL-US-2 US 2 3 RTTP L(US)* RTTP L(US)* JPTP L(US)*
F4 LL-ALL-3 ALL 3 4 RTTP L RTTP L JPTP L
F5 LL-OS-3 OS 3 5 RTTP L RTTP L JPTP L
F6 LL-OS-7 OS 7 6 RTTP L RTTP L JPTP L
F7 LL-ALL-7 ALL 7 7 RTTP L RTTP L JPTP L
F8 LL-ALL-8 ALL 8 8 RTTP L RTTP L JPTP L
F9 LL-ALL-4 AU 4 9 RTTP L RTTP L JPTP L
F10 LL-AU-5 ALL 5 10 RTTP L(AU) RTTP L(AU) JPTP L(AU)*
F11 LL-ALL-5 ALL 5 11 RTTP L RTTP L JPTP L
F12 LL-ALL-6 ALL 6 12 RTTP L RTTP L JPTP L
F13 SA-ALL-3 ALL 3 13 RTTP S-3 PTTP S-3 JPTP S-3*
F14 SU-ALL-3 ALL 3 13 RTTP S-3 PTTP S-3 JPTP S-3*
F15 SA-ALL-4 ALL 4 14 RTTP S-4 PTTP S-4 JPTP S-4
F16 SU-ALL-4 ALL 4 14 RTTP S-4 PTTP S-4 JPTP S-4
F17 Z-PH-7 PH 7 15 RTTP S(PH,ID)-7 PTTP S(PH,ID)-7 JPTP S(PH,ID)-2*
F18 Z-ID.PH-7 ID.PH 7 15 RTTP S(PH,ID)-7 PTTP S(PH,ID)-7 JPTP S(PH,ID)-2*
F19 S-JP-1 JP 1 16 RTTP S(JP)-1* PTTP S(JP)-1* JPTP S(JP)-1
F20 P-JP-1 JP 1 17 RTTP P(JP)-1* PTTP P(JP)-1* JPTP P(JP)-1
F21 PL-ALL-3 ALL 3 18 RTTP P-3* PTTP P-3* JPTP P-3
F22 PL-ALL-8 ALL 8 19 RTTP P-8* PTTP P-8* JPTP P-8
F23 Z-ID-7 ID 7 15 RTTP S(PH,ID)-7 PTTP S(PH,ID)-7 JPTP S(PH,ID)-2*
F24 S-ID.PH-7 ID.PH 7 15 RTTP S(PH,ID)-7 PTTP S(PH,ID)-7 JPTP S(PH,ID)-2*
F25 SA-ALL-8 ALL 8 20 RTTP SA-8 PTTP S-8 JPTP S-8
F26 SU-ALL-8 ALL 8 20 RTTP SU-8 PTTP S-8 JPTP S-8
F27 L-AU-9 AU 9 21 RTTP L(AU) RTTP L(AU) JPTP L(AU)*
F28 P-ALL-7 ALL 7 22 RTTP P-7 PTTP P-7 JPTP S-8
F29 L-ALL-9 ALL 9 23 RTTP L RTTP L JPTP L
F30 SA-ALL-7 ALL 7 24 RTTP S-7* PTTP S-7* JPTP S-8
F31 SU-ALL-7 ALL 7 24 RTTP S-7* PTTP S-7* JPTP S-8
F32 Z-VN-7 VN 7 25 RTTP Z(VN)-7* PTTP Z(VN)-7* JPTP S-8

Table 3: Structural uncertainty grid for the 2023 WCPO bigeye tuna stock assessment. Bold
values indicate settings for the diagnostic model.

Axis Levels Option 1 Option 2 Option 3
Steepness 3 0.65 0.8 0.95
Tag mixing (# quarters) 2 1 2
Size data weighting divisor 3 10 20 40
Age data weighting 3 0.5 0.75 1
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Table 4: Description of symbols used in the yield and stock status analyses.

Symbol Description
C latest Catch in the last year of the assessment (2021)
Frecent Average fishing mortality-at-age for a recent period (2017–2020)
YF recent Equilibrium yield at average fishing mortality for a recent period (2017–2020)
fmult Fishing mortality multiplier at maximum sustainable yield (MSY)
FMSY Fishing mortality-at-age producing the maximum sustainable yield (MSY)
MSY Equilibrium yield at FMSY

Frecent/FMSY Average fishing mortality-at-age for a recent period (2017–2020) relative to FMSY

SBlatest Spawning biomass in the latest time period (2021)
SBrecent Spawning biomass for a recent period (2018–2021)
SBF =0 Average spawning biomass predicted in the absence of fishing for the period 2011–2020
SBMSY Spawning biomass that will produce the maximum sustainable yield (MSY)
SBMSY/SBF =0 Spawning biomass that produces maximum sustainable yield (MSY) relative to the average

spawning biomass predicted to occur in the absence of fishing for the period 2011–2020
SBlatest/SBF =0 Spawning biomass in the latest time period (2021) relative to the average spawning biomass

predicted to occur in the absence of fishing for the period 2011–2020
SBlatest/SBMSY Spawning biomass in the latest time period (2021) relative to that which will produce

the maximum sustainable yield (MSY)
SBrecent/SBF =0 Spawning biomass for a recent period (2018–2021) relative to the average spawning

biomass predicted to occur in the absence of fishing for the period 2011–2020
SBrecent/SBMSY Spawning biomass for a recent period (2018–2021) relative to the spawning biomass

that produces maximum sustainable yield (MSY)
20%SBF =0 WCPFC adopted limit reference point – 20% of spawning biomass in the

absence of fishing average over years t − 10 to t − 1 (2011–2020)
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Table 5: Summary of reference points over the 54 individual models in the structural uncertainty grid, along with results incorpo-
rating estimation uncertainty. Note that these values do not include estimation uncertainty, unless otherwise indicated.

mean median min 10%ile 90%ile max diagnostic model
C latest 139314 139199 138527 138947 139939 140347 139341
FMSY 0.06 0.06 0.04 0.04 0.07 0.08 0.05
fmult 1.69 1.67 2.27 2.17 1.35 1.22 1.54
Frecent/FMSY 0.59 0.60 0.44 0.46 0.74 0.82 0.65
MSY 162248 164640 137920 143112 180820 184440 147160
SB0 1867222 1832500 1384000 1552100 2247300 2457000 2147000
SBF =0 1952050 1921715 1460378 1612630 2356598 2561690 2286052
SBlatest/SB0 0.36 0.36 0.29 0.31 0.40 0.41 0.35
SBlatest/SBF =0 0.34 0.34 0.27 0.30 0.38 0.40 0.33
SBlatest/SBMSY 1.76 1.77 1.16 1.28 2.31 2.46 1.64
SBMSY 393037 376300 225100 277230 534330 595900 464800
SBMSY/SB0 0.21 0.21 0.16 0.17 0.24 0.25 0.22
SBMSY/SBF =0 0.20 0.20 0.15 0.17 0.23 0.24 0.20
SBrecent/SBF =0 0.35 0.35 0.28 0.31 0.40 0.41 0.34
SBrecent/SBMSY 1.82 1.83 1.20 1.32 2.38 2.54 1.68
YF recent 37982 37805 33400 34365 42369 42980 35820
Including estimation uncertainty

mean median min 10%ile 90%ile max
SBrecent/SBF =0 0.35 0.35 0.25 0.30 0.40 0.46
Frecent/FMSY 0.59 0.59 0.37 0.46 0.74 0.99
SBrecent/SBMSY 1.82 1.79 0.94 1.32 2.41 2.96
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Table 6: Summary of objective functions (obj value), gradients (grad), numbers of improved jitters (imp), Hessian status (a
positive definitite Hessian indicated by a 0 in the neg ev columns), minimum eigenvalues (min e-value) and SBrecent/SBF =0 before
jittering (recent 1), after jittering (recent 2) and the absolute difference in SBrecent/SBF =0 (diff) for 54 individual grid models in
the structural uncertainty grid.

model seed obj value 1 obj value 2 diff grad 1 grad 2 imp neg ev 1 min e-value 1 neg ev 2 min e-value 2 recent 1 recent 2 diff
m1 s10 a050 h65 16 -1159504.68 -1159555.03 -50 0.00006 0.00126 2 0 0 0.336 0.332 -0.004
m1 s10 a050 h80 16 -1159534.34 -1159555.06 -21 0.00011 0.00046 11 1 -0.00000320631 0 0.371 0.368 -0.003
m1 s10 a050 h95 16 -1159543.43 -1159555.08 -12 0.00014 0.00069 2 1 -0.00000290561 0 0.395 0.392 -0.003
m1 s10 a075 h65 18 -1158906.33 -1158966.78 -60 0.00031 0.00007 2 1 -0.00000000740 0 0.334 0.335 0.001
m1 s10 a075 h80 18 -1158934.91 -1158966.40 -31 0.00006 0.00011 14 1 -0.00000002280 0 0.369 0.371 0.002
m1 s10 a075 h95 18 -1158917.40 -1158966.83 -49 0.00005 0.00028 2 0 0 0.391 0.394 0.004
m1 s10 a100 h65 07 -1158346.97 -1158390.01 -43 0.00003 0.00020 2 0 0 0.336 0.336 0.000
m1 s10 a100 h80 07 -1158359.46 -1158388.52 -29 0.00022 0.00097 7 1 -0.00001327350 0 0.369 0.372 0.002
m1 s10 a100 h95 07 -1158359.47 -1158390.07 -31 0.00021 0.00002 2 1 -0.00000000780 0 0.393 0.395 0.001
m1 s20 a050 h65 16 -1027257.50 -1027271.52 -14 0.00005 0.00001 2 0 0 0.340 0.338 -0.002
m1 s20 a050 h80 16 -1027257.54 -1027271.55 -14 0.00001 0.00001 8 0 0 0.377 0.375 -0.002
m1 s20 a050 h95 16 -1027257.55 -1027271.57 -14 0.00001 0.00005 2 0 0 0.402 0.400 -0.002
m1 s20 a075 h65 12 -1026718.65 -1026723.20 -5 0.00004 0.00026 2 0 0 0.341 0.339 -0.002
m1 s20 a075 h80 12 -1026718.68 -1026723.23 -5 0.00001 0.00001 2 0 0 0.378 0.376 -0.002
m1 s20 a075 h95 12 -1026718.70 -1026723.23 -5 0.00002 0.00001 2 0 0 0.403 0.376 -0.027
m1 s20 a100 h65 20 -1026185.50 -1026207.25 -22 0.00001 0.00002 2 0 0 0.343 0.346 0.003
m1 s20 a100 h80 20 -1026185.54 -1026207.28 -22 0.00001 0.00001 1 0 0 0.380 0.390 0.011
m1 s20 a100 h95 20 -1026185.56 -1026207.30 -22 0.00001 0.00002 2 0 0 0.404 0.407 0.003
m1 s40 a050 h65 20 -890629.35 -890647.24 -18 0.00005 0.00005 2 0 0 0.329 0.332 0.003
m1 s40 a050 h80 20 -890629.39 -890647.28 -18 0.00001 0.00008 9 0 0 0.367 0.370 0.002
m1 s40 a050 h95 20 -890629.41 -890647.30 -18 0.00001 0.00002 2 0 0 0.393 0.396 0.002
m1 s40 a075 h65 07 -890098.72 -890128.85 -30 0.00001 0.00001 2 0 0 0.332 0.338 0.006
m1 s40 a075 h80 07 -890098.75 -890128.89 -30 0.00005 0.00027 10 0 0 0.370 0.376 0.006
m1 s40 a075 h95 07 -890098.77 -890128.91 -30 0.00002 0.00004 2 0 0 0.396 0.402 0.006
m1 s40 a100 h65 15 -889574.45 -889647.07 -73 0.00001 0.00001 2 0 0 0.334 0.340 0.006
m1 s40 a100 h80 15 -889574.49 -889647.09 -73 0.00001 0.00172 11 0 0 0.372 0.378 0.006
m1 s40 a100 h95 15 -889574.51 -889647.13 -73 0.00001 0.00001 2 0 0 0.398 0.403 0.006
m2 s10 a050 h065 03 -1160340.31 -1160477.78 -137 0.00035 0.00001 17 1 -0.00000000567 0 0.338 0.311 -0.027
m2 s10 a050 h080 07 -1160416.42 -1160477.82 -61 0.00063 0.00007 15 0 0 0.356 0.347 -0.008
m2 s10 a050 h095 06 -1160345.70 -1160477.84 -132 0.00024 0.00018 17 0 0 0.394 0.372 -0.022
m2 s10 a075 h065 17 -1159770.10 -1159888.69 -119 0.00003 0.00043 14 0 0 0.331 0.297 -0.034
m2 s10 a075 h080 20 -1159807.49 -1159888.73 -81 0.00018 0.00303 14 0 0 0.370 0.333 -0.037
m2 s10 a075 h095 16 -1159764.83 -1159888.76 -124 0.00014 0.00032 15 0 0 0.390 0.357 -0.032
m2 s10 a100 h065 07 -1159233.40 -1159300.07 -67 0.00046 0.00023 17 1 -0.00000000174 0 0.334 0.319 -0.016
m2 s10 a100 h080 13 -1159241.24 -1159300.11 -59 0.00053 0.00059 14 0 0 0.366 0.354 -0.012
m2 s10 a100 h095 07 -1159241.66 -1159300.13 -58 0.00001 0.00001 11 0 0 0.389 0.378 -0.011
m2 s20 a050 h065 15 -1027990.84 -1028083.13 -92 0.00024 0.00129 13 0 0 0.314 0.292 -0.022
m2 s20 a050 h080 20 -1028063.94 -1028083.18 -19 0.00001 0.00001 8 0 0 0.341 0.330 -0.011
m2 s20 a050 h095 08 -1027990.91 -1028083.20 -92 0.00001 0.00013 14 0 0 0.375 0.355 -0.020
m2 s20 a075 h065 07 -1027530.16 -1027540.39 -10 0.00001 0.00002 4 0 0 0.305 0.305 0.000
m2 s20 a075 h080 07 -1027530.20 -1027540.43 -10 0.00001 0.00025 3 0 0 0.342 0.342 0.000
m2 s20 a075 h095 17 -1027458.71 -1027540.45 -82 0.00001 0.00013 11 0 0 0.373 0.366 -0.007
m2 s20 a100 h065 03 -1026964.03 -1027015.23 -51 0.00001 0.00001 10 0 1 -0.00000017359 0.311 0.306 -0.005
m2 s20 a100 h080 04 -1026985.92 -1027015.28 -29 0.00001 0.00003 11 0 1 -0.00000017470 0.357 0.342 -0.015
m2 s20 a100 h095 13 -1026985.94 -1027015.30 -29 0.00027 0.00045 8 0 1 -0.00000018184 0.382 0.367 -0.015
m2 s40 a050 h065 04 -891356.15 -891409.65 -53 0.00005 0.00005 11 0 0 0.297 0.279 -0.018
m2 s40 a050 h080 01 -891355.15 -891409.70 -55 0.00018 0.00001 15 0 0 0.336 0.318 -0.018
m2 s40 a050 h095 01 -891322.22 -891409.73 -88 0.00028 0.00004 13 0 0 0.359 0.344 -0.016
m2 s40 a075 h065 14 -890834.85 -890888.67 -54 0.00001 0.00006 13 0 0 0.298 0.294 -0.004
m2 s40 a075 h080 03 -890834.79 -890888.72 -54 0.00001 0.00020 14 0 0 0.336 0.332 -0.004
m2 s40 a075 h095 05 -890834.82 -890888.75 -54 0.00005 0.00002 13 0 0 0.361 0.358 -0.003
m2 s40 a100 h065 10 -890324.31 -890375.89 -52 0.00001 0.00019 13 0 1 -0.00000000586 0.301 0.297 -0.003
m2 s40 a100 h080 15 -890324.08 -890375.94 -52 0.00005 0.00001 13 0 1 -0.00000001859 0.338 0.335 -0.003
m2 s40 a100 h095 11 -890324.39 -890375.97 -52 0.00001 0.00001 13 0 1 -0.00000001859 0.364 0.360 -0.003
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11 Figures

Figure 1: The geographical area covered by the stock assessment and the boundaries of the nine
model regions used for 2023 WCPO bigeye tuna assessment.
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Figure 2: Map of tag recaptures. The panel shows the distributions of release and recapture displacements for the different tagging
programs. Pacific Tuna Tagging Program (PTTP), Regional Tuna Tagging Program (RTTP) and the Japanese Tagging Program
(JPTP). Dots indicate recapture locations. Red dots in RTTP plot are the targeted Coral Sea tagging cruises.
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Figure 3: Annual catches of bigeye by gear type in the WCPO area covered by the assessment.

86



Figure 4: Annual catches of bigeye by gear type for each of the nine model regions.
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Figure 5: Distribution and magnitude of bigeye catches (mt) by gear type summed over the last 10
years (2012-2021) for 5 x 5 degree cells.
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Figure 6: Summary of data coverage by fishery for the WCPO 2023 bigeye assessment. I=index fisheries, L=longline, P=pole and
line, S=purse seine (unspecified), SA=purse seine associated, SU=purse seine unassociated, Z=miscellaneous gears.
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Figure 7: Time series of catches (numbers of fish) by fishery: longline.
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Figure 8: Time series of catches (mt) by fishery: purse seine.
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Figure 9: Time series of catches (mt) by fishery: other.
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Figure 10: Spatial distribution of nominal longline CPUE (all fleets) for bigeye in the Pacific.
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Figure 11: Standardised (black line) and nominal (orange) CPUE for the longline index fisheries in
model regions 1-5. Grey band is 95% CI. Triangular moving average smoothing function applied
to demonstrate overall trend (green line; smoothing window = 10).
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Figure 12: Standardised (black line) and nominal (orange) CPUE for the longline index fisheries in
model regions 6-9. Grey band is 95% CI. Triangular moving average smoothing function applied
to demonstrate overall trend (green line; smoothing window = 10).
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Figure 13: Plots of samples sizes (capped at 1,000) for length composition data for each fishery in the model across the model time
period.
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Figure 14: Plots of samples sizes (capped at 1,000) for weight composition data for each fishery in the model across the model
time period.
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Figure 15: Summary plots of the number of releases, recaptures, and recapture rate of tags, by tagging program and region.
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Figure 16: Growth curves plotted for the 2020 diagnostic model and 2023 diagnostic model (top).
Transposed 2023 growth curve. The vertical distributions shows the range of observed ages for
each length class (bottom). Plotted points are the conditional age-at-length observations used in
the 2023 assessment, which is the same dataset used in 2020.
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Figure 17: Maturity-at-age ogives for the 2020 diagnostic model (red) and the 2023 diagnostic
model (black).
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Figure 18: Natural mortality-at-age (quarters) for the 2020 diagnostic model (red) and the 2023
diagnostic model (black).
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Figure 19: Estimated spawning potential, SBt, trajectories for each of the main steps in the stepwise model development, with
the 2023 diagnostic model shown in black.
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Figure 20: Estimated dynamic spawning depletion, SBt/SBt,F =0, trajectories for each of the main steps in the stepwise model
development, with the 2023 diagnostic model shown black.
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Figure 21: Fits (black line) to the standardised CPUE (blue dots) for the longline index fisheries in region 1-5.
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Figure 22: Fits (black line) to the standardised CPUE (blue dots) for the longline index fisheries in region 6-9.
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Figure 23: Residuals for the standardised CPUE for the longline index fisheries in region 1-5.
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Figure 24: Residuals for the standardised CPUE for the longline index fisheries in region 6-9.
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Figure 25: Composite (all time periods combined) observed (blue histograms) and predicted (black
line) length frequency for fisheries with length frequency data for the 2023 diagnostic model.
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Figure 26: Composite (all time periods combined) observed (blue histograms) and predicted (black
line) weight frequency for fisheries with weight frequency data for the 2023 diagnostic model.
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Figure 27: Observed (red points) and predicted (black line) median fish lengths (FL, cm) for the fisheries with length data for the
2023 diagnostic model. The uncertainty intervals (grey shading) represent the values encompassed by the 25% and 75% quantiles.
Sampling data are by quarter and only length samples with more than 30 fish per quarter are plotted.
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Figure 28: Observed (red points) and predicted (black line) median fish weights (kg) for the fisheries with weight data for the
2023 diagnostic model. The uncertainty intervals (grey shading) represent the values encompassed by the 25% and 75% quantiles.
Sampling data are by quarter and only length samples with more than 30 fish per quarter are plotted.
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Figure 29: Observed (black points) and model-predicted (blue line) tag attrition across all tag
release events for the 2023 diagnostic model.
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Figure 30: Observed (black points) and model-predicted (blue lines) tag attrition by tagging pro-
gramme for the 2023 diagnostic model.
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Figure 31: Observed (black points) and model-predicted (blue line) tag attrition by region for the
2023 diagnostic model.
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Figure 32: Observed (black points) and model-predicted (blue line) tag returns over time, with
returns in the mixing period removed, for the 2023 diagnostic model across all tag release events
with all tag recapture groupings aggregated.
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Figure 33: Observed black points) and model-predicted (blue line) tag returns over time, with
returns in the mixing period removed, for the 2023 diagnostic model for longline fisheries.
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Figure 34: Observed black points) and model-predicted (blue line) tag returns over time, with re-
turns in the mixing period removed, for the 2023 diagnostic model for other (non-longline) fisheries.
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Figure 35: Sample locations of otoliths (n = 1004) used in the assessment model to inform internal
growth estimation. Single otoliths are shown as pink circles and overlapping otoliths as progressively
more saturated red circles.
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Figure 36: Age-specific (quarters) selectivity curves for longline fisheries, with one panel (bottom
right) for the common (grouped) selectivity across all index fisheries. Selectivity is grouped between
fisheries 10 and 27, and also between fisheries 11 and 29. The electivity for fishery 6.LL.OS.7 was
encouraged (through a penalty on the objective function) to be non-decreasing with age.
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Figure 37: Weight-specific (kg) selectivity curves for longline fisheries, with one panel (bottom
right) the common (grouped) selectivity across all index fisheries. Selectivity is grouped between
fisheries 10 and 27, and also between fisheries 11 and 29. The selectivity for fishery 6.LL.OS.7 was
encouraged (through a penalty on the objective function) to be non-decreasing with age.
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Figure 38: Age-specific (quarters) selectivity curves for non-longline fisheries. Selectivity is grouped
between fisheries 13 and 30, and also between fisheries 14 and 31.
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Figure 39: Length-specific (fork length, cm) curves for non-longline fisheries. Selectivity is grouped
between fisheries 13 and 30, and also between fisheries 14 and 31.
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Figure 40: Observed proportion of tags returned by region of release (columns), region of recapture
(rows), and quarter of recapture (panel). The colour of the tile indicates the proportion of tags
returned from the region of release and the numbers in the boxes indicate the actual numbers of
tags returned.
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Figure 41: Estimated movement probabilities by quarter for the 2023 diagnostic model. The red
numbers (horizontal axis) indicate the source model region (From); the green numbers (vertical axis)
indicate the receiving (To) regions. The colour of the tile shows the magnitude of the movement
rate (proportion of individuals moving from region x to region y in each quarter), with each column
summing to 1.
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Figure 42: Season-specific movement probabilities estimated by the 2023 diagnostic model.
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Figure 43: Stylised estimated movement rates between stock assessment regions (all ages and
seasons) for the diagnostic case. Estimated movement is shown originating from the regions on the
left and moving to the regions on the right.
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Figure 44: Estimated reporting rates for the diagnostic model (red lines) and the prior distribution
for each tag reporting rate group (black lines). The upper bound (0.99) on the reporting rate
parameters is shown as a blue dashed line. Reporting rates can be estimated separately for each
release program and recapture fishery group but in practice are aggregated over some recapture
groups to reduce dimensionality.
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Figure 45: Time series of estimated annual recruitment summed across regions for the 2023 diag-
nostic model.
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Figure 46: Time series of estimated annual recruitment by region for the 2023 diagnostic model.
Note that the scale of the y-axis varies by region.

129



Figure 47: Estimated recruitment distribution by region and quarter.

130



Figure 48: Proportional distribution of unfished total biomass (by weight) in each region appor-
tioned by the region of recruitment, for the 2023 diagnostic model. The colour of the originating
region is presented in the legend below. The biomass distributions are calculated based on the long
term average distribution of recruitment between regions, estimated movement parameters, and
natural mortality.

131



Figure 49: Time series of estimated annual spawning potential, recruitment and total biomass by
model region for the diagnostic model, showing the relative proportions among regions. Note the
data represent the averages of the quarterly model time steps for each year for spawning potential
and total biomass and the sum of the quarterly recruitment estimates for annual recruitment.
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Figure 50: Estimated stock-recruitment relationship between recruitment and spawning potential
based on annual estimates of recruitment for the 2023 diagnostic model. The colour of the circles
transitions from purple (early in the time series) to yellow (more recent) through time. Points
shown prior to 1968 are not used in the fit to the stock recruitment relationship.
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Figure 51: Estimated temporal spawning potential, SBt, by region, and combined for all regions
(bottom right) for the 2023 diagnostic model. Note that the scale of the y-axis varies for each
region.
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Figure 52: Estimated temporal spawning potential depletion, SBt/SBt,F =0, by region, and com-
bined for all regions (bottom right) for the 2023 diagnostic model.
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Figure 53: Comparison of the estimated annual spawning potential trajectories (lower, blue lines)
with the spawning potential trajectories predicted in the absence of fishing (upper, red lines) for
each region and overall, for the 2023 diagnostic model. Note the scales of the y-axis varies for each
region.
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Figure 54: Estimated annual average adult (solid line) and juvenile (dashed line) fishing mortality
for the 2023 diagnostic model.
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Figure 55: Estimated age-specific fishing mortality for the 2023 diagnostic model, by region and
overall.
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Figure 56: Estimated proportion at age (quarters) and fishing mortality at age (right), by year, for
decadal intervals, for the 2023 diagnostic model.
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Figure 57: Estimated dynamic spawning depletion (Top) and spawning potential (Bottom) for the
one-off sensitivities from the 2023 diagnostic model for tag mixing period. m = tag mixing, h =
steepness, s = size data, a = age data.
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Figure 58: Estimated dynamic spawning depletion (Top) and spawning potential (Bottom) for
the one-off sensitivities from the 2023 diagnostic model for steepness of the stock recruitment
relationship. m = tag mixing, h = steepness, s = size data, a = age data.
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Figure 59: Estimated dynamic spawning depletion (Top) and spawning potential (Bottom) for the
one-off sensitivities from the 2023 diagnostic model for size data weighting. m = tag mixing, h =
steepness, s = size data, a = age data.
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Figure 60: Estimated dynamic spawning depletion (Top) and spawning potential (Bottom) for the
one-off sensitivities from the 2023 diagnostic model for age data weighting. m = tag mixing, h =
steepness, s = size data, a = age data.
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Figure 61: Box and violin plots summarizing the estimated Frecent/FMSY (top) and SBrecent/SBF =0
(bottom) for each of the models in the structural uncertainty grid, excluding estimation uncertainty,
grouped by uncertainty axes (steepness, tag mixing, size data weighting, age data weighting). The
horizontal lines are the 25th, 50th, and 75th percentiles. The shaded area shows the probability
distribution (or density) of the estimates for all models in the structural uncertainty grid.
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Figure 62: Box and violin plots showing the distribution or recruitment across model regions and
quarters for all models in the uncertainty grid, excluding estimation uncertainty. The horizontal
lines are the 25th, 50th, and 75th percentiles. The shaded area shows the probability distribution
(or density) of the estimates of all models of the structural uncertainty grid.

145



Figure 63: (Left) Trajectories of spawning potential depletion for the individual model runs included in the structural uncertainty
grid over the period 1952-2021. (Right) Estimated spawning depletion across all models in the structural uncertainty grid over
the period 1952-2021. The dashed line represents the median. The lighter band shows the 25th and 75th percentiles, and the dark
band shows the 10th and 90th percentiles of the model estimates. The bar at the right of each ribbon indicates the median (black
dots) with the 10th and 90th percentiles for SBrecent/SBF =0.
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Figure 64: (Left) Trajectories of spawning potential for the individual model runs included in the structural uncertainty grid over
the period 1952-2021. (Right) Estimated spawning potential across all models in the structural uncertainty grid over the period
1952-2021. The dashed line represents the median. The lighter band shows the 50th percentile, and the dark band shows the 80th
percentile of the model estimates. The bar at the right of each ribbon indicate the median (black dots) and 80th percentile range
for SBrecent.
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Figure 65: Distribution of SBrecent/SBF =0 integrating model and estimation uncertainty, presented
by uncertainty axis (panels) and axis element values (colours).
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Figure 66: Distribution of Frecent/FMSY integrating model and estimation uncertainty, presented by
uncertainty axis (panels) and axis element values (colours).
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Figure 67: Distribution of SBrecent/SBMSY integrating model and estimation uncertainty, presented
by uncertainty axis (panels) and axis element values (colours).
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Figure 68: Majuro plot (top) and Kobe plot (bottom) summarising the results for each of the
models in the structural uncertainty grid for the recent period (2018-2021). The yellow point is the
2023 diagnostic model and the red point is the median.
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Figure 69: Time dynamic Majuro (top) and Kobe (bottom) plots summarising the results for the
2023 diagnostic model over the model period. The larger green point is the estimated 2021 status.

152



Figure 70: Estimates of fishery impact, or reduction in spawning potential due to fishing (Fishery
Impact = 1 − SBt/SBt,F =0) by region, and over all regions (bottom right), attributed to various
fishery groups for the 2023 diagnostic model.
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Figure 71: Estimated yield as a function of fishing mortality multiplier for the diagnostic model
and the alternative mixing scenario model. The black dashed line indicates the equilibrium yield
at current fishing mortality.
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Figure 72: History of the annual estimates of MSY (red line) for the diagnostic model compared
with annual catch by the main gear types. Note that this is a ‘dynamic’ MSY which is explained
further in Section 7.5.4.
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12 Appendices

12.1 Likelihood profiles

The method for calculating a likelihood profile of the total population scaling parameter is outlined
in Section 5.6.

This likelihood profile (Section 5.6) of the total population scaling parameter (Figure 12.1) shows
the contribution to the total likelihood from each major data source with the total likelihood shown
in black and components of the total likelihood from different data sources shown in a range of
colours.

The lower figure is plotted at a scale showing the population scaling parameter value where the
minimum likelihood occurs for each major likelihood component. The upper figure shows the same
profile but with the plot restricted between population scaling parameters, where the change in
total likelihood is not statistically significant, less than 1.92 likelihood units of change, indicated
by the horizontal dashed line. Despite the relatively flat curve for the total likelihood, this plot
highlights considerable conflict in the data, with the preference in the weight composition data for
a higher value of the estimated total population counterbalanced by a preference for lower values
for the tag data, the CPUE and, to a lesser degree, the length frequency data. The age data is not
influential in estimating the population scaling parameter.

Piner plots are useful for separating the individual components contributing to the total likelihood
into smaller components, allowing the effect of data from different fisheries and regions on the
estimated total population to be distinguished. These plots can be used to indicate influential data
sources by fishery, which could lead to further investigation or verification, to ensure that these
data sources are reliable, or to direct research as to whether different processes may be important
in different fisheries.

The Piner plot for weight (Figure 12.2) shows that the weight data from most fisheries sup-
port a larger biomass, with the largest contribution from the longline offshore fishery in region
7 (6.LL.OS.7), followed by the index fishery in region 4 (36.LL.IDX.4), a longline fishery in region
3 (4.LL.ALL.3) and the index fishery in region 1 (233.LL.IDX.1). In contrast to the majority of
these fisheries, a longline fishery in region 3 (5.LL.OS.3) suggests a lower biomass, with the index
fishery in region 5 (37.LL.IDX.5) the only other fishery suggesting a lower biomass, albeit with a
very minor influence.

The Piner plot for length (Figure 12.3) shows that the length data are largely uninformative on the
population scaling parameter value for most fisheries, and a single fishery is making a major con-
tribution to this component of the total likelihood, the miscellaneous or domestic fishery operating
out of the Philippines in region 7 (17.MISC.PH.7) which supports a smaller value for biomass.
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Figure 12.1: Likelihood profiles of total biomass in million mt. The black line indicates the total
likelihood with the colours representing component of the total likelihood coming from different
data sources. The upper plot focuses on the range of total biomass values where the change in total
likelihood is not statistically significant, with less than 1.92 likelihood units of change, indicated by
the horizontal dashed line. The lower plot show a broader range indicating the minima for most of
the individual data sources.
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Figure 12.2: Profiles of the weight component of the total log-likelihood by individual fishery and
region, plotted over the range where the change in total likelihood is not statistically significant,
with less than 1.92 likelihood units of change, indicated by the horizontal dashed line. The black
line indicates the weight component of the likelihood, with the colours and panels representing
components of the weight likelihood separated into regions and fisheries.
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Figure 12.3: Profiles of the length component of the total log-likelihood by individual fishery and
region, plotted over the range where the change in total likelihood is not statistically significant,
with less than 1.92 likelihood units of change, indicated by the horizontal dashed line. The black
line indicates the length component of the likelihood, with the colours and panels representing
components of the length likelihood separated into regions and fisheries.
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12.2 Retrospective analyses

A retrospective analysis involves running a series of models, each with less year of data than the
previous model. This enables exploration of the effects of truncating the input data time series, by
removing the most recent years of data to the model, one at a time. A series of seven retrospective
models were fitted, starting from the diagnostic model, which has data through to 2021. These
successive models (or peels), each feature one less year of data than the previous peel, by removing
the last year of data from the inputs.

Spawning potential and spawning depletion trajectories for each of these retrospective peels are
shown in Figure 12.4. Each peel produces estimates of spawning potential and spawning depletion
with very similar dynamics to the diagnostic model. The value of Mohn’s rho is 0.085 for the
spawning depletion retrospectives, and -0.046 for spawning potential (Figure 12.4). As a general
rule of thumb, values of Mohn’s rho higher than 0.20 or lower than -0.15 are cause for concern in an
assessment (Hurtado-Ferro et al., 2015). The values obtained for the 2023 bigeye diagnostic model
indicate that there is no concern for retrospective bias with the 2023 diagnostic model.
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Figure 12.4: Estimated spawning potential (top), and spawning depletion (bottom) for the retro-
spective models.
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12.3 “Status quo” stochastic stock projections for WCPO bigeye tuna

These will be completed for the Tropical Tuna Measure meeting.
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