

SCIENTIFIC COMMITTEE SIXTH REGULAR SESSION

Nuku'alofa, Tonga 10-19 August 2010

Report of the 10th Meeting of the International Scientific Committee for Tuna and Tuna-like Species in the North Pacific Ocean

WCPFC-SC6-2010/GN-IP-08

ISC

REPORT OF THE TENTH MEETING OF THE INTERNATIONAL SCIENTIFIC COMMITTEE FOR TUNA AND TUNA-LIKE SPECIES IN THE NORTH PACIFIC OCEAN

PLENARY SESSION

21-26 July 2010 Victoria, B.C. Canada

TABLE OF CONTENTS

REPORT OF THE TENTH MEETING OF THE INTERNATIONAL SCIENTIFIC COMMITTEE FOR TUNA AND TUNA-LIKE SPECIES IN THE NORTH PACIFIC OCEAN

PLENARY SESSION

21-26 July 2010 Victoria, B.C., Canada

1	INTRODUCTION AND OPENING OF THE MEETING		5
	1.1 1.2	INTRODUCTION	
		OPENING OF THE MEETING	
2	ADOP	TION OF AGENDA	6
3		GATION REPORTS ON FISHERY MONITORING, DATA COLLECTION AND SEARCH	7
	3.1	CANADA	
	3.2 3.3	CHINESE TAIPEI JAPAN	
	3.3 3.4	JAPAN	
	3.5	MEXICO	
	3.6	UNITED STATES	12
4	REPO	RT OF THE ISC CHAIRMAN	13
5	INTERACTION WITH REGIONAL ORGANIZATIONS		14
	5.1	IATTC-ISC MEMORANDUM OF COOPERATION (MOC)	14
	5.2	INTERACTIONS BETWEEN ISC AND PICES	14
	5.3	INTERACTIONS BETWEEN ISC AND WCPFC	16
6	REPO	RTS OF WORKING GROUPS AND REVIEW OF ASSIGNMENTS	. 17
	6.1	Albacore	
	6.2	PACIFIC BLUEFIN TUNA	
	6.3	BILLFISH	
	6.4 6.5	Bycatch Shark Task Force	
	0.3 6.6	SEMINAR ON OCEANOGRAPHY	
7		K STATUS AND CONSERVATION ADVICE	
	7.1	Albacore	22
	7.2	PACIFIC BLUEFIN TUNA	
	7.3	Striped Marlin	
	7.4	Swordfish	26
8	REVIE	W OF STOCK STATUS OF SECONDARY STOCKS	30
	8.1	EASTERN PACIFIC – YELLOWFIN, BIGEYE AND SKIPJACK TUNAS	
	8.2	WESTERN PACIFIC OCEAN - YELLOWFIN, BIGEYE, SKIPJACK, AND SOUTHERN ALBACORE	30

9	REVIEW OF STATISTICS AND DATA BASE ISSUES		31
	9.1 9.2 9.3 9.4 9.5	DATA ADMINISTRATOR AND PERFORMANCE DATA SUBMISSION REPORT CARD TOTAL CATCH NORTH PACIFIC-WIDE CATCH AND BYCATCH RESCUE OF HISTORICAL DATA	34 34 34
10 REVIEW OF MEETING SCHEDULE		EW OF MEETING SCHEDULE	35
	10.1 10.2	TIME AND PLACE OF ISC11 Working Group Intercessional Meetings	
11	ADMI	NISTRATIVE MATTERS	35
	11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	BIOLOGICAL REFERENCE POINT ASSIGNMENT PEER REVIEW OF FUNCTION PROCESS ELECTION OF CHAIRPERSON FOR 2011-2013 ORGANIZATION CHART AND CONTACT PERSONS WEBSITE BEST PRACTICES MEETING UP-DATE OF OPERATIONS MANUAL STATUS OF NC RESEARCH PROPOSAL OTHER ADMINISTRATIVE MATTERS	35 36 36 37 38 39 39
12	ADOP	TION OF REPORT	40
13	CLOS	E OF MEETING	40

LIST OF TABLES

Table 1	Annual catch of North Pacific albacore (<i>Thunnus alalunga</i>) in metric tons for fisheries monitored by ISC for assessments of North Pacific Ocean stocks, 1952-2009.
Table 2	Annual catch of Pacific bluefin tuna (<i>Thunnus orientalis</i>) in metric tons for fisheries monitored by ISC for assessments of North Pacific Ocean stocks, 1952-2009.
Table 3	Annual catch of swordfish (<i>Xiphias gladius</i>) in metric tons for fisheries monitored by ISC for assessments of North Pacific Ocean stocks, 1951-2008.
Table 4	Annual catch of striped marlin (<i>Kajikia audax</i>) in metric tons for fisheries monitored by ISC for assessments of North Pacific Ocean stocks, 1951-2008.
Table 5	Schedule of ISC meetings

LIST OF ANNEXES

Annex 1	List of Meeting Participants
Annex 2	ISC Meeting Agenda
Annex 3	List of Meeting Documents
Annex 4	Report of the Billfish Working Group Workshop (30 November-4 December 2009; Honolulu, Hawaii, USA)
Annex 5	Report of the Billfish Working Group Workshop (15-22 April 2010; Hakodate, Hokkaido, Japan)
Annex 6	Report of the Albacore Working Group Workshop (20-26 April 2010; Shizuoka, Japan)
Annex 7	Report of the Pacific Bluefin Tuna Working Group Workshop (6-9 July 2010; Nanaimo, B.C., Canada)
Annex 8	Report of the Billfish Working Group Workshop (12-13 July 2010; Victoria, British Columbia, Canada)
Annex 9	Report of the Albacore Working Group Workshop (12-13 July 2010; Victoria, Canada)
Annex 10	Report of the Bycatch Working Group Workshop (14 July 2010; Victoria, B.C., Canada)
Annex 11	Report of the Shark Taskforce Group Meeting (15 July 2010, Victoria Canada)
Annex 12	Report of the Statistics Working Group Workshop (16-19 July 2010; Victoria, B.C., Canada)
Annex 13	Seminar: Oceanographic and Low Trophic-Level Habitat in the North Pacific Ocean (20 July 2010; Victoria, B.C., Canada)

REPORT OF THE TENTH MEETING OF THE INTERNATIONAL SCIENTIFIC COMMITTEE FOR TUNA AND TUNA-LIKE SPECIES IN THE NORTH PACIFIC OCEAN

PLENARY SESSION

21-26 July 2010 Victoria, B.C., Canada

Highlights of the ISC10 Plenary Meeting

The 10th ISC Plenary, held in Victoria, B.C., Canada from 21-26 July 2010 was attended by members from Canada, Chinese Taipei, Japan, Korea, Mexico and the United States and the North Pacific Maine Science Organization (PICES). The Plenary reviewed results and conclusions, which were based on new data and updated analyses, of the billfish and Pacific bluefin tuna working groups. The Plenary endorsed the findings that the eastern Pacific stock of swordfish is healthy and in good condition and that the fishing mortality rate of Pacific bluefin tuna, particularly juveniles, needs to be decreased. Regarding albacore, striped marlin and the western and central North Pacific stock of swordfish, the Plenary maintained the conservation advice of ISC9 with minor changes for clarification. A special seminar on oceanographic and low trophic-level habitat in the North Pacific Ocean was held. The Plenary agreed to dissolve its bycatch working group and create a shark working group in order to implement the recommendations of its shark task force. The recommendation of the billfish working group to postpone convening a world blue marlin symposium was also endorsed. The Albacore, Pacific bluefin, and Billfish Working Groups provided information on candidate biological reference points for northern stocks of highly migratory species in the North Pacific Ocean which the Plenary endorsed. These will be forwarded for consideration at the 6th regular session of the Northern Committee of the Western and Central Pacific Fisheries Commission in September 2010. The ISC workplan for 2010-2011 includes completing a new stock assessment for albacore and striped marlin by ISC11, continuing preparations for a Pacific bluefin tuna and blue marlin stock assessments in 2012, implementing improved database and website management, and updating and clarifying ISC operations procedures. After five years serving as Chairman of ISC, Gary Sakagawa stepped down. The Plenary elected Gerard DiNardo to serve as Chairman for 2010-2013. The next Plenary will be held in the United States in July 2011.

1 INTRODUCTION AND OPENING OF THE MEETING

1.1 Introduction

The ISC was established in 1995 through an intergovernmental agreement between Japan and the United States (US). Since its establishment and first meeting in 1996, the ISC has undergone a

number of changes to its charter and name (from the Interim Scientific Committee to the International Scientific Committee) and has adopted a number of guidelines for its operations. The two main goals of the ISC are (1) to enhance scientific research and cooperation for conservation and rational utilization of the species of tuna and tuna-like fishes which inhabit the North Pacific Ocean during a part or all of their life cycle; and (2) to establish the scientific groundwork for the conservation and rational utilization of these species in this region. The Committee is made up of voting Members from coastal states and fishing entities of the region and coastal states and fishing entities with vessels fishing for highly migratory species in the region, and non-voting members from relevant intergovernmental fishery and marine science organizations, recognized by all voting Members.

The ISC provides scientific advice on the stocks and fisheries of tuna and tuna-like species in the North Pacific Ocean to the Member governments and regional fisheries management organizations. Fishery data tabulated by ISC members and peer-reviewed by the species and statistics Working Groups form the basis for research conducted by the ISC. Although some data for the most recent years are incomplete and provisional, the total landed amount estimated from available data and information is in excess of 500,000 metric tons (t) annually and dominated by the tropical tuna species. In 2008, the estimated catch of priority species monitored by the ISC was 68,500 metric tons (t) of albacore tuna (ALB, *Thunnus alalunga*), 24,200 t of Pacific bluefin tuna (PBF, *T. Orientalis*), 9,400 t of swordfish (SWO, *Xiphias gladius*), and 3,300 t of striped marlin (MLS, *Kajikia audax*). The total estimated catch for these four species is 105,400 t, or a decrease of about 19% from the 2007 total catch (estimated 130,100 t). This decrease was largely the result of a sharp reduction in albacore catch from 92,700 t in 2007. Catches of priority stocks throughout their ranges are shown in Tables 1-4.

1.2 Opening of the Meeting

The Tenth Plenary session of the ISC (ISC10) was convened in Victoria, B.C., Canada at 0830 on 21 July 2010 by the ISC Chairman, G. Sakagawa. A role call confirmed the presence of delegates from Canada, Chinese Taipei, Japan, Korea, Mexico, the USA, and the North Pacific Marine Science Organization (PICES) (*Annex 1*). Representatives of the Western and Central Pacific Fisheries Commission (WCPFC) attended as Observers. ISC members China, the Secretariat for the Pacific Community (SPC), and the Food and Agriculture Organization (FAO), as well as organizations with significant interest including the Inter-American Tropical Tuna Commission (IATTC), did not attend the Plenary.

Dr. Laura Richards, Regional Director Science, Pacific Region, Fisheries and Oceans Canada, delivered the opening address. She welcomed delegates to the Plenary session on behalf of Canada and the Canadian delegation, and noted that this is first ISC Plenary meeting held in Canada. Hosting the meeting in Canada demonstrates Canada's commitment to the ISC and to the scientific process it supports. She affirmed that Canada is committed to ensuring that the management of highly migratory species is based on the best scientific advice and follows the precautionary approach. Dr. Richards wished the delegates a successful and productive meeting.

2 ADOPTION OF AGENDA

The agenda for the session was considered (*Annex 2*). Minor changes were made and the agenda was adopted. M. Stocker was assigned lead rapporteur duties. A list of meeting documents is contained in *Annex 3*.

3 DELEGATION REPORTS ON FISHERY MONITORING, DATA COLLECTION AND RESEARCH

The ISC Chairman noted that delegation reports were submitted by Canada, Chinese Taipei, Japan, Korea, Mexico and the United States.

3.1 Canada

J. Holmes presented a summary of Category I, II, and III data from the Canadian North Pacific albacore troll fishery in 2009 (*ISC/10/PLENARY/10*). The Canadian fleet of 135 vessels operated primarily within the coastal waters of the United States and Canada and in adjacent high seas areas; all catch and effort occurred east of 150° W. Preliminary estimates of North Pacific albacore catch and effort in 2009 are 5,685 t and 6,631 vessel days (v-d), respectively. These figures represent 4% and 13% increases in catch and effort relative to 2008, with approximately 92% of the catch occurring within the US EEZ, 7% in the Canadian EEZ, and 1% on the high seas. Bycatch of other tuna or billfish species, sharks, sea turtles and sea birds was negligible. Albacore in the Canadian catch ranged from 50 cm (2.63 kg) to 90 cm (15.25 kg) in fork length (FL, N = 11,717). Only one mode at 64-66 cm FL (5.50-5.75 kg) was present in the length frequency data corresponding to 3-yr old fish, although there was a broad shoulder to the right consisting of 4-yr old fish. Canadian scientists are collaborating with colleagues from the U.S. in a pilot project aging juvenile albacore with otoliths and dorsal fin rays and are undertaking research to develop tools to forecast albacore availability in temperate waters based on sea surface temperature and ocean productivity.

3.2 Chinese Taipei

The delegation report for Chinese Taipei was presented by S.L. Lin (*ISC/10/PLENARY/11*). Taiwanese tuna fisheries are comprised of two major fisheries, longline, and purse seine fisheries, and other small-scale fisheries, such as harpoon, set net, and gill net in the North Pacific Ocean (North of the equator). Longline and purse seine fisheries produce around 99% of the total tuna and billfish catch of Taiwanese fisheries.

The total catch of tunas and billfish (including swordfish, striped marlin, blue marlin (*Makaira mazara*), black marlin (*M. indica*), and sailfish (*Istiophorus* spp.)) for the longline fishery in the North Pacific Ocean was 31,983 t in 2009. For the purse seine fishery, the total catch was 192,075 t caught by 33 vessels in the Pacific Ocean in 2009. In addition, other small-scale fisheries, such as harpoon, set net and gill net may also catch tunas and tuna-like species in the Taiwanese coastal and offshore waters. The total catch of tunas and tuna-like species of these fisheries was estimated to be about 1,523 t, consisting of harpoon (437 t), set net (630 t) and gill net (456 t) in 2009.

For sustainable use of fishery resources, Chinese Taipei imposed a fleet size reduction program

on its large-scale tuna longline (LTLL) vessels from 2005 to 2007. Through this program, 32 large-scale tuna longline vessels were reduced in the Pacific Ocean during 2005 - 2007. Thereafter, due to high fuel price and low fish prices, the number of active LTLL vessels declined continuously. In 2008, the active vessels were 84, and in 2009, the number further reduced to 75.

For LTLL, Category I data are estimated from weekly report and commercial data. Several sources of commercial information were available including traders, Taiwan Tuna Association, certified weight reports provided by the Organization for the Promotion of Responsible Tuna Fisheries and others. Categories II and III data were all compiled based on logbook data. Fishers are required to measure the length of the first 30 fish caught each day. For the small-scale tuna longline (STLL) fleet, Category I data were based on landings and auction records from local fishing markets. For those vessels stationed at foreign ports, the total catches were estimated from fishing vessel activity reports and import statistics for Japanese markets. Since 1997, logbooks of STLL have been collected, and port sampling at domestic fish markets has been conducted. To improve the recovery rate of logbooks, the (Taiwan) Fisheries Agency launched in April 2007 a data improving program, dispatching staff to collect logbooks, to interview fishers in order to obtain fisheries information, and to conduct a size sampling program at main domestic fishing ports. Through this program, the logbook recovery rate was improved to 23% in 2009. For the purse seine fishery, Category I and Category II data were obtained from logbooks.

For improving stock assessment of species in the North Pacific Ocean, Chinese Taipei has conducted the following research:

- Age and growth study for albacore;
- Research on the catch at size/age and CPUE standardization of North Pacific albacore;
- Research on the age and growth and stock assessment of Pacific bluefin tuna;
- Studies on population dynamics and stock assessments for swordfish, sailfish, and blue marlin;
- Studies on the age and growth, and reproductive biology of black marlin and striped marlin; and
- Billfish tagging program.

Discussion

Plenary requested information on skipjack tuna catch rates by the purse-seine fishery. S.L. Lin responded that fishers have not reported unusual changes in skipjack tuna catch rates.

Members asked about differences in size distributions of albacore and swordfish catch between the LTLL fleet and the STLL fleet. Lin responded that the LTLL fleet catches smaller albacore in the northern part of the North Pacific Ocean than the STLL fleet, which mainly operates in the tropical areas and catches larger fish. For swordfish size distribution, because the lower jaw of swordfish is generally cut off on board the STLL fleet, eye-fork length was measured by port samplers. For the LTLL fleet, swordfish fork length was measured by fishers on board the vessels.

3.3 Japan

H. Nakano presented the delegation report for Japan (*ISC/10/PLENARY/12*). Japanese North Pacific tuna fisheries consist of three major fisheries, i.e., longline, purse seine, and pole-and-line. In addition, there are miscellaneous fisheries such as troll, drift net, and set net (trap) fisheries. These fisheries account for around 90% of the total tuna catch of Japanese fisheries in recent years. The total landing of tunas (excluding skipjack tuna) by Japanese fisheries in the North Pacific Ocean was 98,000 t in 2008 and 109,904 t in 2009 (117% of the 2008 catch). The total landing of swordfish and billfishes (striped marlin, blue marlin and black marlin) was 12,506 t in 2008 and 10,753 t in 2009 (79% of the 2008 catch). The landing of skipjack tuna was 238,000 t in 2008 and 187,418 t in 2009 (86% of the 2008 catch). In addition to the descriptions on fisheries, a brief review was given on the Japanese research activities on tuna and tuna-like species in the Pacific Ocean in 2009.

Nakano also reported on the official announcement released on May 11, 2010 by the (Japan) Ministry of Agriculture, Forestry and Fisheries (MAFF) on actions it is preparing to take towards effective conservation and management for PBF. The announcement indicates that the MAFF will promote conservation and management of Pacific buefin tuna by reducing the juvenile catch in order to improve future catch of bigger fish. This necessary measure will ensure that the spawning stock biomass (SSB) of Pacific bluefin tuna is maintained within the appropriate range and will prevent the SSB from dropping below the historically lowest level observed. MAFF intends to influence the direction of conservation and management by implementing actions regarding (1) domestic fisheries management, (2) international actions, and (3) research activities, beginning this fiscal year. It will also consider introducing conservation and management measures, including improved effort registration, catch reporting, a closure period, size limit, individual quota system, and management system for aquaculture, depending on the fisheries.

3.4 Korea

Z.G. Kim presented the delegation report for Korea (*ISC/10/PLENARY/13*). Korea has two fisheries which engage in fishing tuna and tuna-like species in the North Pacific Ocean, the distant-water tuna longline and the distant-water tuna purse seine. The number of fishing vessels operating in the Pacific Ocean was 113 longliners and 28 purse seiners in 2009. The total tuna catch in the North Pacific Ocean in 2009 was 62,370 t, of which 6,362 t was landed by the longline fishery and 46,008 t by the purse seine fishery. The catch of swordfish and billfishes (striped marlin, blue marlin, black marlin and sailfish) was 2,257 t, caught exclusively by longline.

The longline catch ranged from 60 to 34,080 t from 1972 to 2009, with bigeye tuna (*Thunnus obesus*), yellowfin tuna (*T. albacares*), swordfish and billfishes making up 66.3%, 26.5%, 18.0% and 11.2%, respectively. The bigeye tuna catch showed an increase since the 1980s, while the yellowfin tuna showed a slightly decreasing trend since the mid-1990s. Swordfish and billfish catches stayed at a low level with a slightly increasing trend.

The catch of the purse seine fleet ranged from 550 to 106,394 t from 1980 to 2009, with yellowfin tuna and skipjack tuna making up 78.1% and 21.9%, respectively. The catch of skipjack tuna and yellowfin tuna has had a decreasing trend in recent years. The sharp decline in the purse seine catch since 2006 was attributed to the shifting of fishing grounds to the south Pacific Ocean.

There are 28 different fishing gears that take tuna species as bycatch. In 2009, 96% of bycatch came from offshore purse seine gear and 0.6% came from set nets. The majority of species were bullet tuna (*Auxis rochei*) and the others are not known except PBF because of good market prices. The PBF catch was 794 t, which was half of the 2008 catch, and the number of offshore purse seine vessels has gradually decreased from 32 in 2002 to 27 in 2009. The PBF bycatch mainly occurred in southern Korean waters, especially around Jeju Island. Almost all catches of PBF were juvenile (<150 cm) and the number of larger-sized individuals has recently increased. For example, mean fork length changed from 33.6 cm in 2000 to 57.8 cm in 2009.

Fattening in holding pens of juvenile PBF has been practiced by two fishing companies in Korea since 2007. A total of 3,370 juveniles (2-50 kg per fish) have been collected from set nets for this purpose.

Since 2007, the National Fisheries Research and Development Institute (NFRDI) has been carrying out studies on pen rearing and associated research for PBF in the Southwest Sea Fisheries Research Institute and the Subtropical Fisheries Research Center. In 2010, NFRDI implemented a five-year research project on the biology and ecology of PBF in Korean waters. It monitored 16 fishing trips with nine international observers onboard the Korean distant-water fishing vessels to monitor catch of target and bycatch species. To improve data collection, observer coverage onboard distant-water fishing fleets and landing sites will be increased and a data collection strategy will be updated for landing ports and canneries and for domestic fisheries taking tuna species in Korean waters. NFRDI completed all tasks requested by ISC9 and NC5 with respect to data matters.

Discussion

A number of questions were raised with regard to data reporting including:

The catches in the ALBWG and BILLWG catch tables and the delegation report differ. It was explained that the catch statistics were updated by extracting the North Pacific Ocean catch from the total for the Pacific Ocean; the changes were minor and reported to the STATWG just after the last ALB and BILL working group meetings. The catch in the national report is the same as that reported to the STATWG.

It was clarified that there are no observers on board the offshore purse-seine fleet. In Korea, domestic fisheries and distant-water fisheries are under different management and control regimes. Accordingly, the domestic offshore purse seine fishery is not monitored using an onboard observer system but by 70 observers at 118 landing sites in 2010.

A lack of catch statistics on the PBF set net fishery was noted and clarified. As described in the delegation report, the majority of tuna caught in Korean waters by coastal and offshore fisheries is bullet tuna, 0.6% of which are caught by set nets. PBF catches are minor and data are not available, especially for set nets.

Kim agreed to investigate remaining matters with regard to availability of Korean data.

3.5 Mexico

M. Dreyfus presented the delegation report for Mexico (*ISC/10/PLENARY/14*). The purse seine fishery began in Baja California at the start of the 20th Century, although major development is related to the implementation of the EEZ in the late 1970s. Most of the catch is yellowfin tuna (YFT) and skipjack tuna (SKJ) is second in terms of volume. Since 1985, catches have been above 100,000 t. A decrease in catches in 2006 and 2007 due to lower YFT biomass was in part compensated with SKJ and black skipjack (*Euthynnus lineatus*). In 2009, total landings were 123,750 t. The other catch of importance is PBF directed to pen-rearing activities. Record catches above 8,000 t were recorded in 2004 and 2006; recent catches are just above 3,000 t (2009).

Mainly purse seiners are involved in tuna fishing and target mostly tropical tunas. The carrying capacity of the purse seine fleet has been quite stable for more than 20 years. In 2009, 46 active purse seine vessels were registered and only six participated in catching PBF. Catch of ALB by purse seiners is sporadic and very small, only 17 t in 2009. Most of the ALB catch is made in Mexican waters and by U.S. sport fishermen. SWO is caught off the Baja California peninsula and by a Mexican fleet that targets both sharks and SWO. A record catch of 3,601 t of SWO was recorded in 1998 by this fleet. In 2009 the catch was only 84 t. This fleet uses longline and drift gill net gears.

In Mexico, all billfishes, except for SWO, are reserved for the sport fishery and for mainly catchand-release. There are reports 75% to more than 90% of fish caught by this fishery are released. Information on all billfishes caught by the fishery for 2009 will be updated for the next BILLWG and Plenary meetings.

Discussion

A question was raised regarding why in some years there are high catches inside the Gulf of California. The explanation by M. Dreyfus was that in 2009, for example, there were high catches of YFT and SKJ due to above average (i.e., warmer) water temperatures.

3.6 United States

U. Varanasi and S. Kohin presented the United States (U.S.) delegation report on fisheries statistics and research (*ISC/10/PLENARY/15*). Various U.S. fisheries harvest tuna and tuna-like species in the North Pacific Ocean. Purse seine, troll and longline fisheries operate both in coastal waters and on the high seas. Small-scale gill net, harpoon, and pole-and-line fisheries and commercial and recreational troll and handline fisheries usually operate in coastal waters. The total catch U.S. for all highly migratory species (HMS) fisheries in the North Pacific Ocean increased from approximately 44,000 t in 2008 to approximately 70,000 t in 2009. The increase was largely due to the increase in catch of skipjack tuna in the North Pacific portion of the Western and Central Pacific Ocean purse seine fisheries from approximately 14,000 t in 2008 to 39,000 t in 2009. In the EPO purse seine fishery that operated in the U.S. EEZ, there was an increase in catch of bonito (*Sarda chiliensis*) from 603 t in 2008 to 2,132 t in 2009 and in PBF from zero tons in 2008 to 410 t in 2009. Regarding fisheries data management, improvements now enable differentiation of pole-and-line catches of ALB from troll catches.

U.S. government researchers at the NOAA National Marine Fisheries Service (NMFS) Southwest and Pacific Islands Fisheries Science Centers (in La Jolla, California and Honolulu, Hawaii, respectively) conduct research on tunas, billfishes, sharks, bycatch and HMS fisheries in the North Pacific. Topics of study include fishery monitoring, socio-economics, life history, oceanography, bycatch mitigation, fishery-independent surveys and stock assessment. Thirty manuscripts were published in the past year on studies related to ISC objectives. Highlights of research include studies of SWO stock structure using tagging, otolith microchemistry and genetics. The tagging studies reveal details of habitat utilization and movements with respect to physical oceanographic features. For ALB, the U.S. is conducting ongoing archival tagging in the northeast Pacific Ocean and has also initiated a biological sampling program for otoliths, gonads, DNA samples and stomachs. Objectives are to understand more about ALB stock structure for assessments, study age and growth, and link ALB distribution to oceanographic conditions and prey. NMFS has been building an archive of genetic samples for highly migratory species that now includes over 2000 samples from many species collected Pacific-wide. Recent genetic analyses suggest stock differentiation of shortfin mako shark (*Isurus oxyrinchus*) between the north and south Pacific Ocean as well as between the southeast and southwest Pacific Ocean. Extensive work on stock assessments continues both within and outside of the ISC forum. Significant research on bycatch includes a number of studies to estimate post-release survival of several pelagic shark species and to examine the efficacy of rare-earth metals as shark deterrents. Statistical analyses are being conducted to estimate incidental take of sea turtles, seabirds, and marine mammals in the Hawaii pelagic longline fisheries.

Discussion

Several specific technical points were clarified by the U.S. in response to questions arising during the discussion.

Figure 5 of the U.S. delegation report showed some unlikely data for the sizes of skipjack tuna sampled in the Hawaii troll and handline fishery. The figure will be corrected and resubmitted.

J. Holmes asked how the diet studies are being conducted since, because in their experience, most ALB regurgitate upon capture. S. Kohin explained that the fish studied were mostly collected by rod and reel in the recreational fishery and that the incidence of regurgitation for fish caught using that gear is lower than for fish caught by trolling.

When asked about the cause of the increase in the northern WCPO skipjack tuna catch, U. Varanasi responded that it is under investigation, but that there was a small increase in the number of vessels participating in that area and fishery in 2009.

4 REPORT OF THE ISC CHAIRMAN

G. Sakagawa presented the ISC Chairman's report. The past year was busy for ISC and spent working on preparations for new stock assessments for ALB and MLS in 2011, and PBF in 2012. Progress was made on action items, including:

- 1. Investigation of SWO stock structure issues
- 2. Development of advice on potential Biological Reference Points
- 3. Compilation of a catalogue and inventory of the ISC database
- 4. Development of a new user-friendly ISC website, and
- 5. Hiring of a Webmaster and a Database Administrator

Nine intercessional workshops were held to facilitate collaboration among Member scientists in implementing ISC work plans, completing special assignments and coordinating research on the stocks.

At the conclusion of the 10th meeting of the ISC, G. Sakagawa will have completed five years of service as Chairman and will be stepping down to allow another colleague to lead the organization. The direction of ISC is clear. That is, achieving the objectives stated in the charter and contributing relevant science-based information for shaping policies that allow for conservation, sustainable fisheries and healthy HMS stocks. Continuation in this direction and maintaining relevance, however, will require continued vigilance to avoid diluting the scientific information and interpretation with fishery policy considerations and arguments. Furthermore, all aspects of the organization, especially the operating framework, need to be reviewed from time to time and adjustments adopted to promote efficiency and effectiveness in the operations and continued relevance of ISC's advice.

The ISC Chairman thanked his colleagues who have worked on ISC tasks through the years and who have supported ISC and him in advancing the objectives and purpose of the organization.

He acknowledged the service of M. Dreyfus, Vice-Chairman, for support and insightful advice, and gave special thanks and appreciation to the Chairmen of the Working Groups, namely S.K. Chang, G. DiNardo, J. Holmes and Y. Takeuchi, who provided unselfish leadership in guiding the work of the Working Groups and provided frank advice on all aspects of ISC responsibilities. He acknowledged the professional assistance of his staff for their dedicated service to ISC and for assistance in completing tasks assigned to the ISC Chairman. He thanked all for contributing to another successful year for ISC and for the support, service and memorable and personal friendship provided during the past five years. He trusts all will continue to support the work of the ISC and the needs of the next ISC Chairperson.

5 INTERACTION WITH REGIONAL ORGANIZATIONS

5.1 IATTC-ISC Memorandum of Cooperation (MOC)

In introducing this item, the ISC Chairman explained that agreed-upon changes to the draft MOC have been completed and that he had signed the MOC. The document is now with the IATTC Secretariat for signing.

The MOC was drafted to address the need to identify a mechanism to allow IATTC to participate in all of the ISC meetings without having to apply for observer status on a case-by-case basis. He noted that the involvement of IATTC in ISC stock assessments is critical to ISC stock assessments given the IATTC's important role in managing stocks in the North Pacific.

5.2 Interactions between ISC and PICES

5.2.1 Report from the Executive Secretary of PICES

A. Bychkov, Executive Secretary of PICES, provided a report to the Plenary. On behalf of PICES, he thanked the ISC for inviting PICES to participate at ISC10. PICES is an intergovernmental scientific organization established by the international convention in 1992 in order to promote and coordinate marine research in the North Pacific and adjacent seas. Current member countries are Canada, Japan, People's Republic of China, Republic of Korea, Russian Federation and the United States of America. Goals are to (1) advance scientific knowledge and capacity available for the member countries, including information on human activities affecting, and affected by marine ecosystems, and (2) provide a mechanism for collaboration among scientists in addressing timely and critical scientific questions. In less than 20 years since its establishment, PICES became a major forum for marine science in the North Pacific.

PICES just initiated a new ambitious integrative science program called FUTURE (Forecasting and Understanding Trends, Uncertainty and Responses of North Pacific Marine Ecosystems) to be undertaken to understand how marine ecosystems in the North Pacific respond to climate change and human activities, to forecast ecosystem status based on a contemporary understanding of how nature functions, and to communicate new insights to its members, governments, stakeholders and the public. This will be one of the highest priority activities of PICES for the next decade.

Another high priority PICES activity is developing a comprehensive overview of the status and trends of marine ecosystems in the North Pacific Ocean and its marginal seas. ISC contributed a chapter on tuna to the first North Pacific Ecosystem Status Report, and your scientists provided relevant information for the second report. PICES invites continuing involvement of ISC in this project.

In 2008, a joint PICES/ICES Working Group on *Forecasting Climate Change Impacts on Fish and Shellfish* was established to promote and coordinate research on the potential impact of climate change on marine ecosystems and to develop frameworks and methodologies for forecasting the impacts of climate change on marine ecosystems. The culmination of the Working Group's effort was a very successful international symposium convened in April 2010, in Sendai, Japan. PICES is planning a Theme Session entitled "*Climate Change Effects on Fisheries: Physics-Fish-Markets*", to be convened at the Second PICES/ICES/IOC Symposium on "*Effects of Climate Change on the World's Oceans*". This symposium will be held from 14–18 May 2012, in Yeosu (Korea), as one of the official events related to the World Ocean Expo-2012. PICES invites ISC to join the symposium as a co-sponsor for this session.

The PICES Nineteenth Annual Meeting will be held from 22–31 October 2010, in Portland, Oregon, U.S.A., under the theme "North Pacific Ecosystems Today, and Challenges to Understanding and Forecasting Change." A number of topic sessions and workshops in the program are directly relevant to various activities of ISC, especially such Topic Sessions as "Impact of climate variability on marine ecosystems: Understanding functional responses to facilitate forecasting" and "Identifying vulnerable marine ecosystems in the North Pacific.

Discussion

A question regarding how PICES results are used by countries in practical ways was raised. A. Bychkov indicated that PICES considers requests for scientific advice from member countries, for example the U.S. requested advice on climate regime shifts on fisheries in the North Pacific Ocean. For the most part, however, PICES produces expert reports on new and ongoing issues in the North Pacific Ocean. A recent example is the report on North Pacific trends in ocean conditions.

5.2.2 Report of the 2009 PICES meeting

G. DiNardo reported on the proceedings of the eighteenth annual meeting of PICES (PICES-2009) convened from 23 October - 1 Novemebr 2009 in Jeju, Republic of Korea. The theme for PICES-2009 was "*Understanding ecosystem dynamics and pursuing ecosystem approaches to management*." ISC was invited by the PICES Executive Secretary to attend the meeting as an observer. The invitation was discussed at ISC9 and G. DiNardo was indentified to attend and represent the ISC. The ISC Chairman also tasked DiNardo with identifying current PICES activities that might hold benefit for ISC work.

DiNardo participated in the meeting and also prepared a poster on ISC activities for that meeting. The poster delineated the goals, objectives and operations of ISC and generated significant interest by participants. PICES activities that might be of interest to ISC include:

- Characterizing changes in oceanographic conditions and understanding causal mechanisms;
- Development of environmental time series;
- Development of bioeconomic reference points.

5.2.3 Invitation to 2010 PICES meeting

The ISC Chairman noted receipt of an invitation (ISC/10/PLENARY/03) for ISC to participate in the annual meeting of PICES to be held in Portland, Oregon, U.S.A. in 22-31 October 2010. In response to the request, the ISC Chairman appointed J.B. Lee to represent ISC at the 2010 PICES meeting. This nomination was accepted by the Plenary. Lee will attend and report any noteworthy information and opportunities for collaboration back to the Plenary at the ISC11 meeting.

5.3 Interactions between ISC and WCPFC

The ISC Chairman asked S.-K. Soh, WCPFC Observer, to report on general matters of interactions between ISC and WCPFC. Soh provided the following report on behalf of the WCPFC:

The sixth Regular Session of the WCPFC Scientific Committee will be held at Fa'onelua Convention Centre in Nuku'alofa, Tonga, from 10 (Tuesday) to 19 (Thursday) August 2010. Over 120 scientists, fishery officers and observers are expected to attend from 25 members, seven participating territories, seven cooperating non-members and various observers such as ACAP, Birdlife International, FAO, FFA, IATTC, ISC, ISSF, IUCN-OCEANIA, SPC, Greenpeace, and tuna industries and associations. Matters to be considered include: a review of the fisheries in the WCPO and EPO, a review of stock assessment of bigeye and skipjack tuna, bycatch mitigation issues, data and data gaps, a work program for 2011-2013, etc.

The WCPFC has a contract with the SPC for the provision of science services, which include: data management, statistical analyses and related services, stock assessment and related analytical services, management analyses and performance of measures, ecological risk assessment, etc.

Collection of reliable data is a priority objective of the WCPFC's science. Indonesian and Philippine waters are known to produce about 25% of the total tuna catch in the WCPFC Convention Area, but data provision from that area has been insufficient and thus identified as one of the biggest sources of uncertainty in stock assessments. In order to address this data gap, the WCPFC has been conducting the Indonesia and Philippines Data Collection Project (IPDCP) funded by Members through voluntary contributions. Following a request from the IPDCP Project Steering Committee, the Secretariat prepared a funding proposal for the Global Environment Facility (GEF) to support a long-term project to complement the IPDCP – including extending project activities to Vietnam. The project proposal was accepted by the GEF Secretariat in late 2007 with a three-year budget of around US\$1 million for three countries. The project was initiated on 6 January 2010, focusing on establishing a system to monitor, data

enhancement and fishery assessment, and enhancing policy, institutional strengthening and management of tuna fisheries of the three countries. The Secretariat is coordinating the 2nd phase of the full project now. This project is managed by the WCPFC's Science Manager.

With regard to data issues between WCPFC and ISC, the Scientific Committee at SC5 in 2009 recommended that the ISC and the WCPFC Secretariat establish a mechanism for the periodic exchange of data to address gaps in the data for North Pacific stocks. The WCPFC Secretariat proposes two options to provide such a mechanism: one through establishing a Memorandum of Cooperation on the Exchange and Release of Data between WCPFC and ISC, and the other through convening an Annual Consultation Meeting between WCPFC and ISC. These options will be considered at the up-coming SC6 and SC will seek further comments from ISC on the proposed mechanism.

6 REPORTS OF WORKING GROUPS AND REVIEW OF ASSIGNMENTS

6.1 Albacore

J. Holmes, Chairman of the ALBWG, reported on the activities of the ALBWG over the past year. The Working Group met twice during the past year: a regular meeting held 20-26 April 2010 in Shimizu, Japan (*Annex 6*), and an update meeting held 12-13 July 2010 in Victoria, Canada (*Annex 9*). The primary focus of the April 2010 meeting was on spatial/temporal definitions of fisheries for length-based modelling (i.e., ensuring constant length selectivity) and assessing abundance indices and size composition data for these fisheries, developing indices of SSB abundance to monitor stock status between full assessments, and work planning and assignments for the next stock assessment. The WG was also tasked by the ISC Chairman with developing and providing information on potential biological reference points for North Pacific ALB in response to a request from NC5. The Working Group completed most of these tasks at this meeting, with some carry-over of the fishery definitions to the next meeting. The meeting held in conjunction with ISC10 focused on updating fishery statistics, completing the fishery definition work, providing a qualitative update on stock status using the SSB index, and planning for the next stock assessment.

Accomplishments of the ALBWG over the past year include:

- 1. Holding two workshops at which 18 working papers were presented;
- 2. Updating national fishery statistics through 2009, including an update of North Pacific ALB catch data from south Pacific countries reported to the SPC (see Table 1 in *Annex 9*);
- 3. Completion of new spatial/temporal fishery definitions, resulting in the Working Group defining 12 fisheries (nation x gear combination) for the next stock assessment. Some decisions on some size composition data and CPUE indices remain for the data preparation meeting in Oct 2010;
- 4. Providing information on a suite of potential biological reference points for north Pacific albacore,
- 5. Forwarding a framework for decision-making on reference points to solicit input from managers and move the reference point process for the stock forward;
- 6. Development of a SSB index to monitor trends in abundance for stock status updates between stock assessments;

- 7. A qualitative update on stock status since the last (2006) assessment; and
- 8. Finalization of work plans for the next stock assessment.

Based on discussions at the ALBWG meetings in April and July 2010, the ALBWG remains on track to conduct the next stock assessment at a workshop scheduled for 22-29 March 2011 in Shimizu, Japan. The transition from an age-structured VPA to length-based SS model for the next stock assessment is nearly completed. However, the ALBWG brings forward the following issues to the ISC Plenary:

- Completion of the fishery definition work (including choosing size compositions & CPUE indices) at the April and July workshops was affected by the need to devote time and resources to the biological reference point assignment and the staffing and resource challenges occurring at many government agencies at this time;
- The ALBWG requested clarification at ISC9 from NC concerning it's interpretation of F_{SSB-ATHL} : limit or target reference point; and
- The Working Group requests clarification of the policy on posting working papers on ISC website: once an author gives permission does the paper go up immediately or is Plenary clearance needed?

Discussion

On the ALBWG request for clarification from NC regarding whether its interim management objective is a target or limit reference point, there was no response from NC. ISC's view is that it should not wait as a response will not affect how ISC does its job.

The ALBWG requested clarification on posting working papers on the ISC website. The ISC Chairman indicated that this can be addressed under the agenda item Website (see section **11.5**).

It was noted that the ALBWG had further discussions on the IUU issue at the April 2010 Workshop (*Annex 6: page 15*). The WG members did not have any new data on the matter. The Plenary is concerned about the lack of IUU data and the impact this may have on stock assessments. The Plenary concluded that organizations should make efforts in securing IUU information and make it publicly available.

It was noted that completing a full albacore assessment as planned is important and whether the ALBWG is on track to complete this assignment by March 2011 was asked. Holmes confirmed that the work is progressing well to reach that goal.

6.2 Pacific bluefin tuna

Y. Takeuchi, Chairman of the PBFWG, presented the summary of the activities of the group since ISC9 (*Annex 7*). The PBFWG met on 6-9 July 2010 in Nanaimo, Canada. At this workshop, 11 working papers and two oral presentations were presented with participation of 21 scientists from Chinese Taipei, Japan, Korea, Mexico, USA and the IATTC. At this meeting, the PBFWG completed the assignment on Biological Reference Points, conducted updates of 2009 analysis (2010 update) and conducted a complete set of sensitivity analyses of 2010 update. Takeuchi also introduced on-going and planned Biological Research for Pacific Bluefin tuna.

Takeuchi reviewed the PBFWG work plan for 2011 and 2012 including the schedule of the next full stock assessment. The WG plans to hold one workshop in January 2011 in Shimizu, Japan. The objective of this workshop is to improve stock assessment model and assessment data to resolve underlying problems identified in the current stock assessment (e.g., very high sensitivity of stock assessment results to M). The WG also plans to meet in July 2011 in conjunction with ISC11 Plenary. As for the schedule of the next full stock assessment, the WG is on track for completing an assessment in 2012. A two intercessional meeting process is planned with a data preparatory meeting to be held in November 2011 followed by the stock assessment meeting to be held May-June 2012. Takeuchi raised the issue of increasing workloads on WG members conducting the stock assessments in recent years.

Discussion

General concern was raised about the large number of WG workshops being proposed by the ISC WGs. The expected workload may be excessive particularly because many of the scientists are involved in two or more WGs and Members face difficulty in securing or allocating additional staff. Also, there may be conflict with the proposed meeting dates. The ISC Chairman noted that these issues are addressed under Review of Meeting Schedule (see section **10**).

6.3 Billfish

G. DiNardo, Chairman of the BILLWG, summarized the working group's efforts since the last Plenary, including a synopsis of the three BILLWG workshops held during this period (*Annexes* 4, 5 and 8). Workshop goals and accomplishments included the review and update of fishery statistics, completing an updated North Pacific SWO stock assessment, delineation of North Pacific MLS stock structure for the scheduled 2011 stock assessment, identification of potential biological reference points for billfish, and a plan to assess Pacific blue marlin. While significant progress was made to facilitate the goals, including the updating of Category I, II, and III data and standardization of CPUE time series, as well as completion of an updated North Pacific SWO stock assessment, further improvements are still needed.

Administrative matters were presented including increasing work for DiNardo (contacting sources outside of the ISC membership), the increasing workload for the BILLWG members, and the lack of WG commitment by some ISC Members. A proposed schedule for stock assessments was presented which included the completion of a MLS stock assessment in July 2011 and a Pacific-wide blue marlin stock assessment in July 2012. It was pointed out that a collaborative approach will be required to complete the blue marlin assessment and efforts are currently underway to establish the necessary collaborations. Proposed dates and venues for upcoming intercessional workshops were presented and they include 19-27 January 2010, in Hawaii, USA and 19-27 May 2010 at a location yet to be determined.

Problems impinging on the ability of the WG to complete its goals were presented, including the lack of (1) sufficient data in the ISC database and (2) continued participation at WG workshops by some Member. In addition, the lack of understanding on the part of RFMOs and RFOs regarding the role of ISC also hampered progress. The WG also considered that convening the

proposed World Blue Marlin Symposium would detract from the adopted schedule for completing the Pacific-wide blue marlin assessment and recommended that the symposium be postponed. Possible solutions to the problems were presented and guidance from the Plenary sought. Finally, it was pointed out that many of the WG's goals were achieved and that their successful completion is linked directly to the commitment and dedication of scientists from the member countries and organizations.

Discussion

The ISC Chairman noted key items resulting from the BILLWG report: 1) change in stock structure of MLS from 1 to 2 stocks (EPO and WPO); 2) the previously planned World Blue Marlin Symposium for 2011 will not be organised and held by ISC; and 3) a proposed international tagging program.

It was suggested that because there is an urgent need for a current blue marlin stock assessment that the ISC Chairman, with the assistance of the BILLWG Chairman, contact other RFMOs that might be interested in such a project and determine if there is interest in a collaborative effort.

The need for a large-scale, international billfish tagging program was discussed. The ISC Chairman noted that if such a program is to be considered by the ISC Plenary for execution, scoping of the program and a program plan are needed. The Plenary assigned the BILLWG the task of scoping out the program and to bring forth a plan if it believes that a program will be feasible and likely to contribute significant information for advancing billfish information for stock assessment.

6.4 Bycatch

S. Shoffler reported the results of the ISC Bycatch Working Group (BCWG) workshop (*Annex 10*). At ISC9, the ISC Chairman was tasked with convening the BCWG in order for the group to elect a chairperson and address other matters. The group met in July 2010. Its three objectives were to: (1) Review the bycatch working group terms of reference (TOR); (2) Review the bycatch table developed by STATWG in 2009; and (3) Elect a chairperson. The group reviewed the current TOR and discussed which of the tasks the BCWG was able to address and determined that the BCWG either did not possess the expertise to fulfil its tasks, as in the case of conducting stock assessments, or that other RFMOs were conducting the work already, as in the case of assessing mitigation measures, or that the workload was too diverse for the group, as in the case of assessing species interactions with HMS fisheries. The BCWG developed and discussed four options for Plenary to consider for the future of the BCWG. Among those four, it preferred the following two:

3. Dissolve the BCWG and create a new working group for sharks with TOR to conduct shark stock assessments and monitor stock condition in order to best leverage limited ISC resources and address emerging concerns.
4. Revise the BCWG TOR to (1) assess the condition of shark stocks and (2) review mitigation measures for all bycatch species on the fisheries. The group determined that if Plenary determined that the BCWG should persist, the group

should meet as soon as possible after that to elect a chairperson and establish a workplan.

Because the group discussed dissolving the BCWG, it tabled the other two objectives (reviewing the bycatch table and electing a chairperson) until the fate of the working group was determined. The group determined that if Plenary decided to keep the BCWG, the group should meet as soon as possible after that in order to elect a chairperson and establish a work plan.

Discussion

All four options outlined by the BCWG were discussed, but the Members focused on the two preferred options of the BCWG. Arguments were put forth for both options and after carefully reviewing the pros and cons, the Plenary decided to implement option 3, i.e., dissolve the BCWG and create a new working group for sharks. The rationale for this action is largely the need for ISC to focus its limited resources on work that it does best, i.e., stock assessments, and not repeat work that is being carried out by others, e.g., IATTC and WCPFC.

6.5 Shark Task Force

K. Yokawa presented the Shark Task Force report (*Annex 11*). The goal of the ISC Shark Task Force Group (STFG) held on 15 July 2010 was to provide information to the ISC Plenary regarding the ISC's role in shark assessments. The STFG discussed all the data available for U.S., Japan, Korea and IATTC fisheries and noted that ISC member countries seem to have enough information for the stock assessments of key shark species in the North Pacific Ocean, especially blue and shortfin mako sharks. The STFG also noted that there was sufficient interest and expertise to conduct these assessments. Finally, STFG prepared a list of key shark species captured in the North Pacific Ocean fisheries to be assigned into four categories. In categorizing species for shark assessments, the STFG considered the WCPFC and IATTC lists of key species, the NC request to focus on blue shark and shortfin mako shark in the North Pacific Ocean, as well as other shark species that are caught in north Pacific fisheries for tuna and tuna-like species in relatively high numbers.

Discussion

M. Dreyfus indicated that shark fisheries are very important in Mexico. He iterated that they would support a shark working group and provide mako and other species data. U. Varanasi indicated that the STFG produced a very detailed and informative report.

K. Yokawa indicated that the STFG had communicated with SPC and that the SC has taken on shark assessments. The ISC Chairman asked the WCPFC Observers if the SC had been tasked with prioritizing shark assessments. S.-K. Soh indicated that WCPFC is prioritizing shark assessments and SPC may provide preliminary advice on the stock status of key shark species for the WCPFC meeting in December 2010. For SC6, SPC will provide a three-year research plan, but may not provide any preliminary advice on shark stock status. The ISC Chairman pointed out that WCPFC is required to collaborate with IATTC on shark assessments. The Yokawa indicated that the STFG shared its draft report with IATTC and WCPFC colleagues for comment who confirmed that collaboration between IATTC and WCPFC is on track.

Based on Plenary's discussion and the previous decision to establish a shark working group, the ISC Chairman reiterated that a new Shark Working Group will be established by the ISC. This new WG will be responsible for conducting stock assessment and other scientific studies as required, similar to the responsibilities of existing species WGs of the ISC. Taking into account the findings of the STFG, the new working group is to focus on monitoring shark fisheries particularly blue, shortfin mako, bigeye thresher, pelagic thresher, silky, oceanic whitetip, hammerhead, and any other shark species for which stock assessments may be needed. The working group should collaborate with other RFMOs of the Pacific and initially focus on stock assessments of blue and shortfin mako shark. Members wishing to participate in the shark working group were requested to nominate up to two scientists to work with the ISC Chairman in organizing the first meeting of the working group to be held before ISC11. The agenda for the first meeting will include election of a working group chairperson and development of a work plan for blue and shortfin mako shark assessments.

6.6 Seminar on Oceanography

On behalf of Z. Zhang, J. Holmes presented a summary of the seminar, "Oceanographic and low trophic-level habitat in the North Pacific Ocean," convened just prior to Plenary. Information on this seminar can be found in *Annex 13*.

Discussion

The ISC Chairman expressed appreciation to Z. Zhang for organizing the seminar. He also thanked the presenters on behalf of ISC and indicated that he will send a letter of appreciation to Z. Zhang and the presenters.

7 STOCK STATUS AND CONSERVATION ADVICE

The ISC Chairman referred to two special working group assignments for the past year: identifying potential biological reference points (BRPs) and reviewing the conservation advice from ISC9 for clarity.

7.1 Albacore

J. Holmes, Chairman of the ALBWG, summarized the recent work of the ALBWG (*Annexes 6*, 9). The last albacore stock assessment was completed in December 2006 using fishery data through 2005. Stock status and conservation advice were provided to the ISC7 Plenary (July 2007) and to NC3 (September 2007). No formal update of stock status has been conducted since the 2006 assessment. However, at its 12-13 July 2010 meeting, the ALBWG undertook a qualitative update using available fisheries data from 2006 to 2009 and an index of spawning stock biomass (Japanese longline CPUE age 6-9+). This qualitative update found that:

• total catch in 2009 (77,939 t) was about 9,000 t higher than 2008 and near the long-term mean catch (74,900 t) for the 1952-2008 period;

- catches in most fleets (country x gear combination) have declined or been stable since the last stock assessment;
- nominal effort as measured by the number of vessels has also declined or been stable in most fleets since the last stock assessment; and
- the North Pacific Japan longline age 6-9+ SSB index has declined from previous high levels and appears to be relatively stable since the last stock assessment.

Based on these findings, the ALBWG concluded that:

- 1. A new stock assessment will be necessary to fully understand the implications of the new data available since the last stock assessment;
- 2. The 2006 stock assessment estimated that albacore spawning biomass reached an historical high in 2005 and then projected a decline thereafter. The age 6-9+ index shows that SSB has declined from previous high levels and appears to be relatively stable since the last stock assessment;
- 3. The WG did not focus on recruitment in its latest qualitative review and is unable to provide insight into recruitment in recent years beyond observations in previous Plenary reports; and
- 4. Nominal effort in most fisheries (as measured by the number of vessels) appears to have declined slightly or been stable since 2005. Although catches exhibit more interannual variability than effort, with the largest variation occurring in the Japan pole-and-line fisheries, most fisheries catches have declined or remained relatively stable over the same period. This could mean that F_{2009} is less than the $F_{2002-2004}$ (0.75 yr⁻¹) used in the 2006 stock assessment projections. Alternatively, F_{2009} may be as high as the value used in the stock assessment projections since the level of recruitment after 2005 is not known.

Discussion

In discussion, clarification was sought regarding the reference years for " F_{cur} " in the ISC9 conservation advice for albacore tuna. Holmes confirmed that F_{cur} refers to the geometric mean of F for 2002-2004 and Plenary revised its advice, accordingly.

Conservation Advice

After discussion of the ALBWG conclusions (*Annex 9*) and consideration of comments raised by Members, the Plenary offers no new conservation advice for North Pacific albacore above and beyond that which was provided at ISC9 in July 2009 (based on the advice of ISC7), pending the results of a new stock assessment, which is scheduled for 2011. That advice is:

"Previous scientific advice, based on the 2004 stock assessment, recommended that current fishing mortality rate (F) should not be increased. It was noted that management objectives for the IATTC and WCPFC are based on maintaining population levels which produce maximum sustainable yield. Due to updating, and improvements and refinements in data and models used in the 2006 stock assessment, it is now recognized that F2002-2004 (0.75) is high relative to most of the F reference points [commonly used in fisheries management] (see Table 5a in Annex 5) [of the ISC7 Plenary Report].

On the other hand, the same analysis indicates that the current [2005] estimate of the SSB is the second highest in history but that keeping the current F would gradually reduce the SSB to the long-term average by the mid 2010s. Therefore, the recommendation of not increasing F from current level ($F_{2002-2004}=0.75$) is still valid. However, with the projection based on the continued current high F, the fishing mortality rate will have to be reduced."

Based on analyses conducted by the ALBWG since ISC9, the following points are highlighted:

- 1. Both the ISC9 and ISC10 Plenaries note that there is increasing uncertainty concerning the status of North Pacific albacore in the absence of a new stock assessment.
- 2. The ISC10 Plenary notes that there is no strong positive or negative signals in the age 6-9+ SSB index since the last stock assessment.
- **3.** The next stock assessment is expected to be completed in early 2011 and the results will be presented at ISC11.
- 4. The ISC9 Plenary reported that the estimated value of $F_{SSB-ATHL}$ is 0.75yr⁻¹ for a 25-year projection period using fishery data through 2008. This value is similar to $F_{2002-2004} = 0.75$ yr⁻¹, estimated in the last stock assessment.
- 7.2 Pacific Bluefin Tuna

Y. Takeuchi, Chairman of the PBFWG, summarized the recent stock assessment work of the PBFWG on PBF stock status (*Annex 7*).

In 2008, the WG conducted a stock assessment of PBF using Stock Synthesis II with fishery data through 2005. Results of that stock assessment were accepted by the ISC8 Plenary; however, ISC8 requested that the WG investigate the causes of some of the implausible model results (e.g. large B0, low SPR and depletion level. See ISC8 Plenary report).

In 2009, a different natural mortality schedule and Stock Synthesis III were used to reanalyze stock status using data through 2005 (the same as that used in the 2008 assessment). The WG concluded that the results of the 2009 reanalysis were more plausible and those results were presented to ISC9. In both the 2008 and 2009 analyses, the "current" fishing mortality rate was characterized by a three-year average (2002-2004) with the terminal year of the model results (2005) excluded due to unreliable estimates.

In 2010, the WG conducted an update of the 2009 analysis along with a complete set of sensitivity analyses and stock projections using data through 2007. Data used in the 2010 update were analyzed using the same methods and parameters in the stock assessment model as in 2009.

The updated "current" fishing mortality rate was calculated as a three-year average (2004-2006) with the terminal year of the model results (2007) excluded due to unreliable estimates. The WG reviewed the results of the update with the objectives of characterizing the recent relative change in fishing mortality rate and spawning biomass. It should be noted that even the most recent estimates of fishing mortality would not yet reflect any actions with regard to the fishery management decision for PBF by the 6th Regular Session of the Western and Central Pacific Fisheries Commission (CMM 2009-07, Dec. 2009).

A summary of the 2010 update is as follows:

- 1. A number of sensitivity runs were conducted in 2010 to investigate uncertainties in biological assumptions and fishery data. Results indicate that the assumption of adult M is particularly influential to the estimate of absolute spawning biomass and fishing mortality. Although absolute estimates from the stock assessment model were sensitive to different assumptions of M, relative measures were less sensitive.
- 2. The estimate of spawning biomass in 2008 (at the end of the 2007 fishing year) declined from 2006 and is estimated to be in the range of the 40-60 percentile of the historically observed spawning biomasses (Fig. 1).
- 3. Average Fishing Mortality 2004-2006 ($F_{2004-2006}$) had increased from $F_{2002-2004}$ by 6% for age-0, approximately 30% for ages 1-4, and 6% for ages 5+.
- 4. 30-year projections predict that at $F_{2004-2006}$ median spawning biomass is likely to decline to levels around the 25th percentile of historical spawning biomass with approximately 5% of the projections declining to or below the lowest previously observed spawning biomass. At $F_{2002-2004}$ median spawning biomass is likely to decline in subsequent years but recover to levels near the median of the historically observed levels. In contrast to $F_{2004-2006}$, $F_{2002-2004}$ had no projections (0%) declining to the lowest observed spawning biomass. In both projections long-term average yield is expected to be lower than recent levels.

Discussion

The Plenary reviewed in detail the four summary points (above) of the PBF stock assessment update.

In discussion on item 3, Y. Takeuchi was asked to clarify the maturity schedule of PBF. Takeuchi indicated that the following maturity schedule was used: age 3 (20%); age 4 (50%); and age 5+ (100%). He also indicated that the maximum age of reproductive activity of PBF is not known. However, he suggested that given the currently estimated total mortality (F+M), there would be very few survivors over age 20. Under item 4 questions regarding the 30-year projection period were asked. A comment was made that the 30-year period of the future projection may be too long given uncertainty. It was requested that recruitment assumptions used in the projections be clarified. In response, it was explained that the estimates of recruitment were randomly sampled (with replacement) and this is the identical methodology used in 2008 and 2009. It was suggested that this might be an optimistic assumption at low stock size.

Figure 1. Relative SSB trend of Pacific bluefin tuna (*Thunnus orientalis*) scaled by the median of historical observed biomass (1952-2007). Lines with circles and triangles are point estimates from the 2010 update and the 2009 update respectively. Solid lines and dashed lines associated with point estimates are the 90% confidence interval. A value of 1.0 on the vertical axis is the median of historical SSB (1952-2007).

Conservation Advice

Given the conclusions of the July 2010 PBFWG workshop (*Annex 7*), the current (2004 - 2006) level of F relative to potential biological reference points, and the increasing trend of F, it is important that the level of F is decreased below the 2002-2004 levels, particularly on juvenile age classes.

7.3 Striped Marlin

G. DiNardo, Chairman of the BILLWG, presented an update on the stock status of MLS. He noted that no new assessment has been conducted. The last assessment was conducted in 2007 and presented at ISC7. A new assessment is scheduled to be completed before ISC11. The new assessment will assume a two-stock scenario, a western central Pacific Ocean stock and an eastern Pacific Ocean stock. A qualitative review of stock status was not conducted; therefore the BILLWG proposes that the ISC Plenary maintain the existing conservation advice for this species.

Discussion

Plenary discussed the previous (ISC9) conservation advice and revised the advice to clarify the term "current level (2003 or before)."

Conservation Advice

While further guidance from the management authority is necessary, including guidance on reference points and the desirable degree of reduction, the fishing mortality rate of striped marlin (which can be converted into effort or catch in management) should be reduced from the current level (2001-2003), taking into consideration various factors associated with this species and its fishery. Until appropriate measures in this regard are taken, the fishing mortality rate should not be increased.

7.4 Swordfish

G. DiNardo, Chairman of the BILLWG, presented background information on the SWO stock assessment process and asked J. Brodziak to present the results of the updated EPO SWO stock assessment conducted in 2010.

The North Pacific WCPO and EPO SWO stocks were assessed by the ISC Billfish Working Group in 2009 (Figure 2).

Figure 2. Geographic areas used for the ISC Billfish stock assessment of North Pacific swordfish stocks. Sub-Area 1 corresponds to the Western and Central North Pacific (WCPO) swordfish stock which was assessed in 2009. Sub-Area 2 corresponds to the Eastern North Pacific (EPO) swordfish stock which had a stock assessment update conducted for ISC 10 in 2010.

In 2010, the EPO stock assessment was updated to include missing SWO catch from the IATTC area (Figure 3). Results of the updated EPO stock assessment were consistent with the previous 2009 assessment of the EPO stock.

Figure 3. Total catch biomass estimates for the Eastern North Pacific (EPO) swordfish stock from 1952-2006. The updated catch biomass (solid line, filled circle) shows the catch used in the 2010 update of the EPO stock assessment reported at ISC 10. The previous catch biomass (dotted line, open circle) shows the catch used in the previous EPO stock assessment reported at ISC 9 in 2009.

Based on the 2009 stock assessment results, the exploitable biomass of the WCPO SWO stock was estimated to be about 75,000 t in 2006 (B_{2006}), roughly 30% above B_{MSY} . The exploitation rate on the WCPO stock in 2006 was estimated to be 14% with a total catch of roughly 9,900 t or roughly 69% of MSY (MSY=14,400 t). There was very high probability that B_{2006} was above B_{MSY} , a 93 out of 100 chance, and there was a 0 out of 100 chance that the exploitation rate in 2006 exceeded the rate to produce MSY.

Based on the 2010 stock assessment update results for the EPO stock only, the exploitable biomass of the EPO SWO stock was estimated to be about 69,000 t in 2006, over 200% above B_{MSY} (Figure 4).

Figure 4. Time series of estimates of exploitable biomass (solid line, filled circle) of eastern North Pacific swordfish during 1952-2006, with 95% credibility intervals (dashed lines), projections of exploitable biomass (solid line, filled triangle), and 95% credibility intervals (dashed lines). Stochastic projections of exploitable biomass and catch biomass during 2007-2010 are based on production model dynamics assuming that the projected exploitation rate is normally distributed with a mean equal to the average exploitation rate during 2004-2006 and an associated standard deviation.

Exploitation rate on the EPO stock in 2006 was estimated to be 6% with a total catch of roughly 3,900 t or roughly 78% of MSY (MSY=5,000t). There was very high probability that B_{2006} was above B_{MSY} , a 99 out of 100 chance, and there was a two out of 100 chance that the exploitation rate in 2006 exceeded the rate to produce MSY.

The exploitable biomass of the WCPO SWO stock was 31% above B_{MSY} and the exploitation rate was 46% below F_{MSY} in 2006. Similarly, exploitable biomass of the EPO SWO stock was over two-fold greater than B_{MSY} and the exploitation rate was 62% below F_{MSY} in 2006. Based on results of the updated North Pacific EPO stock assessment and the 2009 North Pacific WCPO stock assessment, the BILLWG proposed that the ISC Plenary maintain the existing conservation advice for this species.

Discussion

Plenary discussed the previous (ISC9) conservation advice and considered the term "well above" to be ambiguous and the advice was revised. The Plenary also discussed what some Members considered to be a bigger concern, that the ISC9 conservation advice reflected results instead of advice.

Conservation Advice

The WCPO and EPO stocks of swordfish are healthy and above the level required to sustain recent catches.

8 REVIEW OF STOCK STATUS OF SECONDARY STOCKS

The ISC has an interest in yellowfin, bigeye and skipjack tunas in the North Pacific Ocean. This interest is shared with other RFMOs that have a larger interest and conduce stock assessments on these stocks. Because IATTC and SPC actively research these stocks, they have been annually invited by Plenary to provide briefings on their research findings on stock condition and fishery impacts on these stocks.

8.1 Eastern Pacific – Yellowfin, Bigeye and Skipjack Tunas (*ISC/10/PLENARY/info/04, 05, 06*)

M. Dreyfus discussed the stock assessment and status of yellowfin, bigeye and skipjack tunas in the eastern Pacific Ocean drawing on material received from the IATTC. IATTC assessments updated since 2009 have not yet been released and the information presented by Dreyfus was for the 2009 assessment and not new. This information was also presented at ISC9 Plenary in 2009. IATTC will present new assessments in late August 2010. Dreyfus mentioned that IATTC has changed the timing of its scientific meeting to comply with the rules of the new IATTC convention (Antigua Convention) that comes into force in August 2010.

Dreyfus reminded the group that the 2009 assessments for YFT and BET were conducted using Stock Synthesis III with the base case scenario of no adult-recruitment relationship. IATTC does not conduct a full assessment of SKJ because there are insufficient estimates of biological parameters for this species; instead, it uses relative indicators that are estimated to check for significant trends. At this time, there are no conservation concerns for SKJ.

Discussion

The ISC Chairman expressed his appreciation for the presentation and asked to be kept informed of future updates on stock status.

8.2 Western Pacific Ocean – Yellowfin, Bigeye, Skipjack, and Southern Albacore (*ISC/10/PLENARY/info/02 and 03*)

N. Miyabe, Chairman of the WCPFC-SC, presented summaries of tuna stock status in the WCPO based on the 2009 tuna stock assessments for BET, YFT and SKJ tunas in the WCPO, and ALB in the South Pacific Ocean, including management implications. The WCPFC-SC relies on the SPC for conducting the stock assessments for these stocks.

The 2009 BET assessment presented at SC5 was updated from the 2008 assessment. The BET stock status estimates for the base case model concluded that overfishing is occurring (with 100% probability), that the stock is not in an overfished state, and that fishing mortality has increased substantially since 2001-04. Given the revised estimates of F/Fmsy, reductions in

fishing mortality of 34-50% are needed. SPC was asked to evaluate the effectiveness of the CMM for a range of alternative scenarios.

The assessment for YFT was updated in 2009 from the previous update in 2007. Although the overall YFT status was that is it not overfished, the condition in Region 3 (western equatorial) was estimated to be fully exploited – spawning biomass is now 30% of the unfished level and this region accounts for 95% of the total catch. Due to these conditions, SC5 recommended not allowing F to increase in the western equatorial region.

For SKJ the most recent assessment was done in 2008. Two spatial model scenarios were used in the assessment: (1) the entire WCPO (stratified into 6 regions, as done for the other tuna assessments), and (2) the equatorial regions only (comprising just the two regions that make up most of the fishery). The equatorial model was adopted to assess SKJ. Biomass estimates are largely driven by trends in recruitments that are more variable in the eastern equatorial region, with peaks in recruitment, and consequently biomass, following El Niño events. In recent years SKJ biomass has been 40% above average. The assessment indicates that SKJ is moderately exploited, that the stock is not in an overfished state with B/B_{msy} greater than 1, and that overfishing is not occurring with $F/F_{msy} = 0.26$, substantially below 1.

The South Pacific ALB stock assessment for 2009 determined that adult fishing mortality is much lower (by 50%) than the 2008 assessment estimates. Adult fishing mortality increased steeply in recent years – but is more realistic ($F = \sim 0.3$) than previous years' estimates for fully exploited fish). This stock is not in an overfished state and overfishing is not occurring.

Discussion

The ISC Chairman thanked N. Miyabe for the presentation and stated that ISC looks forward to receiving future updates on stock assessments of WCPO stocks.

9 REVIEW OF STATISTICS AND DATA BASE ISSUES

S.K. Chang, Chairman of the STATWG, reported on the STATWG meeting held 16-19 July 2010 in Victoria, Canada (*Annex 12*). Three important tasks were addressed this year in addition to regular agenda items: (1) Convene a metadata workshop to collect metadata from each member and unify the extent and contents of database; (2) Begin development of complete ISC data inventory; (3) Review the data reporting protocol.

A metadata workshop was held in conjunction with the STATWG. The group recognized the need and importance of having complete ISC metadata and standardized names of fishing fleets and codes for the ISC and WG databases, and so the metadata workshop focused on and created a standardized fleet names and codes, a metadata summary table by each country and fleet, and a set of unified codes for the ISC database. All the tables and codes will be further reviewed by species working groups and then adopted in STATWG 2011. It was recommended that working groups use the codes and names, members update the metadata, and the ISC Data Administrator (DA) revise the data system accordingly after 2011.

Catalogues and inventories of Categories I-III data from the ISC database were created and reviewed in the STATWG. Several issues in the ISC database were noted in the meeting and solutions were provided which include requests for members to submit missing historical data and to address the inconsistencies in fishery terms noted in the metadata workshop. Discrepancies between the ISC and WG databases were discussed and the STATWG concluded that: these were two different databases. The ISC database includes only aggregated data submitted by Members according to the ISC Data Reporting Protocol and does not include all the data the WGs use for their stock assessments.

A table comparing ISC and WCPFC database holdings was reviewed and discussed. In general, for the large-scale fisheries, WCPFC has more data than ISC and, for the small-scale fisheries, ISC has more data than WCPFC. It was noted that the ISC data catalogue is not yet complete and will need to incorporate data submitted by Members to working groups (that had not been submitted to the ISC database) and recover missing historical data from some Members.

Revisions to the Data Reporting Protocol (see *ISC/10/PLENARY/09*) were proposed, mainly to clarify the data contents of the ISC database, to clarify what is public domain data, and to streamline the data submission procedure (all data are to be submitted to the DA, instead of to working groups). Members' performance regarding data submission was reviewed in a report card adopted by ISC9. Most Members submitted their data on time in 2010. The absence of data from China was noted.

All ISC species WG Chairpersons identified the need to have a complete catch inventory of the species of their interests and noted the usefulness of comparing the ISC and WCPFC catch databases. They also noted that the Biological Sampling Plan (BSP) presented to ISC9 was important to address critical needs for updated biological and life history data.

A permanent Data Administrator (DA) began working this year. The STATWG reviewed the responsibilities of the DA to be in accordance with the revised data reporting protocol, but decided not to suggest changes until the DA is fully functioning in the job. The STATWG also agreed there was a need to retain the STATWG to monitor the changes established during the meeting, including those to the data reporting protocol and to the database, and decided to revisit the need for and structure of the STATWG in 2011.

Discussion

The ISC Chairman thanked S.K. Chang and the members of the STATWG for the hard work and the considerable progress made since ISC9. U. Varanasi lauded the well organized STATWG report and thanked S.K. Chang for his excellent leadership. Z.G. Kim thanked the STATWG and indicated that Korea will continue to cooperate to provide the best data to the ISC database.

The Plenary reviewed the STATWG recommendations in order to provide guidance and/or make decisions. The Plenary's instructions for each are as follows:

1. Encourage working group data managers and member Data Correspondents to work with the DA.

- 2. Data Correspondents should continue updating metadata in collaboration with WGs and should provide metadata with all data submissions to the DA.
- 3. If Data Correspondents submit updated catch data to WGs during the year, the WG Data Managers should inform the ISC DA of the updates. Data Correspondents are responsible for providing all data updates by the July 1st due date to the DA (as specified in the data reporting protocol).
- 4. The metadata workshop recommendations (see *Annex 12, Attachment 5*) should be incorporated by Data Correspondents, the DA, and WG Data Managers, as appropriate, except for the recommendation for ISC to apply for membership to the Coordinated Working Party for Fisheries Statistics, which Plenary decided not to do.
- 5. Plenary agreed to continue seeking funding for the previously proposed Biological Sampling Program (see section on Status of NC research proposals **11.8**).
- 6. Regarding the recommendation by the STATWG to clarify the supervision of the DA, the Plenary discussed this under the topic Data Administrator and Performance (section **9.1**).
- 9.1 Data Administrator and Performance

H. Nakano introduced the new DA, Izumi Yamasaki, Associate Researcher at the National Research Institute of Far Seas Fisheries and noted that she is responsible for ISC database management.

Discussion

S.K. Chang indicated that the STATWG reviewed the Responsibilities of the Database Administrator (see *ISC/10/PLENARY/09*). The STATWG agreed that the responsibilities would not be revised while the DA came up to speed and a review is planned for next year. The STATWG noted some duplication of responsibilities between the STATWG and the DA and determined that the need for and function of the STATWG might change once the new ISC DA is up to speed. In the mean time, the STATWG also agreed that it should not be dissolved and continue to meet in order to monitor progress of the DA.

The ISC Chairman mentioned that when the ISC last discussed dissolving the STATWG, it was with the understanding that the DA would be fully addressing ISC's data administration needs. Given the overlapping roles among the Chairman of the STATWG, the DA, WG Data Managers, and Data Correspondents, determining the respective roles and responsibilities is critical and will involve establishing a work plan and tracking progress of the DA. In the meantime, dissolving the STATWG might complicate data management for ISC. The ISC Chairman indicated that the responsibility of getting all these parties together currently resides with H. Nakano (the DA's local supervisor) and suggested that he work with these parties and ISC leaders in order to delineate the respective roles in monitoring the DA's progress.

The ISC Chairman further clarified the existing process for tracking and monitoring progress of the ISC DA: ISC Members articulate their data management concerns in the STATWG and Plenary; H. Nakano is responsible for local tracking and monitoring progress of the DA and providing the results to the STATWG. The ISC Chairman referred the Plenary to the DA responsibilities detailed in the Operations Manual (*ISC/10/PLENARY/09*) and to his report in which he suggested a realignment of the administrative responsibilities under the ISC Chairman

(see Report of the Chairman, section 4.0). It was pointed out that the administrative functions of the ISC are classified under the Office of the Chair.

9.2 Data Submission Report Card

A format for the data submission report card was developed last year. S.K. Chang presented the ISC data report card for members dated 19 July 2010 (*Annex 12*). There are three status categories in the report card for years 2008 and 2009. "Good" is assigned to countries if Category I-III data have been received before July 1. "Fair" is assigned if data have been received in July. "Poor" is assigned if data have been received after August. "NA" is assigned when data are not available.

Discussion

The group discussed the report card. It was pointed out that the current report card does not reflect the quality of data submitted. The STATWG Chairman indicated that the STATWG will review the report card next year and may revise how members are rated in the report card. He also indicated that data in delegation reports do not qualify as submitted to the ISC. The official submission of data is completed when data are submitted to the DA and to the ISC database. He noted that data in the delegation report differ from those submitted to the ISC DA for the ISC database. The ISC Chairman indicated that although China recently submitted 2009 Category II data, it has not submitted a delegation report. The ISC DA should ask China to submit the remainder of the data. After each Plenary, the DA should review the delegation reports to determine if they contain information that indicate gaps in the ISC database and communicate findings to STATWG Chairperson and appropriate Data Correspondent.

9.3 Total Catch

S.K. Chang presented the total catch of highly migratory species (HMS) in the ISC database and pointed out several issues with the ISC database and data management. He mentioned that the catches are for north of the equator in the North Pacific Ocean and are incomplete. He noted that the requirements for submission of catch data are for all HMS.

Discussion

Plenary noted the need to monitor the production of HMS fisheries in the North Pacific Ocean. The ISC Chairman reminded Members of the requirements for providing at least Category I data for the list of species in the ISC Operations Manual (see ISC/10/PLENARY/09). These should be available in the ISC database as well as reported in the delegation reports. Plenary also agreed that the data should appear in the Plenary reports and on the ISC website.

9.4 North Pacific-wide Catch and Bycatch

S.K. Chang indicated that ALB catch from non-Member countries was obtained from SPC and incorporated in the ALBWG database. No bycatch data has been submitted, and Chang asked whether a format for bycatch data should be developed.
Discussion

The ISC database does not contain bycatch data. The Plenary encouraged Members to submit full data on bycatch by their respective HMS fleets, and submit data as accurate as possible for the key ISC species in delegation reports.

9.5 Rescue of Historical Data

S.K. Chang reported that ISC has made some progress in rescuing historical data. PBF data has been collected back to World War II. ALB (catch metadata) has been collected for U.S. and Canadian troll fisheries. The BILLWG has obtained some data for SWO catches by Spain.

10 REVIEW OF MEETING SCHEDULE

10.1 Time and Place of ISC11

Provisional dates for the 11th meeting of the ISC are 20-25 July 2011. The meeting place is not yet determined. The U.S. offered to host the next meeting and will provide further details as they become available.

10.2 Working Group Intercessional Meetings

The Plenary discussed schedules for WG intercessional meetings and agreed on the tentative schedule presented in Table 5.

11 ADMINISTRATIVE MATTERS

11.1 Biological Reference Point Assignment

At the 5th session of the Northern Committee (NC) in Nagasaki, Japan in 2009, the NC requested assistance from the ISC in identifying potential biological reference points (BRP) for the northern stocks, ALB, PBF and SWO, of the North Pacific Ocean. The ISC worked on this request during scheduled intercessional meetings in 2009 and 2010. The work plan for each of the species working groups was to compile in table form the pros and cons and any appropriate comments on the potential BRPs used in stock status evaluations of their species. Furthermore, the values of the BRPs, where available, from the most recent stock assessments should be included. The results of this assignment for the Working Groups were compiled in *ISC/10/PLENARY/04*.

11.2 Peer Review of Function Process

S. Shoffler reported that the rules and procedures for conduct of the ISC and subsidiary bodies call for a review of function every five years or more frequently (*ISC/10/PLENARY/05*). ISC has not yet had a review of its function since its inception. A review of function should be conducted to promote transparency and scientific effectiveness. ISC10 is tasked with determining how to

accomplish this requirement. Shoffler suggested two options for Plenary to consider: contract out the review or organize the review itself.

Discussion

Plenary discussed the pros and cons of the two options including the high cost of either option (\$50-90K USD). Plenary decided to organize a review of the ISC function itself. The first step would be to create an ISC Review Task Force (RTF) from the membership to draft terms of reference and determine timelines and costs. This option also will require ISC to solicit funding for the review from the Member countries.

It was agreed that the RTF would be organized by the ISC Chairman who indicated that each Member country should identify a Review Task Force Member by the end of the Plenary.

11.3 Election of Chairperson for 2011-2013

G. Sakagawa indicated that he was stepping down as ISC Chairman after serving five years. An election was held according to ISC rules and procedures (Operations manual pages 12 and 13) and Gerard DiNardo was elected for a three-year term, 2011-2013.

DiNardo will assume the role of ISC Chairman after this ISC10 session. DiNardo thanked the Members for the confidence they have put in him and indicated that he is looking forward to serving ISC. He also thanked G. Sakagawa for his good leadership and for successfully moving ISC forward during his time as Chairman. U. Varanasi also expressed her appreciation for Sakagawa's contribution in advancing ISC, especially considering the limited available resources.

11.4 Organization Chart and Contact Persons

The ISC Organization Chart was reviewed and updated through discussion with members (**Figure 5**). The ISC Chairman noted that the participants listed on the Organization Chart serve as the points of contact for the respective WGs. They also serve as points of contact for respective Delegation Leaders in keeping abreast of WG activities and workshop results and for serving as team leaders of national scientists to intercessional WG

meetings.

Figure 5. ISC Organizational Chart (July 2010)

11.5 Website

H. Nakano reported recent progress made on the ISC website, and introduced the new ISC Webmaster, Y. Hashimoto. The Webmaster is a recent hire and is locally supervised by H. Nakano, National Research Institute of Far Seas Fisheries. Hashimoto has been engaged in renewing and improving the ISC website in response to requirements set out by ISC9.

Hashimoto provided a brief report on recent improvements to the ISC website including an aesthetically pleasing appearance, the addition of user-friendly functions, and improvements to the structure. Future work to fill contents of the "working group", "recommendations", and "statistics" pages, which will be done with the cooperation of the WG chairs, the ISC Chairman and DA, respectively, were also reported. In addition, the urgent task of uploading working papers submitted to WGs since July 2009 was noted and should be completed as soon as possible after the ISC10 Plenary. The current process for providing these papers is as follows: After authors provide permission for release, WG Chairpersons provide papers to the ISC Chairman who then sends them to the Webmaster. Hashimoto also reviewed the data submission process using the researcher's portal site, a protected part of the ISC website which can be accessed only by Data Correspondents.

Discussion

The ISC Chairman reminded Plenary that the website is the face of ISC and commented on the

outstanding results to date of the redesigned ISC website.

S. Shoffler introduced the draft ISC Webmaster responsibilities (*ISC/Plenary/08*). The Chairman asked Plenary to review these responsibilities and provide comments to the ISC Chairman by 2 October 2010. The Chairman will follow up with H. Nakano on changes and once the responsibilities are accepted by Delegation Leaders they will be part of the ISC Operations Manual.

Plenary asked for clarification regarding the responsibility of the Webmaster to communicate with stakeholders. The ISC Chairman indicated that the stakeholders are the ISC leadership (Delegation Leaders, WG Chairs, ISC Chairman and Vice-Chairman). The details of communicating with the leadership need to be described in the Webmaster responsibilities and in the management manual that needs to be developed by the Webmaster. Plenary also noted that the website needs a point of contact to manage any original content.

The importance of uploading WG Working Papers was discussed. The ISC Chairman emphasised that working papers submitted to WGs and approved for release by authors must be uploaded on the ISC Website as soon as possible, e.g., after ISC10. Plenary also determined that authors can retract permission for making papers publicly available up to the time they are sent by the WG Chairs to the ISC Chairman.

11.6 Best Practices Meeting

H. Nakano presented a report on the Joint Tuna RFMO Meeting of Experts to Share Best Practices on the Provision of Scientific Advice held in Barcelona, Spain at May 31 to June 2, 2010. This meeting is one of four WSs following the "Kobe procedure" and was held because of the similar problems faced by tuna RFMOs. The workshop reviewed and made recommendations on future priorities for data and tuna research that would allow the RFMOs to provide more efficient and fully transparent scientific advice on their tuna stocks and pelagic ecosystems. In the meeting, five keynote speakers made presentations on the major fields of interest, i.e. 1) Routine data collected by year: catch, effort and size data, 2) Biological data, 3) Stock assessment, 4) Communication between RFMOs and the world, and 5) Enhanced cooperation among tuna RFMOs. The meeting report identifies 25 recommendations. (Tuna-org: http://www.tuna-org.org/)

J. Brodziak presented his observations of that meeting focusing on the recommendations regarding uncertainty in stock assessments and scientific advice. A key recommendation was the need to produce decision tables. The Kobe II Strategy Matrix provides a clear format to convey quantitative advice about uncertainty. Recommendations for communicating stressed that standardized executive summaries should be developed for consideration for use by all tuna RFMOs for summarizing stock status and management recommendations.

Discussion

It was noted that the recommendations did not include using a precautionary approach. It was suggested that this is because the precautionary approach is considered a management

requirement, not a science priority.

11.7 Up-date of Operations Manual

R. Sanford reviewed proposed changes and updates to the ISC Operations Manual *(ISC/10/PLENARY/09)*. The ISC Chairman asked that delegates review changes to the manual and provide comments by 2 October 2010.

Discussion

The ISC Chairman noted that the STATWG had reviewed the data reporting protocol (*Attachment 2* in *ISC/10/PLENARY/09*) and its proposed changes were incorporated in the version presented to Plenary. He also pointed out the new and revised sections to the manual needing review including the Webmaster responsibilities and changes to the WG report guidelines. A number of issues needing revision, including bycatch coding, and the code for Blue Marlin, were also discussed. An electronic version of the complete revised Operations Manual will be sent to ISC Members after ISC10.

The Plenary agreed that the STATWG Chairman would circulate additional revisions of the DA responsibilities by correspondence to the WG in order to expedite inclusion of a final version in the revised manual. Suggested changes to all sections of the Operations Manual are due by 2 October 2010. The goal is to publish the revised manual by the end of 2010.

11.8 Status of NC Research Proposal

The ISC Chairman submitted four funding proposals to WCPFC NC5 in September 2009 for: (1) a biological sampling research program, (2) North Pacific albacore sampling program, (3) database administration, and (4) website administration. NC5 agreed that CCMs could elect to provide voluntary contributions for the proposals. During ISC10, S.K. Soh (WCPFC) circulated a Commission Circular (2009/16) regarding a "draft administrative arrangement" developed by WCPFC Secretariat to secure financial contributions from NC Members.

S.K. Soh indicated that the WCPFC Secretariat requests that ISC10 and NC Members consider the following and review the draft administrative arrangement that will be considered by NC6: Does ISC have sufficient legal personality and the capacity to receive, administer and acquit funds from an IGO such as WCPFC?

Discussion

The ISC Chairman clarified that ISC prepared the package of proposals for NC; NC submitted the proposals to WCPFC. The proposals were constructed by principal investigators who work for agencies of WCPFC Members. The structure of the proposals is similar to the research proposals of the WCPFC SC. ISC currently does not have legal personality and therefore is not prepared to receive funding and administer funding to the principal investigators.

11.9 Other Administrative Matters

A general question was raised about the availability of delegation reports in advance of the meeting for reviewing. The ISC Chairman clarified that to date it has been difficult to implement a policy of early distribution of Plenary documents because most delegation reports have been received just before the meeting and some are not ready for distribution. Nonetheless, the Office of the Chairman will try to make delegation reports available in advance of the Plenary session, at least a day before the start of Plenary.

12 ADOPTION OF REPORT

A draft Report of the Tenth session of the International Scientific Committee for Tuna and Tunalike Species in the North Pacific Ocean was prepared based on input and comment from all participants, and circulated to all participants for review. The report was reviewed in its entirety, section by section and was approved by the ISC10 Plenary, subject to editorial corrections to be made by the ISC Chairman.

13 CLOSE OF MEETING

G. Sakagawa thanked the Department of Fisheries and Oceans, Canada, especially John Holmes, for the excellent organization and hosting of the meeting. He thanked sponsors, including the Canadian Highly Migratory Species Foundation and the American Fishermen's Research Foundation for hosting receptions, Judith Wilson for her volunteer help with logistics, and the participants for their contributions to a successful meeting. He wished the Chairman Elect, Gerard DiNardo, success and indicated his commitment to helping in the transition. G. Sakagawa closed the successful meeting on 26 July 2010

Table 5. Tentative schedule of ISC meetings for 2010-2012

Date	Meeting	Contact
2010		
Oct 12-26	ALBWG Workshop– La Jolla, CA, USA (8 days Data preparation)	J. Holmes John.Holmes@dfo-mpo.gc.ca
2011	(0 m/s - m F-F m m)	
Jan 6-13	PBFWG Workshop – Shimizu, Japan (Model improvement)	Y. Takeuchi Yukiot@fra.affrc.go.jp
Jan 19-27	BILLWG Workshop – Honolulu, HI, USA (Data preparation)	G. DiNardo Gerard.DiNardo@noaa.gov
Feb/Mar	Shark WG Workshop – TBD (5 day Organization meeting)	G. DiNardo
Mar 22-29	ALBWG Workshop– Shimizu, Japan (Full stock assessment)	J. Holmes
May 19-27	BILLWG Workshop – TBD (Striped marlin stock assessment)	G. DiNardo
Jul 14-15	ALBWG – TBD (Results preparation)	J. Holmes
Jul 16	PBFWG – TBD (Review)	Y. Takeuchi
Jul 16	BILLWG – TBD (Results preparation)	G. DiNardo
Jul 17-19	STATWG – TBD (Workshop)	SK. Chang SKChang@faculty.nsyu.edu.tw
Jul 20-25	ISC11 – TBD (Plenary)	TBD
Nov	PBFWG – TBD (Data preparation)	Y. Takeuchi
Dec	BILLWG TBD (Data preparation)	G. DiNardo
2012		
Apr	BILLWG Workshop– TBD (Blue marlin stock assessment)	G. DiNardo

[BILLWG= Billfish Working Group; PBFWG= Pacific Bluefin Tuna WG; BCWG = Bycatch WG; ALBWG = Albacore WG, STATWG = Statistics WG]

May	PBFWG Workshop– TBD (Full stock assessment)	Y. Takeuchi
Jul	ISC12 – TBD (Plenary)	TBD

				Japan				K	orea		Chinese-Taij	pei
Year	Purse Seine	Gill Net	Set Net	Pole and Line	Troll	Longline	Other	Gill Net	Longline	Gill Net	Distant Water Longline	Offshore Longline
1952	154		55	41,787		26,687	182					
1953	38		88	32,921		27,777	44					
1954	23		6	28,069		20,958	32					
1955	8		28	24,236		16,277	108					
1956	02		23	42,810		14,341	34					
1957 1958	83		13 38	49,500 22,175		21,053 18,432	138 86					
1958	0		48	14,252		15,802	19					
1960			23	25,156		17,369	53					
1961	7		111	18,639		17,437	157					
1962	53		20	8,729		15,764	171					
1963	59		4	26,420		13,464	214					
1964	128		50	23,858		15,458	269					
1965	11		70	41,491		13,701	51					
1966	111		64	22,830		25,050	521					
1967 1968	89 267		43 58	30,481 16,597		28,869 23,961	477				330 216	
1968	521		34	31,912		18,006	925				65	
1909	317		19	24,263		16,222	498				34	
1970	902		5	52,957		11,473	354		0		20	
1972	277	1	6	60,569		13,022	638		0		187	
1973	1,353	39	44	68,767		16,760	486		3			
1974	161	224	13	73,564		13,384	891		114		486	
1975	159	166	13	52,152		10,303	230		9,575		1,240	
1976	1,109	1,070	15	85,336		15,812	270		2,576		686	
1977	669	688	5	31,934		15,681	365		459		572	
1978	1,115	4,029	21	59,877		13,007	2,073	0	1,006		6	
1979 1980	125 329	2,856 2,986	16 10	44,662 46,742		14,186 14,681	1,139 1,177	0	402		81 249	
1980	252	10,348	8	27,426		17,878	699	16	402		143	
1982	561	12,511	11	29,614		16,714	482	113	5,462		38	
1983	350	6,852	22	21,098		15,094	99	233	911		8	
1984	3,380	8,988	24	26,013		15,053	494	516	2,490			
1985	1,533	11,204	68	20,714		14,249	339	576	1,188			
1986	1,542	7,813	15	16,096		12,899	640	726	923			
1987	1,205	6,698	16	19,082		14,668	173	817	607	2,514		
1988	1,208	9,074	7	6,216		14,688	170	1,016	175	7,389		
1989 1990	2,521 1,995	7,437	33	8,629 8,532		13,031 15,785	433 248	1,023	27	8,350 16,701	40	
1990	2,652	3,401	4	7,103		15,785	395	852	0	3,398	4	
1991	4,104	2,721	12	13,888		19,042	1,522	271	1	7,866		
1993	2,889	287	3	12,797		29,933	897		21		5	
1994	2,026	263	11	26,389		29,565	823		54		83	
1995	1,177	282	28	20,981	856	29,050	78		14		4,280	
1996	581	116	43	20,272	815	32,440	127		158		7,596	
1997	1,068	359	40	32,238	1,585	38,899	135		404		9,119	337
1998	1,554	206	41	22,926	1,190	35,755	104		226		8,617	193
2000	6,872 2,408	289 67	90 136	50,369 21,550	891 645	33,339 29,995	62		99 15		8,186 7,898	207 944
2000	2,408	117	78	21,530	416	29,993 28,801	35		64		7,898	832
2001	3,303	332	109	48,454	787	23,585	85		112		7,055	910
2002	627	126	69	36,114	922	20,907	85		146		6,454	712
2004	7,200	61	30	32,255	772	17,341	54		78		4,061	927
2005	850	154	97	16,133	665	20,420	234		420		3,990	483
2006	364	221	55	15,400	460	21,027	42		138		3,848	469
2007	5,682	226	30	37,768	519	22,336	44		56		2,465	451
2008	825	1,531	101	19,060	549	22,386	(15)		365		2,490	579
2009	(2,151)	(1,531)	(101)	(32,421)	(549)	(17,518)	(15)		(365)		(1,866)	(512)

Table 1. ¹Annual catch of North Pacific albacore (*Thunnus alalunga*) in metric tons for fisheries monitored by ISC for assessments of North Pacific Ocean stocks, 1952-2009. Blank indicates no effort. - indicates data not available. 0 indicates less than 1 metric ton. Provisional estimates in ().

1 Data are from the ISC albacore working group July 12 2010, except as noted

2 Albacore pole-and-line catches for 2008 and 2009 are estimated from new procedures.

 $3\,$ Albacore troll catches prior to 2008 contain an unknown proportion of pole and line catch.

4 Mexico Pole and line catches for 1999 and 2000 include 34 and 4 metric tons, respectively from longline.

5 Other troll catches are from vessels registered in Belize, Cook Islands, Tonga, and Ecuador.

6 Updates for Other Longline 2004-2009 from Peter Williams, pers. com.

				United	States				Mexico		Canada	0	ther	
Year	Purse Seine	Gill Net	Pole and Line ²	Albacore Troll ³	Tropical Troll & Handline	Sport	Longline	Other	Purse Seine	Pole and Line ⁴	Troll	Troll ⁵	Longline ⁶	Grand Total
1952				23,843		1,373	46				71			94,198
1953				15,740		171	23				5			76,807
1954				12,246		147	13							61,494
1955 1956				13,264		577	9				17			54,507
1956				18,751 21,165		482 304	6				17			76,464 92,268
1957				14,855		48	7				74			55,723
1950				20,990		40	5				212			51,328
1960				20,100		557	4				141			63,403
1961			2,837	12,055		1,355	5	1	2	39	4			52,649
1962			1,085	19,752		1,681	7	1	0	0	1			47,264
1963			2,432	25,140		1,161	7		31	0	5			68,937
1964			3,411	18,388		824	4		0		3			62,393
1965			417	16,542		731	3	1	0		15			73,033
1966 1967			1,600	15,333		588 707	8		0		44	1		66,149 83,096
1967			4,113 4,906	17,814		951	12				161			69,480
1968			2,996	18,827		358	11		0		1,028			75,023
1970			4,416	21,032		822	9		0		390			68,022
1971			2,071	20,526		1,175	11		0		1,746			91,240
1972			3,750	23,600		637	8		100	0	3,921			106,716
1973			2,236	15,653		84	14		0		1,400			106,839
1974			4,777	20,178		94	9		1	0	1,331			115,227
1975			3,243	18,932		640	33	10	1	0	111			96,808
1976			2,700	15,905		713	23	4	36	5	278			126,538
1977			1,497	9,969		537	37		3	0	53			62,469
1978 1979			950	16,613		810 74	54	15	1	0	23			99,600
1979			303	6,781 7,556		168			1	0	521 212			70,745 74,931
1980			748	12,637		108	25		8	0	212			70,583
1982			425	6,609		257	105	21	0	÷	104			73,027
1983			607	9,359		87	6		0	0	225			54,951
1984	3,728		1,030	9,304		1,427	2		107	6	50			72,612
1985	26	2	1,498	6,415	7	1,176	0		14	35	56			59,100
1986	47	3	432	4,708	5	196			3	0	30			46,078
1987	1	5	158	2,766	6	74	150		7	0	104			49,051
1988	17	15	598	4,212	9	64	307	10	15	0	155			45,345
1989 1990	71	4	54	1,860 2,603	36 15	160 24	248	23	2	0	140 302			44,052 53,693
1990	0	17	0	1,845	72	6	312	71	2	0	139			33,693
1991	0	0		4,572	54	2	312	71	10	0	363			54,833
1993	0	0	0	6,254	71	25	438		11	0	494			54,125
1994		38	0	10,978	90	106	544	213	6	0	1,998	158		73,345
1995		52	80	8,045	177	102	882	1	5	0	1,763	94		67,947
1996	11	83	24	16,938	188	88	1,185		21	0	3,316	469	1,735	86,207
1997	2	60	73	14,252	133	1,018	1,653	1	53	0	2,168	336	2,824	106,756
1998	33	80	79	14,410	88	1,208	1,120	2	8	0	4,177	341	5,871	98,229
1999 2000	48	149	60 69	10,060 9,645	331	3,621	1,542 940	1	0	57	2,734 4,531	228 386	6,307 3,654	125,542 85,052
2000	51	55 94		9,645	120	1,798	1,295	3	5	18	4,531 5,248	230	3,654	85,052 90,189
2001	4	30		10,387	235	2,357	525		28	18	5,379	466	700	105,224
2002	44	16		14,102	85	2,337	525		28	0	6,861	378	(2,400)	(92,804)
2004	1	12	127	13,346	157	1,506	361		104	0	7,856		4,096	90,316
2005		20		8,413	175	1,719	296		0	0	4,845		4,168	63,052
2006		3		12,524	95	385	270		109	0	5,832		5,039	66,249
2007		4		11,887	98	1,225	250		40	0	6,075		3,510	92,687
2008	0		,	10,672	29	257	353	0	10		5,478		2,777	(68,528)
2009	(39)	(3)	(2,084)	(10,686)	(99)	(541)	(203)	(0)	(17)		(5,685)		(1,553)	(77,939)

	Japan ¹ Distant Water & G											
Year	Purse Tuna PS	Seine Small PS	Pole and Line	Set Net	Troll ²	Distant Offshore NP		Coastal Longline	Others	Purse Seine	Traw	
1952	7,680		2,198	2,145	667	2,694	9		1,700			
1952	5,570		3,052	2,145	1,472	3,040	8		1,700			
1955	5,366		3,044	5,579	1,656	3,088	28		266			
1955	14,016		2,841	3,256	1,507	2,951	17		1,151			
1956	20,979		4,060	4,170	1,763	2,672	238		385			
1957	18,147		1,795	2,822	2,392	1,685	48		414			
1958	8,586		2,337	1,187	1,497	818	25		215			
1959	9,996		586	1,575	736	3,136	565		167			
1960	10,541		600	2,032	1,885	5,910	193		369			
1961	9,124		662	2,710	3,193	6,364	427		599			
1962	10,657		747	2,545	1,683	5,769	413		293			
1963	9,786		1,256	2,797	2,542	6,077	449		294			
1964	8,973		1,037	1,475	2,784 1,963	3,140	114 194		1,884			
1965 1966	11,496 10,082		831 613	2,121	1,963	2,569 1,370	194		1,106			
1966	6,462		1,210	2,603	3,273	878	44		302			
1967	9,268		983	3,058	1,568	500	44		217			
1969	3,236		721	2,187	2,219	313	20	565	195			
1970	2,907		723	1,779	1,198	181	11	426	224			
1971	3,721		938	1,555	1,492	280	51	417	317			
1972	4,212		944	1,107	842	107	27	405	197			
1973	2,266		526	2,351	2,108	110	63	728	636			
1974	4,106		1,192	6,019	1,656	108	43	1,069	754			
1975	4,491		1,401	2,433	1,031	215	41	846	808			
1976	2,148		1,082	2,996	830	87	83	233	1,237			
1977	5,110		2,256	2,257	2,166	155	23	183	1,052			
1978	10,427		1,154	2,546	4,517	444	7	204	2,276			
1979	13,881		1,250	4,558	2,655	220	35	509	2,429			
1980	11,327		1,392	2,521	1,531	140	40 29	671	1,953			
1981 1982	25,422 19,234		754 1,777	2,129	1,777 864	313 206	29	277 512	2,653 1,709	31		
1982	19,234		356	972	2,028	87	8	130	1,117	13		
1985	4,433		587	2,234	1,874	57	22	85	868	4		
1985	4,154		1,817	2,562	1,850	38	9	67	1,175	1		
1986	7,412		1,086	2,914	1,467	30	14	72	719	344		
1987	8,653		1,565	2,198	880	30	33	181	445	89		
1988	3,583	22	907	843	1,124	51	30	106	498	32		
1989	6,077	113	754	748	903	37	32	172	283	71		
1990	2,834	155	536	716	1,250	42	27	267	455	132		
1991	4,336	5,472	286	1,485	2,069	48	20	170	650	265		
1992	4,255	2,907	166	1,208	915	85	16	428	1,081	288		
1993	5,156	1,444	129	848	546	145	10	667	365	40		
1994 1995	7,345 5,334	786 13,575	162 270	1,158 1,859	4,111 4,778	238 107	20	968 571	398 586	50 821		
1995	5,540	2,104	270 94	1,839	3,640	107	9	778	570	102		
1990	6,137	7,015	34	803	2,740	142	12	1,158	811	1,054		
1998	2,715	2,676	85	874	2,865	169	10	1,086	700	1,034		
1999	11,619	4,554	35	1,097	3,387	127	17	1,030	709	256		
2000	8,193	8,293	102	1,125	5,121	121	7	832	689	1,976		
2001	3,139	4,481	180	1,366	3,329	63	6	728	782	968		
2002	4,171	5,102	99	1,100	2,427	47	5	794	631	767		
2003	1,033	5,399	44	839	1,839	85	12	1,152	446	2,141		
2004	4,844	2,577	132	896	2,182	231	9	1,616	514	636		
2005	4,061	7,390	549	2,182	3,406	107	14	1,818	548	1,085		
2006	3,962	3,272	108	1,421	1,544	63	11	1,058	777	949		
					2 205	83	8	2 2 2 6	1 200			
2000 2007 2008	3,058 2,954	2,841 6,299	236	1,503 2,358	2,385 2,767	83 19	8	2,226 1,476	1,209 1,192	1,054 1,536		

 Table 2.
 Annual catch of Pacific bluefin tuna (*Thunnus orientalis*) in metric tons for fisheries monitored by ISC for assessments of North Pacific Ocean stocks, 1952-2009. Blank indicates no effort. - indicates data not available. 0 indicates less than 1 metric ton. Provisional estimates in ().

1 Part of Japanese catch is estimated by the WG from best available source for the stock assessment use.

2 The troll catch for farming estimating 10 - 20 mt since 2000, is excluded.

3 Catch statistics of Korea derived from Japanese Import statistics for 1982-1999.

4 US in 1952-1958 contains catch from other countries - primarily Mexico. Other includes catches from gillnet, troll, poleand-line, and longline

5 Catches by NZ are derived from the Ministry of Fisheries, Science Group (Compilers) 2006: Report from the Fishery

Assessment Plenary, May 2006: stock assessments and yield estimates. 875 p. (Unpublished report held in NIWA library, 6 Other countries include AUS, Cooks, Palau and so on. Catches derived from Japanese Imort Statistics as minimum

estimates.

7 The catch for Japanese coastal longline in 2008 includes that of the distant water and offshore longliners.

8 Catches in New Zealand and Other countries since 2007 are carry-over of that in 2005

Table 2 (continued)

		Chines	se-Taipei		U	nited States	3 ⁴	Me	xico	non-ISC me	embers	
Year	Purse Seine	Distant Driftnet	Longline	Others	Purse Seine	Sport	Others	Purse Seine	Others	New Zealand ⁵	Others ⁶	Grand Total
1952					2,076	2						19,172
1953					4,433	48						20,117
1954					9,537	11						28,575
1955					6,173	93						32,005
1956					5,727 9,215	388 73						40,383
1957 1958					13,934	10				-		36,590 28,610
1958					3,506	13	56	171	32			20,539
1960					4,547	1	0		52			26,079
1961					7,989	23	16	130				31,236
1962					10,769	25	0	294				33,195
1963					11,832	7	28	412				35,481
1964					9,047	7	39	131				28,631
1965			54		6,523	1	77	289				27,224
1966 1967			53		15,450 5,517	20 32	12	435 371				31,161 20,745
1967			33		5,773	12	8	195				20,745
1969			23		6,657	15	9	260				16,419
1970					3,873	19	0	92				11,432
1971			1		7,804	8	0	555				17,140
1972			14		11,656	15	45	1,646				21,216
1973			33		9,639	54	21	1,084				19,619
1974			47	15	5,243	58	30	344				20,685
1975			61	5	7,353	34	84	2,145				20,948
1976 1977			17 131	2	8,652 3,259	21 19	25 13	1,968 2,186				19,381
1977			66	2	4,663	5	6	2,180				18,811 26,863
1979			58	2	5,889	11	6	213				31,715
1980			114	5	2,327	7	24	582				22,634
1981			179		867	9	14	218				34,641
1982		2	207		2,639	11	2	506				29,387
1983	9	2	175		629	33	11	214				20,557
1984	5		477	8	673	49	29	166				11,573
1985	80	11	210		3,320	89	28	676				16,089
1986 1987	16	13	70 365		4,851 861	12 34	57 20	189 119		-		19,266 15,507
1987	197	37	108	25	923	6	50	447	1			8,989
1989	259	51	205	3	1,046	112	21	57				10,943
1990	149	299	189	16	1,380	65	92	50				8,653
1991		107	342	12	410	92	6	9		2		15,781
1992	73	3	464	5	1,928	110	61	0		0		13,995
1993	1		471	3	580	298	103	10		6		10,811
1994 1995			559 335	2	906 657	89 258	59 49	63 11	2	2		16,916
1995			956	2	657 4,639	258 40	49 70	3,700		4		29,225 23,519
1990			1,814		2,240	156	133	3,700		14		23,519
1998			1,910		1,771	413	281	1	0	20		15,763
1999			3,089		184	441	184	2,369	35	21		29,153
2000			2,780	2	693	342	61	3,019	99	21		33,475
2001			1,839	4	292	356	48	863		50		18,504
2002			1,523	4	50	654	12	1,708	2	55	10	19,164
2003			1,863	21	22	394	18	3,211	43	41	19	18,622
2004			1,714	3	201	49	11	8,880	14	67 20	10	24,384
2005			1,368 1,149		201	79 96	7	4,542 9,806		20	7	27,384
2006 2007			1,149		42	96 14	2	9,806				24,242 (20,209)
2007 2008			979		42	93	1	4,147	15	(21) ⁸ (21) ⁸	$(3)^{8}$	(20,209) (24,153)
2008			892		(410)	(151)	(5)	3,019	15	(21) 8	$(3)^{8}$ $(3)^{8}$	(18,953)

Year				Japan								Chines	e Taipei				
	Distant Water&	Coastal			Other			Distant Water	Offshore 5	Offshore	Offshore	Coastal	Coastal	Coastal Gillnet &	Coastal	Coastal	
	Offshore	Longline	Driftnet	Harpoon 3	Bait fishing	Trapnet	Other 4	Longline	Longline	Gillnet	Others	Harpoon	Setnet	Other net	Longline	Others	Other
1951	Longline ² 7,246	115	10	4,131	88	78	10										
1952	8,890	152	0	2,569	6	68	6	-	-								
1953	10,796	77	0	1,407	20	21	87	-	-								
1954	12,563	96	0	813	104	18	17	-	-								
1955	13,064	29	0	821	119	37	41	-	-								
1956	14,596	10	0	775	66	31	7	-	-								
1957 1958	14,268 18,525	37 42	0	858 1,069	59 46	18 31	11 21	-	-								
1958	17,236	66	0	891	34	31	10	-	427								91
1960	20,058	51	1	1,191	23	67	7	-	520								127
1961	19,715	51	2	1,335	19	15	11	-	318								73
1962	10,607	78	0	1,371	26	15	18	-	494								62
1963	10,322	98	0	747	43	17	16	-	343								18
1964	7,669	91	4	1,006	40	16	26	-	358								10
1965	8,742	119	0	1,908	26	14	182	-	331								27
1966	9,866	113	0	1,728	41	11	4	-	489						-		31
1967 1968	10,883 9,810	184 236	0	891 1,539	33 41	12 14	5 9	-	646 763								35 12
1969	9,416	230	0	1,557	41	14	14	0	843								7
1909	7,324	427	0	1,748	36	9	3	-	904								5
1971	7,037	350	1	473	17	37	31	-	992								3
1972	6,796	531	55	282	20	1	2	-	862								11
1973	7,123	414	720	121	27	23	2	-	860								119
1974	5,983	654	1,304	190	27	16	2	1	880								136
1975	7,031	620	2,672	205	58	18	2	29	899								153
1976	8,054	750	3,488	313	170	14	12	23	613								194
1977 1978	8,383 8,001	880 1,031	2,344 2,475	201 130	71 110	7 22	2	36	542 546								141
1978	8,602	1,031	983	150	45	15	4	- 7	661								33
1979	6,005	849	1,746	398	29	15	1	10	603								76
1981	7,039	727	1,848	129	58	9	3	2	656								25
1982	6,064	874	1,257	195	58	7	1	1	855								49
1983	7,692	999	1,033	166	30	9	2	0	783								166
1984	7,177	1,177	1,053	117	98	13	0	-	733								264
1985	9,335	999	1,133	191	69	10	0	-	566								259
1986	8,721	1,037	1,264	123	47	9	0	-	456								211
1987	9,495	860	1,051	87	45	11	0	3	1,328								190
1988 1989	8,574 6,690	678 752	1,234	173 362	19 21	8 10	0	- 50	777 1,491								263 38
1989	5,833	690	1,396	128	13	4	0	143	1,491								154
1991	4,809	807	498	153	20	5	0	40	1,390								180
1992	7,234	1,181	887	381	16	6	0	21	1,473								243
1993	8,298	1,394	292	309	43	4	1	54	1,174								310
1994	7,366	1,357	421	308	37	4	0	-	1,155								219
1995	6,422	1,387	561	423	34	7	0	50	1,135								225
1996	6,916	1,067	428	597	45	4	0	9	701	2	-	19	10	-	-	-	
1997	7,002	1,214	365	346	62	5	0	15	1,358	1	1	27	8	-	24	-	
1998 1999	6,233 5,557	1,190 1,049	471 724	476 416	68 47	2 5	0	20 70	1,178 1,385	8	-	17 51	15 5	1	-	-	
2000	5,557 6,180	1,049	808	416	47	5	0	325	1,385	4	-	74	5	1	- 1	-	
2000	6,932	908	732	230	30	15	0	1,039	1,691	17	-	64	8	1	1	-	
2001	6,230	965	1,164	201	29	11	0	1,633	1,557	7	1	1	16	1	1	-	
2003	5,376	1,063	1,198	149	28	4	0	1,084	2,196	3	-	-	8	-	-	-	
2004	5,395	1,509	1,062	229	30	4	0	884	1,828	5	-	-	7	1	-	3	
2005	5,359	1,295	956	187	337	3	0	437	1,813	1	-	-	5	2	-	18	
2006	6,181	1,508	796	244	342	5	1										
2007	(6,109)	(2,017)	(829)	(122)	(367)	(2)	(1)										

Annual catch of Swordfish (Xiphias gladius) in metric tons for fisheries monitored by ISC for assessments of North Pacific Ocean stocks, Table 3. 1951-2008. Blank indicates no effort. - indicates data not available. 0 indicates less than 1 metric ton. Provisional estimates in ().

(349)

(173)

¹ Catch data are currently unavailable for Republic of Korea, Philippines, and some other countries catching swordfish in the North Pacific.
² Catches by gear for 1952-1970 were estimated roughly using FAO statistics and other data. Catches for 1971-2002 are more reliably estimated.
³ Contrains trolling and harpoon but majority of catch obtained by harpoon.

(3)

(0)

(648)

⁴ For 1952-1970 "Other" refers to catches by net fishing and various unspecified gears.
 ⁵ Offshore longline category includes some catches from harpoon and other fisheries but does not include catches unloaded in foreign ports.
 ⁶ Estimated round weight of retained catch. Does not include discards.
 ⁷ Unknown includes pole and line, purse seine, troll and troll/handline, half ring, and unspecified gears.

(1,758)

2008

(4,426)

Table 3 (continued)

Year	Korea		Mexico			United Stat	es		Grand Total
		Hi-seas		Hawaii	California	California	California	California	
	Longline	Driftnet	All Gears	Longline	Longline	Gill Net	Harpoon	Unknown 7	
1951									11,678
1952	-		-	-	-	-	-	-	11,691
1953	-		-	-	-	-	-	-	12,408
1954	-		-	-	-	-	-	-	13,610
1955	-		-	-	-	-	-	-	14,111
1956	-		-	-	-	-	-	-	15,486
1957	-		-	-	-	-	-	-	15,251
1958 1959	-		-	-	-	-	-	-	19,734
1959	-		-	-	-	-	-	-	18,785 22,047
1961	-			-	-	-	_	-	21,538
1962	-		-	-	-	-	-	-	12,671
1963	-		-	-	-	-	-	-	11,605
1964	-		-	-	-	-	-	-	9,220
1965	-		-	-	-	-	-	-	11,349
1966	-		-	-	-	-	-	-	12,283
1967	-		-	-	-	-	-	-	12,689
1968	-		-	-	-	-	-	-	12,424
1969	-		-	-	-	-	-	-	12,186
1970	-		-	5	-	-	612	10	11,083
1971	0		-	1	-	-	99	3	9,044
1972	0		2	0	-	-	171	4	8,737
1973	0		4	0	-	-	399	4	9,816
1974 1975	0		6	0	-	-	406	22	9,627 12,257
1975	0		-	0	-	-	557 42	13	13,686
1977	219		-	17	-	-	318	19	13,180
1978	68		-	9	-	-	1,699	13	14,117
1979	-		7	7	-	-	329	57	11,949
1980	64		380	5	-	160	566	62	10,969
1981	-		1,575	3	0	473	271	2	12,820
1982	48		1,365	5	0	945	156	10	11,890
1983	11		120	5	0	1,693	58	7	12,774
1984	48		47	3	12	2,647	104	75	13,568
1985	24		18	2	0	2,990	305	104	16,005
1986	9		422	2	0	2,069	291	109	14,770
1987	44		550	24	0	1,529	235	31	15,483
1988	27		613	24	0	1,376	198	64	14,028
1989 1990	40 61		690 2,650	218 2,436	0	1,243	62 64	56 43	13,319 15,733
1990	5		2,650	4,508	27	944	20	43	15,755
1991	8		1,160	5,700	62	1,356	75	44	19,850
1993	15		812	5,909	27	1,412	168	161	20,383
1994	66		581	3,176	631	792	157	24	16,294
1995	10		437	2,713	268	771	97	29	14,569
1996	15		439	2,502	346	761	81	15	13,957
1997	100		2,365	2,881	512	708	84	11	17,089
1998	153		3,603	3,263	418	931	48	19	18,114
1999	132		1,136	3,100	1,229	606	81	27	15,625
2000	202		2,216	2,949	1,885	646	90	9	18,599
2001	438		780	220	1,749	375	52	5	15,287
2002	439		465	204	1,320	302	90	3	14,640
2003	381		671	147	1,812	216	107	0	14,443
2004	410		270	213	898	169	62	37	13,016
2005	434 477		235	1,475		220 444	76	0	12,853
2006			347	1,175			71		11,593 (12,267)
2007 2008	452		383 (84)	1,444		484	58	0	(12,267) (7,441)

Table 4.	Annual catch of striped marlin (Kajikia audax) in metric tons for fisheries monitored by ISC for assessments of North
	Pacific Ocean stocks, 1951-2008. Blank indicates no effort indicates data not available. 0 indicates less than 1 metric ton.
	Provisional estimates in ().

Year Distant Water OffSore Longline Constant Longline Other Longline Gall Net Small Gall Net Mater Distant Water Ungline Offshore Offshore Longline Offshore Constant Constant <				Japan								C	Chinese Taip	ei				
Onlyber 1981 Longine 2494 Longine 7 Small 7 Longine 7 Other al 1281 Congine 7 Congin 7 Congine 7 Congine 7	Year		Coastal		Gill Net	Gill Net			High-sea	Offshore	Offshore	1	T	T		Coastal	Coastal	
1952 2.001 . 722 . 0 1.564 .		Offshore	Longline	Longline			Other ²		DriftGillnet	Longline	Gillnet	Others	Harpoon	Setnet		Longline	Others	Other
1953 2.138 . 47 . 0 954 . 1966 1.																		
1954 3.082 - 22 . 0 1.088 . 0 1.08 . 0 1.08 . 0 1.08 . 0 1.08 . 0 1.08 . 0 1.08 . 0 1.08 . 0 1.08 . 0 1.08 . 0 1.08 1.08 . 0 1.08 1.01 . 0 2.499 . 0 1.08 1.01 .																		
1955 3.082 . 0 1.088 . 0 1 </td <td></td> <td>-</td> <td></td> <td>l</td>																-		l
1956 3.729 . . 0 1.99 . 0 1.99 . . 1.99 . 0 1.96 .																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $										543								387
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1959			156			3,191			391								354
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1960		-	101	-	4	1,937			398								350
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			-		-	2												342
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		211
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		199
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		175
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		157
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								2										180 204
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		204 208
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		192
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																		192
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		135
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		126
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1973	6,357	632	118	0	3,265	702	1		568								139
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																		118
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																		96
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																		140
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		219
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		78
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																		122
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		132 95
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		138
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		214
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		330
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		181
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		148
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1987	7,538	1,187					31		383								151
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1988	6,271	752	7		2,157	668	7		457								169
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																		157
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		256
$\begin{array}{c c c c c c c c c c c c c c c c c c c $												<u> </u>	<u> </u>	<u> </u>				286
$\begin{array}{c c c c c c c c c c c c c c c c c c c $																		197 142
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				-														142
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																		82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											8	6	30	3	-	-	-	02
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																2	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														-		9	-	<u> </u>
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									1							3	-	<u> </u>
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000		1,109	8	-	1,062	297	153		161		1	29	6	1	1	-	
2003 1,013 842 3 - 1,064 203 241 91 26 - 11 5 1 2004 699 1,000 2 - 1,339 92 261 95 8 1 7 5 2 2005 562 668 1 - 1,214 98 176 76 1 - 5 9 9												-				-	-	
2004 699 1,000 2 - 1,339 92 261 95 8 1 7 5 2 2005 562 668 1 - 1,214 98 176 76 1 - 5 9 9														-		-	-	
2005 562 668 1 - 1,214 98 176 76 1 - 5 9 9																-	-	
																-	1	L
2006 623 539 1 - 1,190 95				1				176		76	1	-	5	9	9	-	8	Ļ
																		
2007 (306) (860) (5) (-) (970) (79) 2008 (394) (606) (10) (-) (1,302) (97)								L				ļ	ļ	ļ				I

¹ Estimated from catch in number of fish ² Contrains bait fishing, net fishing, trapnet, trolling, harpoon, etc.

Year 1951 1952 1953 1954	Sport 1		Hi-seas							
1952 1953 1954	Sport 1									Grand Total
1952 1953 1954	Sport	Longline	DriftGillne	Longline	Sport 1	Longline	Troll	Handline	Sport 1	Totai
1952 1953 1954		Longinie	t	Longinie	Spon	Longinie	non	manume	Sport	
1953 1954									22	4,448
1954		-							23	5,210 3,144
		-							5 16	4,223
		-							5	4,153
1955 1956		-							34	5,819
1957		-							42	5,809
1958		-							59	8,289
1959		-							65	8,311
1960		-							30	6,682
1961		-							24	7,060
1962		-							5	8,317
1963		1							68	8,951
1964		-							58	17,317
1965		-							23	14,951
1966		-							36	10,689
1967		-							49	14,019
1968		-							51	17,778
1969		-							30	12,613
1970		-							18	15,604
1971 1972		0							17 21	14,544 9,760
1972		0							21 9	9,760
1973		0							55	11,791
1975		0							27	13,744
1976		0							31	10,110
1977		43							41	9,105
1978		28							37	11,127
1979		-							36	9,622
1980		37							33	11,479
1981		1							60	9,448
1982		39							41	9,295
1983		19							39	7,573
1984		23							36	8,307
1985		16					18		42	8,498
1986		61		-		070	19		19	11,923
1987		1		-		272	30	1	28	12,029
1988 1989		11 26		-		504 612	54 24	0	30 52	9,098
1989		315		-	181	538	24	0	23	7,465
1991	106	141		-	75	663	41	0	12	7,405
1992	281	318		-	142	459	38	1	25	7,400
1993	438	388		-	159	471	68	1	11	8,640
1994	521	1,045		-	179	326	35	0	17	8,479
1995	153	307		-	190	543	52	0	14	8,041
1996	122	429		-	237	418	54	1	20	6,162
1997	138	1,017		-	193	352	38	1	21	6,655
1998	144	635		-	345	378	26	0	23	7,053
1999	166	433		-	266	364	28	1	12	5,979
2000	97	537		-	312	200	14	1	10	5,168
2001	151	254		-	237	351	42	2		4,974
2002	76	188		-	305	226	30	0		4,450
2003	79	206	<u> </u>	-	322	552	29 34	0		4,687 4,017
2004 2005	(19)	75 141		-	-	376 493	20	1		3,481
2005	-	56		-	-	609	20	0		(3,134)
2006		28				265	13	0		(2,526)