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EXECUTIVE SUMMARY

Model weighting is a central challenge in stock assessments, because the retention
or rejection of models, and relative weights given to models and their respective
uncertainties can markedly affect quantities measuring risk of available management
options. In the Western and Central Pacific Fisheries Commission (WCPFC), there are
currently no explicit terms of reference that guide the development and subsequent
weighting of model ensembles. For this reason, a range of approaches for developing
stock assessment models and model ensembles have been employed, ranging from
single base-case stock assessments with relatively few key sensitivities to grid-based
ensembles with a large number of models; other assessments employed intermediate
approaches that considered a limited number of models.

This research for WCPFC project 113 aimed to provide both general and specific review
components to develop recommendations for the presentation of stock assessment and
management advice uncertainty by the WCPFC scientific committee. The terms of
reference for the general review were to:

1. Review and summarise the different approaches used for characterising
uncertainty in WCPFC stock assessments for tuna, billfish and sharks over the
last five years.

2. Describe how uncertainty was communicated in the context of management risks
and its influence on decision-making processes used by the WCPFC.

3. Comment on the suitability of the recent approaches to characterising uncertainty
for the management systems, including the harvest strategy approach.

The specific review aimed to:

1. Critically review the ensemble approach that was applied for the assessment
of southwest Pacific Ocean swordfish assessment in 2021 (SC17-SA-WP-04,
Ducharme-Barth et al. 2021) to capture both “structural” and “estimation”
uncertainty.

2. Conduct a similar review of the approaches used in the analysis pertaining to
the stock assessment of southwest Pacific Ocean blue shark (SC18-SA-WP-03,
Neubauer et al. 2022a).

3. Based on these reviews, provide recommendations for model ensemble
construction, model retention, and weighting of models included within
ensembles in the context of the WCPEC tuna, billfish, and shark assessments.

The expected outcomes of the project were to provide:

1. a basis for stock assessment teams to consider and apply alternative approaches
for characterising stock assessment uncertainty (including model selection and
weighting) across the WCPFC tuna, billfish, and shark assessments;
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2. guidance for the Scientific Committee (SC) about the approaches for capturing
assessment uncertainty in the provision of management advice; and

3. improved understanding for managers and stakeholders of the implications of
alternative approaches to characterising uncertainty for their perception of risk.

Based on these term of reference, the two most recent assessments for all stocks
considered by the WCPFC SC were reviewed using a structured approach. The review
focused on the stock status and management advice as provided by the SC. It considered
how uncertainty was addressed through the use of ensembles and sensitivities, and
whether this uncertainty was used in management advice. In addition to the review,
the present study included discussions with working group members of the Pacific
Community (SPC) and International Scientific Committee for Tuna and Tuna-like
Species in the North Pacific Ocean (ISC) to gain a thorough understanding of the
rationale for the approaches used for addressing uncertainty in stock assessments.

The findings from this study revealed clear and long-standing differences in approaches
between the ISC and SPC working groups for addressing uncertainty in stock
assessments; however, there was a recent rapprochement of approaches. Although the
ISC working groups traditionally preferred to present a single model with different
levels of uncertainty for management advice, their recent advice included a more explicit
consideration of alternative models and estimation uncertainty. In contrast, some SPC
assessments previously used a considerable number of models in ”structural uncertainty
grids”; these assessments were without explicit consideration for a single “best” model,
often considering all models in the grid equally plausible. Nevertheless, more recent
assessments by SPC have attempted to constrain these model grids to sets of plausible
models, and have explored metrics to weight models.

There is currently no best practice identified to weight models, or to address uncertainty
in stock assessments more broadly, but there may be a valuable “middle ground”
for both aspects of stock assessments. This approach would explicitly acknowledge
and explore uncertainty, with standardised reporting to allow consistent management
advice of the uncertainties considered for each assessment.

To illustrate some of the observations and recommendations from the current analysis,
a set of simulations was set up. The simulations were designed to highlight differences
in approaches to the characterisation of uncertainty, and were not intended to be a a
realistic representation of typical stock assessments.

Based on the current review and simulations, we developed a set of recommendations
for consideration by the SC19 relating to the use of model ensembles for management
advice, and for the communication of assessment uncertainty.

Model ensembles and weighting

1. Develop joint priors and explicit rationales for grid axes and their values.
2. Either draw from, or weight axes over parameters according to the joint prior

3. Consider observation error, structural, parameter, and estimation uncertainty in
management advice.
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. Where possible, express priors for model outcome space to avoid post-hoc
selection/weighting.

. Where post-hoc weighting is necessary (unexpected outcomes), this weighting
should be proposed by analysts.

. Clarity about uncertainties addressed by the grids address, including clear and
consistent terminology around uncertainty.

Communicating uncertainty and risk

1. Develop a template for reporting management advice and uncertainties; ideally

this template is a standardised table format to help managers and stakeholders
locate key quantities easily.

. Agree on terminology and the set of required measures (ideally probabilities
relative to reference points).

. Clear communication about quality of information determining stock status and
management advice:

® Qualification and quantification of uncertainties.

(a) Data quality.

(b) Model/population: structural uncertainty. (Note the use of ”structural”
here refers to models with different likelihoods, rather than different
parameter values.)

(c) Key parameters (parameter and estimation uncertainty).

¢ Key uncertainties and potential impacts.

. With respect to item 3, develop a set of research recommendations to address key
uncertainties.

. A review of timelines and capacity for tuna stock assessments may be necessary
to allow sufficient time and capacity to adequately address uncertainty. Sufficient
time is also needed to enable the provision of management advice that is consistent
with the application of the precautionary approach as outlined in the WCPFC
convention text.

Further development and future research

In addition, we suggest that the SC19 consider recommending:

¢ the provision of a project to develop a standardised reporting template for the
reporting of uncertainty and risk that incorporates recommendations made in the
present review; and

¢ the further development of methodology and idealised simulations to develop
principled model ensemble approaches, in particular to consider the ability of
alternative model diagnostics to identify model plausibility and weights.
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1. INTRODUCTION

Ecological models, including fisheries stock assessments, are necessarily incomplete
representations of the natural world, as they are unable to fully capture the complexity
of open natural systems with all external and internal influences. For this reason, these
models include a non-negligible degree of uncertainty, which leads to associated risk
that management according to management advice based on these models leads to non-
desirable outcomes (i.e., a loss relative to otherwise achievable outcomes for a quantity
of interest, such as long-term yield (Rosenberg & Restrepo 1994, Francis & Shotton 1997).

The Western and Central Pacific Fisheries Commission (WCPFC) convention (Article 6)
prescribes the application of a precautionary approach to fisheries management by
the commission. In particular, “[...the Commission shall:] take into account, inter
alia, uncertainties relating to the size and productivity of the stocks, reference
points, stock condition in relation to such reference points, levels and distributions
of fishing mortality and the impact of fishing activities on non-target and associated
or dependent species, as well as existing and predicted oceanic, environmental and
socio-economic conditions”! and “Members of the Commission shall be more cautious
when information is uncertain, unreliable or inadequate...”?. These articles follow
the precautionary principle as outlined by the Food and Agricultural Organization of
the United Nations, which requires that “...where the likely impact of resource use
is uncertain, priority should be given to conserving the productive capacity of the
resource” and “..harvesting and processing capacity should be commensurate with
estimated sustainable levels of resource, and that increases in capacity should be further
contained when resource productivity is highly uncertain” (Food and Agriculture
Organization of the United Nations 1996, de Bruyn et al. 2013). Uncertainty in stock
assessment models is, therefore, a fundamental aspect of fisheries management advice
that allows a precautionary approach to resource management (Rosenberg & Restrepo
1994, Francis & Shotton 1997, Cadrin et al. 2015, Privitera-Johnson & Punt 2020, Merino
et al. 2020).

Despite efforts over the past few decades to develop frameworks for communicating
uncertainty in the scientific advice provided for fisheries management, there is currently
no standard framework available. The lack of a standard framework may be due to the
diversity of approaches that are applied in fisheries science to characterise uncertainty
(Privitera-Johnson & Punt 2020). Although there is some consistency in reporting of
stock status and trends with respect to targets and limits in tuna Regional Fisheries
Management Organisations (RFMOs) through the application of the Kobe framework
(i.e., Kobe and Majuro plots), the quantification of uncertainties is currently inconsistent
among tuna RFMOs (Merino et al. 2020).

While uncertainty may be categorised in a number of ways, Rosenberg & Restrepo 1994,
amongst others, distinguished four types of uncertainty relating to scientific advice:
1. measurement error (e.g., uncertain total catch);

2. natural variability relates to temporally or spatially variable production
parameters;

! Article 6, paragraph 1b of the Convention on the Conservation and Management of Highly Migratory
Fish Stocks in the Western and Central Pacific Ocean.
?Article 6, paragraph 2.
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3. model error and parameter uncertainty relates to imperfect specification or
knowledge of relevant model parameters; and,

4. estimation error stems from imprecise estimates of model parameters, often due
to the above types of uncertainty.

While some of these uncertainties, such as the precision of total catch, may be improved
over time due to more accurate and informative data (epistemic uncertainties), other
uncertainties, such as natural variability in population processes, are not reducible
(termed “aleatory uncertainties” or simply “process error”). The latter may nevertheless
be quantified in stock assessments (Merino et al. 2020).

On the basis of the above classification of uncertainties, it has been suggested that a
broad approach of:

1. Analysis of estimation error,
2. sensitivity to model error,
3. stochastic projections, and

4. quantification of risk,

provides an overarching framework for risk analysis in fisheries science (Rosenberg &
Restrepo 1994).

Each of the steps in the risk management approach has its ungiue challenges. For
estimation error analysis, data, complexity, and computational constraints mean that
no method for quantifying estimation error is universally applicable in practice, and
the performance of different methods may vary with the assessment setup (Magnusson
et al. 2013). Nevertheless, it is generally acknowledged that estimation error is an
important part of characterising overall uncertainty (e.g., Privitera-Johnson & Punt 2020,
Ducharme-Barth & Vincent 2022).

For model error and subsequent steps in a fisheries risk analysis, there are two long-
standing schools of thought: either, management advice is given on the basis of a single
“base-case” model — representing the model deemed most plausible and appropriate
by the analysts (or assessment team; see Rosenberg & Restrepo 1994, for arguments
for this approach) — or, a range of models are explored (Hilborn et al. 1993, e.g., ) as
an “ensemble” to integrate over model error in steps 2—4 of the risk analysis. While in
the base-case approach sensitivities to model assumptions are often explored, the key
difference between approaches is that the sensitivities are not usually used to formulate
the scientific advice itself (Merino et al. 2020).

Within tuna RFMOs, the ensemble model approach (called a “grid” when factorial
designs over all uncertainties are considered) has been the most prevalent approach
to quantifying uncertainties in stock assessments (Merino et al. 2020). Although the
ensemble approach has been called the “state of the art” for characterising uncertainty
(Punt et al. 2023), significant challenges remain with respect to the application of model
ensembles in fisheries stock assessments.
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This study for WCPFC project 113 aimed to provide both general and specific review
components to develop recommendations about the presentation of stock assessment
and management advice uncertainty by the WCPFC scientific committee. The terms of
reference for the general review were to:

1. Review and summarise the different approaches used for characterising
uncertainty in WCPFC stock assessments for tuna, billfish, and sharks over the
last five years;

2. describe how uncertainty was communicated in the context of management risks
and its influence on decision-making processes used by the WCPFC; and,

3. comment on the suitability of the recent approaches to characterising uncertainty
for the management systems, including the harvest strategy approach.

The specific aims of the review were to:

1. Critically review the ensemble approach that was applied for the assessment
of southwest Pacific Ocean swordfish assessment in 2021 (SC17-SA-WP-04,
Ducharme-Barth et al. 2021) to capture both “structural” and “estimation”
uncertainty.

2. Conduct a similar review of the approaches used in the analysis pertaining to
the stock assessment of southwest Pacific Ocean blue shark (SC18-SA-WP-03,
Neubauer et al. 2022a).

3. Based on these reviews, provide recommendations for model ensemble
construction, model retention, and weighting of models included within
ensembles in the context of the WCPFC tuna, billfish, and shark assessments.

The expected outcomes of the project were to provide:

1. a basis for stock assessment teams to consider and apply alternative approaches
for characterising stock assessment uncertainty (including model selection and
weighting) across the WCPFC tuna, billfish, and shark assessments;

2. guidance for the Scientific Committee (SC) about the approaches for capturing
assessment uncertainty in the provision of management advice; and

3. improved understanding for managers and stakeholders of the implications of
alternative approaches to characterising uncertainty for their perception of risk.

2. METHODS

The current project included engagement with members of the stock assessment
working groups of of the Pacific Community (SPC) and International Scientific
Committee for Tuna and Tuna-like Species in the North Pacific Ocean (ISC), and a
structured review of existing stock assessments.
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2.1 Discussions with stock assessment groups

Discussions with the SPC and ISC stock assessment teams were conducted during the
early phase of the present project to gain an understanding of the rationale for different
approaches to representing stock assessment uncertainty. A particular focus of this
engagement was the use of model ensembles in the provision of management advice.
All meetings were minuted, and the minutes were shared with individual groups to
ensure that there was misunderstanding or misrepresentation of the contributions from
the stock assessment teams.

2.2 Review of uncertainty characterisation in stock assessments and management
advice

Due to the considerable number of stock assessments to be reviewed for the present
project, reviews were undertaken in a structured way to allow consistent appraisal
of stock assessments across the project team. For this approach, the overall review
structure was agreed on at the beginning of review process, including the development
of a review template. The template was updated throughout the review process to
address shortcomings in its initial structure. Reviews were moderated across the review
team by discussing review outcomes and comparing notes on the interpretations to
ensure that a consistent methodology was applied across stock assessments. The review
spreadsheet was subsequently shared with assessment teams to ensure accuracy of
individual fields, and any errors were corrected.

The review template consisted of three main sections. In the first section, metadata was
collected for each assessment, describing the assessment authors (or teams), assessment
year, and software and modelling approach. The second section described the base case
and whether it was derived from a previous model or represented a new approach,
whether sensitivities where used, and whether an ensemble approach was applied. The
latter was defined in the context of the stock structure and management advice; i.e., if
more than one model was used by the SC to provide advice, then we considered that
an ensemble was used. For all assessments, we attempted to record the diagnostics
that were used, and whether they were applied to a base case (or diagnostic) model
only, or if they were applied more broadly. The third section pertained to the use
of the assessments in the stock status and management advice as recorded by the SC
and provided to the WCPFC commission. The focus here was exclusively on the use
of assessment outputs in the provision of advice, not on the assessment itself. The
latter may be more detailed and evaluate alternative options that are not presented in
advice papers. Nevertheless, we considered that the advice papers contained the agreed
level of management advice and, therefore, provide the most appropriate and consistent
reference.

Using this template, the two most recent assessments for all stocks listed on WCPFC
website under “Current Stock Status and Advice”® were included in the review (Table
1).

*see https://www.wcpfc.int/current-stock-status-and-advice, accessed April 2023
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Table 1: Stock assessments included in the present review for WCPFC project 113. SC, Scientific
Committee; ISC, International Scientific Committee for Tunaand Tuna - like Speciesin the North Pacific
Ocean; MIST, maximum impact sustainable threshold; BDM, biomass dynamics model.

Species group

WCPO Tuna
WCPO Tuna
WCPO Tuna
WCPO Tuna
WCPO Tuna
WCPO Tuna
WCPO Tuna
WCPO Tuna
WCPO Tuna
WCPO Tuna
WCPO Tuna
WCPO Tuna
WCPO Billfish
WCPO Billfish
WCPO Billfish
WCPO Billfish
WCPO Billfish
WCPO Billfish
WCPO Billfish
WCPO Billfish
WCPO Billfish
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks
WCPO Sharks

10

Species

Bigeye tuna

Bigeye tuna
Yellowfin tuna
Yellowfin tuna
Skipjack tuna
Skipjack tuna

SP albacore tuna

SP albacore tuna

NP albacore

NP albacore

Pacific bluefin tuna
Pacific bluefin tuna
NP Swordfish

SWPO swordfish
SWPO swordfish
SWPO striped marlin
SWPO striped marlin
NP striped marlin
NP striped marlin
Pacific blue marlin
Pacific blue marlin
Oceanic Whitetip Shark
Oceanic Whitetip Shark
Silky shark

Silky shark

Silky shark

Silky shark

SP blue shark

SP blue shark

SP blue shark

NP blue shark

NP blue shark

NP shortfin mako
NP shortfin mako
SWPO shortfin mako

Pacific bigeye thresher shark

Porbeagle shark
Whale Shark

Assessment

2020 (SC16)

2017 (SC13/5C14)

(

(

2020 (SC16)
2017 (SC13)
2022 (SC18)
2019 (SC15)
2021 (SC17)
2018 (SC14)
2020 (SC16)
2017 (SC13)
2022 (SC18)
2020 (5C16)
2018 (SC14)
2021 (SC17)
2017 (SC13)
2019 (SC15)
2012 (SC08)
2019 (SC15)
2015 (SC11)
2021 (SC17)
2016 (SC12)
2019 (SC15)
2012 (SC08)
2018 PO (SC14)

2018 WPO (SC14)
2013 WPO (SC09)
2012 WPO (SC08)

2022 (SC18)
2021 (SC17)
2016 (SC12)
2022 (SC18)
2017 (SC13)
2018 (SC14)
2015 (SC11)
2022 (SC18)
2017 (SC13)
2017 (SC13)
2018 (SC14)

Team

SPC
SPC
SPC
SPC
SPC
SPC
SPC
SPC
IsC
ISC
ISC
IsC
IsC
SPC
SPC
SPC
SPC
IsC
ISC
IsC
IsC
SPC
SPC
SPC
SPC
SPC
SPC
SPC
SPC
SPC
IsC
IsC
IsC
IsC
SPC
NIWA
NIWA
Dragonfly

Approach

Multifan-CL
Multifan-CL
Multifan-CL
Multifan-CL
Multifan-CL
Multifan-CL
Multifan-CL
Multifan-CL
Stock Synthesis
Stock Synthesis
Stock Synthesis
Stock Synthesis
Stock Synthesis
Multifan-CL
Multifan-CL
Multifan-CL
Multifan-CL
Stock Synthesis
Stock Synthesis
Stock Synthesis
Stock Synthesis
Stock Synthesis
Stock Synthesis
Stock Synthesis
Stock Synthesis
Stock Synthesis
Stock Synthesis
Stock Synthesis
Stock Synthesis
Multifan-CL
Stock Synthesis
Stock Synthesis
Stock Synthesis
Indicator analysis
Stock Synthesis
MIST

MIST + BDM
Spatial Risk Assessment

Reference

Ducharme-Barth et al. 2020
McKechnie et al. 2017
Vincent et al. 2020
Tremblay-Boyer et al. 2017
Jordan et al. 2022

Vincent et al. 2019

Jordan et al. 2021
Tremblay-Boyer et al. 2018
ISC 2020a

ISC 2017b

ISC 2022b

ISC 2020b

ISC Billfish Working Group 2018
Ducharme-Barth et al. 2021
Takeuchi et al. 2017
Ducharme-Barth et al. 2019
Davies et al. 2012

1SC 2019

ISC 2015b

ISC 2021

ISC 2016

Tremblay-Boyer et al. 2019
Rice & Harley 2012a
Clarke et al. 2018

Clarke et al. 2018

Rice & Harley 2013

Rice & Harley 2012b
Neubauer et al. 2022b
Neubauer et al. 2021
Takeuchi et al. 2016

ISC 2022a

ISC 2017a

1SC 2018

ISC 2015a

Large et al. 2022

Fu et al. 2017

Hoyle et al. 2017
Neubauer et al. 2018
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2.3 lllustrative simulations

To illustrate some of the observations and recommendations from the review, a set of
simulations was set up. These simulations were more technical than the review aspect
of this project, and are provided as an optional detail.

The simulation setup was designed to illustrate and highlight differences in approaches
to uncertainty characterisation, and were not aimed to be a realistic representation of
typical stock assessments. In view of their purpose, the simulations were set up using
idealised scenarios, where most of the model parameters were known exactly, and a
small set of key parameters were treated as unknown (see detailed description of the
model and the simulation assumptions in Appendix A).

Specifically, simulations were set up using albacore-like parameters from the stock
assessment and risk analysis by Punt et al. (1995) (see Appendix A, Table A-3). Using
a known catch time series for albacore tuna from the International Commission for the
Conservation of Atlantic Tunas (ICCAT) for the period from 1967 to 2019, we simulated
the dynamics and associated data from a simple age-structured model (Figure 1).
The resulting time-series were based on drawing random recruitment deviations each
year according to an assumed oy of 0.4, and drawing observations from the resulting
population time series.

(a) Catch time series

Yield (1000 MT)

) Simulated CPUE

CPUE (kg per 100 hooks)

1970 1980 1990 2000 2010 2020

Year

Figure 1: Anillustrative catch time series (top) based on North Atlantic Ocean albacore tuna, and the
corresponding simulated catch - per - unit - effort (CPUE) from the age - structured population model
(bottom).

We assumed that the key unknowns for this simulated population were productivity
parameters relating to natural mortality (//) and steepness (k). For this simulation,
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all other parameters were held constant at their true value, and only the unfished
equilibrium recruitment (Ry) and the recruitment deviations were free parameters in
all models.

We compared four approaches to characterising uncertainty in assessments:

1. An idealised scenario was used as a reference. In this scenario, all productivity
parameters can be estimated and uncertainty can be fully estimated in a Bayesian
assessment model. The simulated time series was chosen (via selection of a
random seed) to be weakly informative about stock productivity. Both natural
mortality (M) and steepness (h) were estimated using an informative joint prior
(e.g., derived from life history parameters), which also encoded information about
the covariance of M and h. Population time series and management quantities
were estimated from the full posterior distribution of the model parameters given
the data and model structure. A variation of this model was also run with
productivity parameters fixed at the posterior median, and estimation uncertainty
applied to (Rp) and the recruitment deviations only.

2. In this approach, a grid was constructed which integrated over the joint prior from
the idealised scenario (the previous approach) instead of fitting natural mortality
(M) and steepness (h) within the model. This approach was applied by evaluating
the assessment model at all combinations of values defined by a symmetric set of
quantiles for the joint prior (e.g., 0.2, 0.5, 0.8). All models were given the same
weight in the grid, and time series and management quantities were estimated
across this fixed-weight grid.

3. The third approach was similar to the second approach, but the time series and
management quantities were estimated across the grid with grid runs weighted
by the joint prior.

4. The fourth approach applied a bootstrap Monte Carlo approach (Ducharme-
Barth & Vincent 2022) by drawing an equivalent number of fixed parameter
combinations from the joint prior used under the idealised scenario (the first
approach). These combinations were then integrated over these model runs to
estimate the time series and management quantities.

By making comparisons with a single estimated model, with either fixed or estimated
productivity parameters, it was possible to highlight how different approaches to
the inclusion of uncertainty in the model can affect estimates of stock status and
management quantities. These simulated comparisons were used to develop an
understanding of the ability of model ensembles to approximate an “ideal” model where
all uncertainties are included in the estimation process.

3. RESULTS

3.1 Review of current stock assessment practice

Across the WCPFC, stock assessments have been mainly conducted by SPC and ISC
assessment teams (see Table 1). Although some shark stock assessments have been
conducted as risk assessments by other assessment teams under contract to WCPFC with
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direct FAO funding (e.g., silky shark, porbeagle shark), recent shark stock assessments
have followed ISC and earlier SPC approaches of using integrated stock assessment
models (Table 3). All recent models, including shark stock assessments since 2018, have
been fully integrated stock assessments.

Recent assessments were in two broad categories, consistent with the “base case” and
“model ensemble” paradigms. The SPC assessments followed practice in other tuna
RMFOs, with (often factorial) “structural uncertainty” grids applied for all assessments
(see also Merino et al. 2020). For accepted recent assessments, these grids integrated
over between 18 and 648 models to derive stock status and assessment advice. Most
often (5 of 8 assessments), these ensembles were not weighted, while 3 of 8 assessments
used a priori plausibility to remove models from the grid that provided implausible
results. There was no consistent definition of implausibility applied across assessments.

Although a range of sensitivities and diagnostics were usually applied to a diagnostic
model, they were not applied to the uncertainty grids (Table 2). An exception was the
2022 assessment of blue shark in the Southwest Pacific Ocean (Neubauer et al. 2022b),
which employed a range of diagnostics, including jittering and retrospective analysis,
to a full factorial uncertainty grid. Similarly, only the assessment of South Pacific
Ocean swordfish (Ducharme-Barth et al. 2021) included full estimation uncertainty in
the calculation of stock status and management advice.
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Stock

Bigeye tuna

Bigeye tuna
Yellowfin tuna
Yellowfin tuna
Skipjack tuna
Skipjack tuna

SP albacore tuna

SP albacore tuna

NP albacore

NP albacore

Pacific bluefin tuna
Pacific bluefin tuna
NP Swordfish

SWPO swordfish
SWPO swordfish
SWPO striped marlin
SWPO striped marlin
NP striped marlin
NP striped marlin
Pacific blue marlin
Pacific blue marlin
Oceanic Whitetip Shark
Oceanic Whitetip Shark
Silky shark

Silky shark

Silky shark

Silky shark

SP blue shark

SP blue shark

SP blue shark

NP blue shark

NP blue shark

NP shortfin mako
NP shortfin mako
SWPO shortfin mako
Pacific bigeye thresher shark
Porbeagle shark
Whale Shark

14

Table 2: Stock, use of model ensemble, and diagnostics applied to various levels of the analysis
(diagnostic/base - case only vs sensitivities or ensembles / uncertainty grids) . MASE: mean absolute
square error; ASPM: Age - structured production model

Assessment

2020 (SC16)

2017 (SC13/SC14)
2020 (SC16)

2017 (SC13)

2022 (SC18)

2019 (SC15)

2021 (SC17)

2018 (SC14)

2020 (SC16)

2017 (SC13)

2022 (SC18)

2020 (SC16)

2018 (SC14)

2021 (SC17)

2017 (SC13)

2019 (SC15)

2012 (SC08)

2019 (SC15)

2015 (SC11)

2021 (SC17)

2016 (SC12)

2019 (SC15)

2012 (SC08)

2018 PO (SC14)
2018 WPO (SC14)
2013 WPO (SC09)
2012 WPO (SC08)
2022 (SC18)

2021 (SC17)

2016 (SC12)

2022 (SC18)

2017 (SC13)

2018 (SC14)

2015 (SC11)

2022 (SC18)

2017 (SC13)

2017 (SC13)

2018 (SC14)

Ensemble

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
Yes
Yes
Yes
Yes
No
No
Yes
No
Yes
Yes
No
No
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
No
No

Residuals

Base
No
Base
Base
Base
No
Base
No
Base
Base
Base
Base
Base
Base
Base
Base
Base
Base
Base
Ensemble
Base
No
No
No
No
No
No
Base
Base
No
Ensemble
Base
Base

Base

Likelihood prof.

Base

Base

Base

Base

Base

Base + sensitivities
Base

Base

Base

Base

Base

Base

Base

Base

Base

Base

Base + a few others
Base

Base
Ensemble
Base

Base

No

No

No

No

No

Base

Base

Base
Ensemble
Base

Base

Base

Retrospectives

Base
Base
Base
Base
Base
Base
Base
Base
Base
Base
Base
Base
Base
Base
Base
Base
No
Base
Base
Ensemble
Base
Base
No
No
No
No
No
Ensemble
Base
No
Ensemble
Base
Base

Base

Hindcast/MASE  ASPM
No No
No No
No No
No No
No No
No No
No No
No No
No Base
No Base
Base Base
No Base
No Base
Base Base
No No
No No
No No
No Base
No No
Ensemble Ensemble
No No
No No
No No
No No
No No
No No
No No
Ensemble No
Base No
No No
Ensemble Ensemble
No Base
No Base
No No

Jitter

Base
No
Base
No
Base
No
No
No
Base
Base
No
Base
Base
No
No
No
No
Base
No
Ensemble
Base
No
No
No
No
No
No
Ensemble
No
No
Ensemble
No
Base

No

Hessian

Base
Base

No

No
Ensemble, attempted
Base
Base

No

Base + sensitivities
No

Base

No

Base
Ensemble
Base
Base
Base
Base

No
Ensemble
Base

Base + a few others

Base + a few others
Base + a few others
Ensemble
Ensemble

Ensemble
Base

Ensemble weighting

None

None

None

None

None

None

None

None

None

None

None

None

None

a-priori plausibility
None

None

None

None

None

None

None

a-priori plausibility
a-priori plausibility
None

None

a-priori plausibility
a-priori plausibility
a-priori plausibility
None

None

hypothesis tree
None

None

None
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Stock status and management advice from SPC-led assessments were usually delivered
from the full ensembles (uncertainty grids; Table 3), and projections were conducted
from the full grid to understand medium-term risk. The quantification of stock status in
SC advice was consistently provided in the form of a table of mean values and quantiles
of management quantities (reference points and status relative to reference points) from
the grid results. No equivalent format was applied for projections or management
advice from these assessments to date, but probability statements in management advice
text generally encapsulated model uncertainty and provided a quantification of risk with
respect to the considered uncertainties.
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Table 3: Stock, use of model ensemble, source of estimates for stock status, structural uncertainty,
estimation uncertainty and projections, and an indicator if the assessments were used for
management advice (MA). Note, this classification is based on management advice provided,
and individual assessment documents often provided additional detail about sensitivities and their
relevant results, which were not necessarily reported for management advice.

Stock

Bigeye tuna

Bigeye tuna
Yellowfin tuna
Yellowfin tuna
Skipjack tuna
Skipjack tuna

SP albacore tuna

SP albacore tuna

NP albacore

NP albacore

Pacific bluefin tuna
Pacific bluefin tuna
NP Swordfish

SWPO swordfish
SWPO swordfish
SWPO striped marlin
SWPO striped marlin
NP striped marlin
NP striped marlin
Pacific blue marlin
Pacific blue marlin
Oceanic Whitetip Shark
Oceanic Whitetip Shark
Silky shark

Silky shark

Silky shark

Silky shark

SP blue shark

SP blue shark

SP blue shark

NP blue shark

NP blue shark

NP shortfin mako
NP shortfin mako
SWPO shortfin mako
Pacific bigeye thresher shark
Porbeagle shark
Whale Shark

Assessment

2020 (SC16)

2017 (SC13/5C14)
2020 (SC16)

2017 (SC13)

2022 (SC18)

2019 (SC15)

2021 (SC17)

2018 (SC14)

2020 (SC16)

2017 (SC13)

2022 (SC18)

2020 (SC16)

2018 (SC14)

2021 (SC17)

2017 (SC13)

2019 (SC15)

2012 (SC08)

2019 (SC15)

2015 (SC11)

2021 (SC17)

2016 (SC12)

2019 (SC15)

2012 (SC08)

2018 PO (SC14)
2018 WPO (SC14)
2013 WPO (SC09)
2012 WPO (SC08)
2022 (SC18)

2021 (SC17)

2016 (SC12)

2022 (SC18)

2017 (SC13)

2018 (SC14)

2015 (SC11)

2022 (SC18)

2017 (SC13)

2017 (SC13)

2018 (SC14)

Ensemble

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
Yes
Yes
Yes
Yes
No
No
Yes
No
Yes
Yes
No
No
Yes
Yes
Yes
Yes
Yes
Yes
No
No
No
No
No
No
No

Est. Stock Status

Ensemble: entire
Ensemble: entire
Ensemble: entire
Ensemble: entire
Ensemble: entire
Ensemble: entire
Ensemble: entire
Ensemble: entire
Single model
Single model
Single model
Single model
Single model
Ensemble: partial
Ensemble: entire
Ensemble: entire
Ensemble: entire
Single model
Single model
Ensemble: entire
Single model
Ensemble: entire
Ensemble: entire
None

Single model
Ensemble: partial
Ensemble: partial
Ensemble: partial
Ensemble: entire
None

Ensemble: entire
Single model
Single model

Single model
Single model
Single model
Single model

Structural Uncertainty

Ensemble: entire
Ensemble: entire
Ensemble: entire
Ensemble: entire
Ensemble: entire
None

Ensemble: entire
Ensemble: entire
Sensitivities
Sensitivities
None

None

None

Ensemble: partial
Ensemble: entire
Ensemble: entire
Ensemble: entire
None

None

Ensemble: entire
None

Ensemble: entire
Ensemble: entire
None

Single model
Ensemble: partial
Ensemble: partial
Ensemble: partial
Ensemble: entire
None

Ensemble: entire
Sensitivities
Single model

Single model
Single model
None

Single model

Estimation uncertainty

None

None

None

None

None

None

None

None

Base case

None

None

None

None

Ensemble: partial
None

None

None

None

None

Ensemble: entire
None

None

Ensemble: entire
None

Base case
Ensemble: partial
Ensemble: partial
None

None

None

Ensemble: entire
Sensitivities
None

None

None

None

None

None
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Projections

Ensemble: entire
Ensemble: entire
Ensemble: entire

Ensemble: entire
Ensemble: entire
Ensemble: entire

Base case

Base case
Sensitivities

Base case

Base case
Ensemble: partial

None

None

Base case

Base case
Ensemble: entire
None

Ensemble: entire
None

None

None

None

None

None

None

None

Ensemble: entire
Base case

Base case

None

None

None

None

None

Use for MA

Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
No
Yes
No
No
Yes
Yes
Yes
No
No
Yes
Yes
Yes



In contrast to SPC stock assessments, the ISC stock assessments used three models at
most to provide management advice. The stock assessment teams expressed a clear
preference for presenting only a single “best” and thoroughly vetted model to deliver
stock assessment advice where possible. To date, alternative models and non-binary
model weights were, therefore, only applied when a clear best model could not be
identified due to conflicting data sources (e.g., growth curves, length composition data).

Although most ISC assessments used some form of sampling (e.g., delta-lognormal) to
estimated stock status, and provide stochastic projections, the use of uncertainty in stock
status statements and projections varied among assessments according to the assessment
teams. For example, the SC reported stock status and advice from assessments of
Pacific Ocean bluefin tuna by providing probabilities of achieving rebuilding targets
from the base-case model, thereby accounting for the considered sources of uncertainty
in the model developed in ISC (2022b) , but there was no uncertainty referenced in the
provision of stock status estimates or status with respect to potential reference points
(there have been no agreed reference points for Pacific Ocean bluefin tuna). In contrast,
the SC reported uncertainty about status and projection biomass levels for North Pacific
Ocean albacore tuna (ISC 2020a, based on) in the form of confidence intervals, but
these uncertainties were not used to provide quantitative statements about risk in the
form of probabilities; however, qualitative statements (“low probability of falling below
limit reference points” and “risk increases [with alternative growth assumptions]”) were
provided.

When more than a single base-case model was used in ISC assessments, it sometimes led
to qualitative statements about robustness of the base case and consequence for risk (as
for North Pacific Ocean albacore, ISC (2020a)).In other assessments (e.g., Pacific Ocean
blue marlin, North Pacific Ocean blue shark), estimates from ensembles were combined
to provide management advice. The latter was not consistently reported; for example,
stock status was reported in terms of probabilities for Pacific Ocean blue marlin (ISC
2019, based on ), but medium-term risk, as quantified by projections, was only described
qualitatively. The most recent advice for North Pacific Ocean blue shark contained
probability statements for both the current status and projections based on model and
estimation uncertainty (ISC 2022a, derived in ), but the SC noted that these probabilities
did not integrate over uncertainty in production parameters.

3.2 Casestudies: recent ensembles and model weighting

Two recent SPC assessments — for southwest Pacific Ocean swordfish (SWPO-SWO;
Ducharme-Barth et al. 2021) and southwest Pacific Ocean blue shark (SWPO-BSH;
Neubauer et al. 2022a), and one ISC assessment (north Pacific Ocean blue shark, NI>-
BSH ISC 2022a) explicitly considered approaches for developing and weighting model
ensembles. The former two projects were included in the terms of reference for the
present project. In comparison, the latter assessment presented a somewhat different
approach and was included here for completeness.

The two recent SPC assessments had a similar starting point to many of the SPC-led
tuna assessments: an ensemble was constructed as an uncertainty grid over what were
considered to be the main characteristics that could affect the estimation of uncertainty —
albeit with a different approach for deriving the grid. Both approaches then developed
methods for “filtering” these grids to retain a subset of models, and investigated possible
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measures that could be used to weight models in the ensemble according to their
“plausibility” as defined by the tested measures.

In contrast, the recent ISC NP-BSH ensemble started from the other end of the spectrum,
using a single working model, and moving to three models when different data sources
(CPUE indices) were found to be inconsistent, but none could be definitively considered
“better” than another. This approach can be described as a hypothesis tree, with
individual branches emanating from a set of central assumptions.

These recent examples of model ensembles encapsulate three key steps in any stock
assessment:

1. Ensemble construction: Developing (a set of) models to use for the assessment.
2. Model weighting: determining the plausibility of alternative models (hypotheses).

3. Characterising uncertainty: Developing assessment advice and determining risk
based on the chosen models.

These aspects are important components of implementing a risk analysis that supports
a precautionary approach as mandated by the WCPFC convention. In the following,
we elaborate on each of these aspects by contrasting the approaches in recent ensembles
used for management advice in the WCPFC.

3.2.1 Ensemble construction: apriori definition of models to use for assessments

All stock assessments, throughout the assessment process, trial a large number of
models, many of which will be deemed unsatisfactory by the analyst or assessment team.
Atminimum, stock assessment models are usually expected to fit to key biomass indices,
while providing overall satisfactory fits to composition data (Francis 2011, 2017). From
this perspective, all WCPFC assessments tend to start with a single model (diagnostic or
base-case), with the aim of finding a model that can adequately fulfil these requirements.
To this point, many models developed during the process are often discarded, and only
key steps in the development are usually captured in “stepwise” updates from previous
assessment models. Once the base or diagnostic case has been determined, a number of
sensitivities are typically run to understand the robustness of the model to alternative
assumptions and formulations. These steps are common to all assessments * in the
WCPFC, and form the basis for the development of recent ensemb]es.

The key difference in recent ensembles, and between most ISC and SPC stock
assessments, is whether (and how) assumptions were chosen to provide the basis for
stock status statements and management advice. The recent ISC NP-BSH assessment
included alternative catch-per-unit-effort (CPUE) indices and data weighting options
because no model could be conclusively identified as performing better on the basis of
diagnostics. This approach has been used across ISC assessments where more than one
model was used for management advice. For SPC assessments, including SWPO-SWO
and SWPO-BSH, many factors are considered uncertain. In addition, uncertainty for
the factors that are important for the calculation of reference points or biomass levels

*Risk assessments typically used few sensitivities, but to date have also not had a prior model to build
from.
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are often included in an ensemble for management advice by developing a factorial
grid around the diagnostic model, usually without reference to model performance or
plausibility. The latter is a common criticism of the grid approach, and was a key focus
of developments in both the SWPO-SWO and SWPO-BSH assessments.

Within this context, the main contribution from the SWPO-SWO assessment was to
replace full-factorial grids, which may include implausible combinations of parameters
(for example, high natural mortality and low steepness). These grids were replaced
with an ensemble based on a joint prior that forces explicit consideration of the a
priori plausibility of parameter combinations, and assigns probabilities to any given
combination of parameters. Combinations of parameters were then drawn randomly
using Monte Carlo sampling from the joint prior to derive an ensemble that reflects
a clear set of hypotheses about parameters/data and their plausibility, to replace the
factorial grid design.

Although the SWPO-BSH employed a more traditional approach by constructing a
factorial model grid, it assigned prior probabilities to each axis according to the
perceived quality of information and likelihood of scenarios. The grid was constructed
over uncertainties in the data inputs and model components (e.g., CPUE representing
low or high latitude fleets). Across the factorial gird, weights were multiplied leading
to low probabilities for scenarios combining settings that were deemed less plausible a
priori. As a result, some model assumptions were down-weighted, leading to markedly
lower influence of extreme outcomes in the final stock advice.

Although the mechanism for constructing and weighting model axes was different
between the SWPO-SWO and SWPO-BSH assessments, the key steps and outcomes
were largely the same, consisting of the construction of an explicit prior distribution
over uncertainty axes, and weighting according to the prior in the resulting ensemble.

3.2.2 Model weighting: determining the plausibility of alternative models
(hypotheses) a posteriori

Although a joint prior distribution over parameters may serve to develop a more
parsimonious ensemble in terms of prior model weights, not all models may be able
to fit the data equally well or provide equally plausible outputs. Differential fits to data
among models in an ensemble imply that there is information about a certain parameter
or setting in a fixed set of data (it is not possible to formally compare fits across different
data sets that imply different likelihoods). However, if data are informative about the
plausibility of models in an ensemble, models may be formulated to estimate parameters
rather than to include them as an axis in an ensemble. More often, however, ensembles
explore fundamental uncertainties about data inputs or parameters about which the data
carry limited information. In this instance, or when different datasets are used, model fit
alone is unlikely to provide a means to distinguish among sets of models with different
settings, and the prior weight alone will determine the weight in an ensemb]e.

Both the SWPO-SWO and SWPO-BSH assessments attempted a two-step procedure
to weight models based on plausibility. As a first step, filtering was carried out
that assigned a weight of zero to all models that were outside of expected outcomes.
Expected outcomes were largely defined in terms of estimated and derived quantities
for the SWPO-SWO assessment. For example, the total estimated biomass, was defined
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in relation to the biomass of all tuna species in the area. Alternatively, the estimated
biomass distribution in space was used to constrain the model ensemble to a set that
was considered plausible. In the second step, models that were deemed technically
inadequate were removed (e.g., no positive definite Hessian matrix, or parameter
estimates on bounds). The resulting model ensemble was, thereby, reduced from 384
to 25 models, documenting that a joint prior alone can still lead to models that are
considered implausible a posteriori for technical or biological reasons.

For the SWPO-BSH and ISC NP-BSH assessments, a comprehensive suite of diagnostics
was applied across the model ensemble. This suite of model diagnostics was not able
to distinguish among models for ISC NP-BSH, leading to the inclusion of multiple
models in an ensemble used for management advice. For SWPO-BSH, models fell into
sets that could be distinguished on the basis of the presence or absence of i) strong
retrospective patterns and, ii) high M estimates of > 0.3. In both cases, models grouped
naturally along the growth data axis, suggesting that one of the growth datasets was not
compatible with other model assumptions and led to implausible assessment outcomes.

These models were removed from the model grid, reducing the size of the grid by two-
thirds.

The SWPO-SWO and SWPO-BSH assessments both attempted to further weight models
according to model predictive capacity with respect to CPUE, using the mean absolute
square error (Kell et al. 2021), or model stacking (Yao et al. 2018). In both cases, these
criteria led to only minor differences in the distribution of outcomes when applied after
the filtering step. In addition, they still required some subjective decisions about the
diagnostics to use for weighting, and their settings (i.e., how to translate diagnostics
into weights).

3.2.3 Characterising uncertainty: Developing management advice and determining
risk based on chosen models

Although reporting of assessment outcomes and management advice for all recent
ensembles largely followed patterns described above for SPC and ISC assessments, a key
difference in both the SWPO-SWO and the NP-BSH assessments was that they integrated
over structural and estimation uncertainty. Estimation uncertainty was not included in
the SWPO-BSH assessment, and was generally not calculated for SPC model ensembles
due to computational demand and the lack of consistent positive definite Hessians.

Despite reporting differences, and notwithstanding the inclusion or omission of
estimation uncertainty in the provision of management advice, recent ensembles used
by both SPC and ISC have integrated across models in the ensemble to provide
management advice that includes specific consideration of uncertainty.

3.3 lllustration: pros and cons of ensemble approaches

The simple simulation study highlighted some of the advantages and potential
shortcomings of different approaches to constructing and weighting a model ensemble.

With a precise and accurate prior, all approaches encompassed the “true” simulated
value, but the grid approaches provided inflated uncertainty. For this reason, they
implied higher risk than a single model that estimates productivity, or a model where
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productivity is fixed at the prior median (i.e., the true value; Figures 2 and 3, Table B-
1). The inflated tail risk was particularly evident when priors were chosen to be wide,
there was no weighting, or no random Monte Carlo draws were performed to weight
the models that make up the ensemble. In this simulation scenario, the models often
estimated overfishing risk when overfishing was clearly not occurring in the simulation
(Figures 4 and 5, Table B-1).

The pattern was reversed when a slightly-biased prior was applied, which implied
that the prior expectation about productivity was inflated. In this scenario, fixing
the productivity parameters at the prior median (i.e., the overestimated productivity)
biased the analysis and underestimated risk with respect to fishing mortality reference
points (Figures 6 and 7, Table B-1). Only the fully-estimated model provided sufficient
coverage, while all ensembles also underestimated relative harvest levels. Only an
approach that combined estimation and parameter uncertainty in the ensembles led to
the inclusion of the true simulated value in the confidence bounds. A wider prior would
have mitigated this limited coverage.
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Figure 2: Distribution of key management quantities (SSB: spawning stock biomass, SSBg: unfished
spawning biomass, MSY: maximum sustainable yield, H: harvest rate), for the four assessment
approaches using estimated productivity (filled dark blue), bootstrap Monte Carlo (MC) draws from
a productivity prior (light blue), and prior - weighted and equal - weight factorial uncertainty grids over
the productivity prior. All methods use the same productivity prior, which was centered on the true
value with a low coefficient of variation (10%). Solid lines show densities across maximum likelihood
estimates for the grid approaches, whereas filled densities incorporate estimation uncertainty using
Markov chain Monte Carlo (MCMC). The dashed dark blue line shows a model with estimation error
only where productivity parameters were fixed at the prior median. The true simulated value is shown
by the dark blue point.
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Figure 3: Kobe plot for the four assessment approaches using estimated productivity (filled dark
blue), bootstrap Monte Carlo (MC) draws from a productivity prior (light blue), and prior - weighted
and equal-weight factorial uncertainty grids over the productivity prior. All methods use the same
productivity prior, which was centered on the true value with a low coefficient of variation (10%).
Dashed and dotted lines show 80% and 95% credible intervals from Markov chain MC draws, dark blue
points show maximum likelihood estimates across model runs for grid approaches, and estimated
status (prior mean) for a model with fixed productivity at the prior median. The true simulated value
is shown by the light blue point.
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Figure 4: Distribution of key management quantities (SSB: spawning stock biomass, SSBg: unfished
spawning biomass, MSY: maximum sustainable yield, H: harvest rate), for the four assessment
approaches using estimated productivity (filled dark blue), bootstrap Monte Carlo (MC) draws from
a productivity prior (light blue), and prior - weighted and equal - weight factorial uncertainty grids over
the productivity prior. All methods use the same productivity prior, which is centered on the true
value with a high coefficient of variation (30%) . Solid lines show densities across maximum likelihood
estimates for the grid approaches, whereas filled densities incorporate estimation uncertainty using
Markov chain Monte Carlo. The dashed dark blue line shows a model with estimation error only where
productivity parameters were fixed at the prior median. The true simulated value is shown by the dark
blue point.
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Figure 5: Kobe plot for the four assessment approaches using estimated productivity (filled dark
blue), bootstrap Monte Carlo (MC) draws from a productivity prior (light blue), and prior - weighted
and equal - weight factorial uncertainty grids over the productivity prior. All methods used the same
productivity prior, which is centered on the true value with a high coefficient of variation (30%).
Dashed and dotted lines show 80% and 95% credible intervals from Markov chain MC draws, dark blue
points show maximum likelihood estimates across model runs for grid approaches, and estimated
status (prior mean) for a model with fixed productivity at the prior median. The true simulated value
is shown by the light blue point.
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Figure 6: Distribution of key management quantities (SSB: spawning stock biomass, SSBg: unfished
spawning biomass, MSY: maximum sustainable yield, H: harvest rate), for the four assessment
approaches using estimated productivity (filled dark blue), bootstrap Monte Carlo (MC) draws from
a productivity prior (light blue), and prior - weighted and equal - weight factorial uncertainty grids over
the productivity prior. All methods use the same productivity prior, which is biased high by 0.05 for
both parameters relative to the true value, with a tight prior (coefficient of variation 10%) representing
seemingly good understanding of productivity. Solid lines show densities across maximum likelihood
estimates for the grid approaches, whereas filled densities incorporate estimation uncertainty using
Markov chain Monte Carlo. The dashed dark blue line shows a model with estimation error only where
productivity parameters were fixed at the prior median. The true simulated value is shown by the dark
blue point.
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Figure 7: Kobe plot for the four assessment approaches using estimated productivity (filled dark
blue), bootstrap Monte Carlo (MC) draws from a productivity prior (light blue), and prior - weighted
and equal -weight factorial uncertainty grids over the productivity prior. All methods used the same
productivity prior, which is biased high by 0.05 for both parameters relative to the true value, with a
tight prior (coefficient of variation 10%) representing seemingly good understanding of productivity.
Dashed and dotted lines show 80% and 95% credible intervals from Markov chain MC draws, dark blue
points show maximum likelihood estimates across model runs for grid approaches, and estimated
status (prior mean) for a model with fixed productivity at the prior median. The true simulated value
is shown by the light blue point.
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4. DISCUSSION

The present review focused broadly on the characterisation of stock assessment
uncertainty in management advice, and also specifically on the potential for recent
developments in model ensembles applied in the WCPFC to improve uncertainty
characterisation.

Accounting for uncertainty stock assessments

In WCPEC assessments, a “structural uncertainty grid” over a large number of models
across a fixed parameter grid has often been used to describe the most prevalent
approach to SPC stock assessments. This approach was in contrast to the ISC base-
case approach, which accounts for estimation uncertainty in a single or small number of
models. To reconcile these approaches, Ducharme-Barth and Vincent (2022) suggested
a Monte Carlo approach to defining the grid axes based on a joint prior, combined with
calculation or simulation of estimation error.

For the set of uncertainties outlined in this review, structural uncertainty grids often
integrate over a range of uncertainties. For this reason, the term “structural” may
be too imprecise to adequately capture which uncertainties are being addressed. In
effect, alternative data sources or treatments, model formulations (e.g., likelihoods or
spatial structures) may lead to models with different likelihoods that may be considered
“structurally” different. Nevertheless, data weights within these models, or the value of
productivity parameters may be considered uncertain parameters—they do not change
the structure of the model itself.

The distinction between structural and parameter uncertainty is largely pragmatic
(structurally different models may be subsets of a more general model). Nevertheless,
from a practical perspective, the distinction identifies parameters that could in theory be
estimated. When parameter uncertainly is addressed by estimating parameters, there is
an implicit expectation that the data have information that will ultimately reduce the
total uncertainty in model outcomes (i.e., the a posteriori uncertainty due to estimation
is lower than the a priori parameter uncertainty). When there is limited information in
the data about parameter values, or if estimation is biased (e.g., by unrepresentative
data or particular model formulation), it may be necessary to integrate over prior
parameter uncertainty only. In this instance, the idealised simulations from this study,
and investigations outlined by Ducharme-Barth and Vincent 2022 suggest that the
formulation of an explicit prior to either draw from, or weight axes according to a prior
over parameters, may be a useful way to avoid overemphasising unrealistic parameter
combinations. The decision to integrate over parameter uncertainty within the model,
by estimating parameters, or outside of the model, by establishing an ensemble over
parameter values, therefore, depends largely on the information content in the data. The
latter is often dependent on having sufficient contrast (in biomass levels for estimating
steepness, and fishing mortality for estimating natural mortality Magnusson 2016).

Depending on the model specification and the number of parameters estimated,
estimation error may be small (e.g., if few parameters are estimated) or large (when
many production parameters are estimated, or data are uninformative about estimated
parameters). Although the importance of estimation error may difficult to ascertain in
the absence of its explicit evaluation, the simulations here and research by Ducharme-
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Barth and Vincent (2022) highlight that the inclusion of estimation error may lead to
different estimates of management quantities and risk across a model ensemble. Based
on these findings, we suggest additional emphasis on addressing this uncertainty in
addition to any parameter uncertainty that is addressed via uncertainty grid axes.

Structural uncertainties (e.g., spatial population structure and movement) and
uncertainties about data (e.g., alternative CPUE indices) are more difficult to address,
especially within the limited time available for any stock assessment. Both types of
uncertainty can markedly contribute to overall uncertainty. At a minimum, these
uncertainties need to be considered by specifically addressing data quality and
structural uncertainties, and their contribution to (often non-quantifiable) overall
uncertainty.

Irreducible errors in population parameters, such as recruitment variability and non-
stationarity in demographic parameters (i.e., process error), are most appropriately
addressed in projections and harvest strategy evaluations. Although models usually
incorporate temporally (and spatially) variable recruitment estimates, introducing more
than one type of time-varying process in estimation models can reduce retrospective
bias, it can also lead to bias in estimated management quantities if mis-specified (Johnson
et al. 2015, Stawitz et al. 2019, Szuwalski et al. 2018).

Operationalising the precautionary principle in the WCPFC

Operationalising the precautionary principle requires consistent accounting of
uncertainties that contribute to risk (Food and Agriculture Organization of the United
Nations 1996). There are legitimate arguments that uncertainty has been used to delay
action (Rosenberg 2007), and an undue emphasis on overfishing risk alone may lead to
socio-economically detrimental decisions (Hilborn et al. 2001).

The FAO guidelines suggest that harvest strategies be developed that incorporate,
and are robust to uncertainties (Punt 2006) to allow efficient decision making in
the face of uncertainty. These harvest strategies, when developed in the context
of socio-economic objectives can be used to manage risk explicitly while addressing
broader objectives of sustainable development and intergenerational equity (Food and
Agriculture Organization of the United Nations 1996, Hilborn et al. 2001).

Across tuna RFMOs, management strategies have been or are being developed to give
effect to the precautionary approach (Merino et al. 2020). In the WCPFC, Conservation
and Management Measure (CMM) 2014-06 and its successor CMM 2022-03 detail the
agreed WCPFC process for “[e]stablishing a Harvest Strategy for key fisheries and
stocks in the Western and Central Pacific Ocean”. In particular, Annex 1 of CMM2022-
03 suggest that “[a]s part of this process, the Scientific Committee and other relevant
subsidiary bodies, as appropriate shall estimate or describe key uncertainties including
with respect to stock assessments and available data”. These documents highlight
that under WCPFC agreements, uncertainties must be addressed when developing
harvest strategies. Nevertheless, the detail about this aspect is currently not specified
in CMM 2022-03.
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Consistency in addressing uncertainty in WCPFC management advice

This review highlighted two recent key developments for stock assessments: first,
although practice has varied markedly between ISC and SPC assessments, there has
been a lessening of this difference recently. This rapprochement was evident in more
explicit acknowledgement of uncertainty in ISC assessments and also in greater effort
to constrain model ensembles towards more plausible configurations for non-tuna SPC
assessments.

The complexity of tropical tuna stock assessments conducted by the SPC has provided
a barrier to adopting some of the recent approaches; however, assessments currently
underway have attempted to incorporate a number of recent suggestions. The long
model run time (often up to 24 h) and the complexity of models make it difficult to
determine some types of diagnostics that require multiple model runs. In addition,
the difficulty to consistently obtain positive definite Hessians for these models makes it
difficult to characterise estimation uncertainty. The latter will be increasingly important
if productivity parameters such as natural mortality and growth are estimated within
assessments. Although “structural” uncertainty grids in SPC assessments integrate
across data, structural and parameter uncertainties, they do not consistently include
estimation error in the calculation of risk. For this reason, risk estimates across
approaches are not directly comparable.

Similar inconsistencies exist for ISC stock assessments, where reported uncertainties
range from qualitative statements about the impact of parameter and structural
uncertainties to explicit integration over structural uncertainties and estimation error.

Within recent assessments, the current review identified only one assessment that
explicitly addressed all potential sources of uncertainty in the provision of management
advice. This assessment was the Southwest Pacific swordfish assessment (Ducharme-
Barth et al. 2021), which developed a model ensemble that accounted for uncertainty
in key input data (by manipulating CPUE CVs), model setup (manipulating weights),
production parameters (M, growth, steepness—formulating explicit priors), and
estimation error. Because productivity parameters were not estimated, the resulting
uncertainty was considerable, including regions where the stock was overfished and
undergoing overfishing.

The second development was a move towards more consistent use of risk metrics in
the form of probability statements in stock status and management advice. These
statements derive from an explicit acknowledgement and calculation of uncertainty.
This development has been slow and, currently, advice statements are neither worded
consistently, nor consistent in content. To allow for a consistent application of the
precautionary principle, as mandated by the WCPFC convention, more consistent
reporting should be developed.

International and best practice

Recent projects to develop and weight model ensembles for WCPFC assessments were
conducted in the context of global research in the domain both within tuna RFMOs
(Maunder & Minte-Vera 2022) and other management bodies, such as ICES (Jardim
et al. 2021) and the International Pacific Halibut Commission (Stewart & Hicks 2022).
The Center for the Advancement of Population Assessment Methodology (CAPAM)
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workshops (i.e., online on model ensembles and weighting in November 2022 (Maunder
& Minte-Vera 2022), and on “best practices in tuna stock assessments” in New Zealand
in March 2023) explored the topic in some depth. Nevertheless, there has been no clear
best practice identified for establishing and weighting model ensembles. At the same
time, there are important unknowns concerning the ability of certain diagnostics to
reliably identify poorly-performing models. In addition, weighting of data components
in assessment models may interact with weighting methods (e.g., models with lower
weight for CPUE will have relatively poor performance for diagnostics based on CPUE).
By focusing, in a prescriptive way, on certain diagnostics to retain or weight models,
biases may be introduced that are currently poorly understood. We, therefore, suggest
that assessments be viewed from a broader perspective of key principles; e.g., fitting of
CPUE needs to be prioritised and adequate, while leading to acceptable fits elsewhere.
Remaining uncertainties need to be adequately described and cataloged to prioritise
research to reduce important uncertainties.

A range of methods have been trialed to restrict the number of models or weight models
in ensembles for stock assessments in recent years. Fractional factorial designs have been
successfully used to restrict the number of models in a grid to low-order interactions only
(Hoyle et al. 2008, Kolody et al. 2020), while giving similar outcomes to a full factorial
grid. Nevertheless, these approaches are difficult to implement with more than two
options per axis (Berger et al. 2013). The bootstrap Monte Carlo approach (Ducharme-
Barth & Vincent 2022) can be viewed as a continuous approximation of this notion,
because a priori unlikely high-order combinations of parameters or structural values are
highly unlikely to be drawn at random under a joint prior.

Another related approach that has recently been tried in the WCPFC is the hypothesis-
tree approach, where a (or a set of) structural hypothesis (hypotheses) are placed at the
base of the tree; within each hypothesis, a number of uncertainties are explored Maunder
et al. 2020. This approach has two advantages: first, it limits the number of higher-
order interactions (but requires to fix one base level for each structural assumption).
For example, the recent yellowfin tuna assessment (Vincent et al. 2020) would have
required 35 model runs (assuming no factorial combinations of parameters; 60 models
with factorial combinations) instead of 72 model runs (Figure 8). Similarly, the recent
SP-BSH (Neubauer et al. 2022b) assessment would have required 80 model runs instead
of 648 even with full factorial combinations of parameter uncertainties. A joint prior
over parameters at the parameter stage can provide an alternative to a full factorial
exploration at this stage. Computational gains may then allow more comprehensive
exploration, or inclusion of parameter uncertainty, for a smaller number of models
overall. The second advantage of the hypothesis-tree approach is from a conceptual and
communication perspective, because this approach clearly distinguishes uncertainties
in a series of steps. This aspect provides a clear overview that can be linked to
management advice, and also to a loose justification of theoretical Bayesian model
averaging (Appendix C).

Although there is no unique best practice about the specifics of formulating and
accounting for stock assessment uncertainty, reporting of uncertainty has been
researched. In this context, many national (e.g., in Aotearoa New Zealand) and
international (e.g., International Council for the Exploration of the Sea, ICES)
management agencies use templates for reporting of management advice. Two aspects
of advice templates are worth highlighting: first, consistent reporting means that it
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is easy for stakeholders to identify key messages (e.g., likelihood of rebuilding or
of approaching reference points) from a consistent format. It also ensures that key
quantities of interest are consistently reported across all stock assessments. This aspect
means there is no reliance on specific stock assessment authors and session conveners
to ensure consistency in the format and content of management advice.

A more consistent reporting format can also ensure that results are easily comparable
among stocks and years, even if assessment approaches are not the same. Explicitly
stating the certainty about key outcomes and qualifying the advice by key uncertainties
support a consistent application of the precautionary principle. An example for
this reporting are the New Zealand “status of the stocks” reporting tables (Fisheries
New Zealand 2022); for example, these tables explicitly reference data quality, key
uncertainties, and qualify assessment by type and input data quality. Management
quantities (stock status and projections) are reported in standardised terminology
(probabilities of exceeding thresholds and reaching targets). At the same time,
the management quantities explicitly address calculated uncertainty, and also make
provision for unaccounted uncertainties by moderating statements from calculated
distributions.
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Figure 8: Examples of the stock assessment grid as hypothesis tree, separating structural and
parameter uncertainty, and indicating which were used for management advice (MA). Hypothesis
trees are for the 2021 yellowfin tuna (a) and the 2022 South Pacific Ocean blue shark (b) stock
assessments.
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5.

RECOMMENDATIONS

Based on the current review of WCPFC stock assessments, simulations, and
international best practice, we developed a set of recommendations relating to the use
of model ensembles for management advice and the communication of assessment
uncertainty. We invite the SC19 to consider the following recommendations, outlined
below.

5.1 Model ensembles and weighting

34

1. Develop joint priors and explicit rationales for grid axes and their values

Where possible, a joint prior should be developed based on life-history or meta-
analysis for important but uncertain parameters—especially productivity-related
parameters that may not be informed by data (where information is available in
the data, fitting parameters may be preferable, (Punt et al. 2021)).

For non-demographic uncertainties, a consistent rationale could be developed
to weight axes; for example, if a default weight for composition data can be
identified that leads to acceptable fits for abundance indices while providing
fits to composition data (Francis 2011, 2017), then alternative weighting choices
(lower or higher weights) may be considered less appropriate, and down-weighted
appropriately.

Similar rationale could be developed for the perceived suitability of alternative
datasets, acknowledging that at times, axes may have a marginally uniform prior
when no decisions about data suitability can be reached.

. Either draw from, or weight axes over parameters according to the joint prior

This step mitigates the influence of extreme combinations of parameters that are
a priori unlikely and that would likely result in more extreme estimates of stock
status and management advice.

. Consider observation error, structural, parameter, and estimation uncertainty in

management advice

Current practice is inconsistent in the types of uncertainty that are considered, and
how the different types are reported. Although some types of uncertainty can be
considered minor, a clear rationale should be developed for prioritising or omitting
some types of uncertainty from analyses and management advice. It needs to be
clear which uncertainties models and ensembles address, and which ones they
considered minor or could not address for technical reasons. For this reason, we
suggest a clear terminology around uncertainty.

. Where possible, express priors for model outcome space to avoid post-hoc

selection/weighting

The CAPAM workshops considered it best practice to a priori agree on measures
to include and/or weight models in an ensemble —with the intent to select models
based on objective measures, and avoid selecting models based on results.

Although some diagnostics can be used in weighting model axes, parameters or
model inputs and settings are often uncertain because the data do not contain
information to weight or eliminate models along these axes, or data themselves
are uncertain.
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5.2
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A joint prior may be formulated for expected outcomes in terms of diagnostics
(e.g., models are expected to achieve a certain level of fit to abundance indices)
and derived quantities (e.g., biomass distribution or total biomass levels). Similar
to input priors, these priors can then be used to weight models or eliminate models
that have little or no weight under the outcome prior. Ideally, such an outcome
prior should not be based on management-relevant quantities such as biomass or
fishing mortality relative to reference points.

. Where post-hoc weighting is necessary (unexpected outcomes), it should be

proposed by analysts

A joint prior over uncertainty axes and outcomes only provides a prior, and
does not necessarily constrain models to a sensible outcome space. In particular,
with complex models, it may be almost impossible to exhaustively list possible
outcomes and their likelihood in an outcome prior. For these models, it may be
necessary to further constrain the model grid based on diagnostics.

We suggest that these diagnostics and decisions to subset model ensembles should
be undertaken by the assessment team, and presented to the SC. Although the
decision to accept ensembles lies with the SC, we recommend that alternative
ensembles are not constructed as part of the SC meeting. This recommendation
would avoid decision-making by interested parties based on management-
relevant quantities.

Communicating uncertainty and risk

. Develop a template for reporting management advice and uncertainties

A straightforward way to improve and standardise reporting of uncertainty and
risk is to develop a template for reporting uncertainties alongside the provision
of stock status and management advice. The international expert group on
“Addressing Uncertainty in Fisheries Science and Management” convened by the
National Aquarium in the United States in 2015 suggested that an “[iJnnovative
approach” would be to “create a table or checklist indicating the major sources of
uncertainty for that fishery, how they are addressed and by whom, and at what
point in the process they are considered...This tool would promote understanding
among all participants and would also highlight to all how the system already
accounts for certain types of uncertainty and where effort needs to be focused
to address concerns” (Cadrin et al. 2015). In addition, clear addressing of
uncertainties is important in the context of adequately representing risk when
developing harvest strategies, to ensure that these strategies are robust to key
uncertainties.

Templates for reporting assessment advice are in use in a number of jurisdictions
and councils. For example, ICES provides a standardised structure to provide
management advice, and New Zealand’s plenary reports have a standardised
tabulated reporting format for both status and uncertainty (see “Guidelines
for Status of the Stocks Summary Tables” in Fisheries New Zealand 2022).
Standardised table formats help managers to focus on key quantities. The
following points detail aspects of this type of framework. Development of the latter
needs to consider international best practice in relation to WCPFC convention
requirements. For this reason, we propose the following recommendations for
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the process of developing a framework.

. Agreed terminology and set of required measures

Consistent terminology is an important aspect of efficiently communicating
advice and risk. Categories with associated labels may be used to communicate
uncertainty categories and associated risk. For example, the standardised status of
the stock tables in New Zealand distinguishes stock status and advice based on the
certainty of the statements, following the classification of the Intergovernmental
Panel on Climate Change. The classification rates statements as certain (>99%
likelihood), highly likely (>90%), likely (>60%), about as likely as not (40-60%),
unlikely (<40%), very unlikely (<10%), or exceptionally unlikely (<1%).

Similarly, types of uncertainties need to be clearly identified. Although the
distinction between types of uncertainty is not always clearly-defined (e.g.,
structural versus parameter uncertainty), a practical and useful classification
should be established to allow consistent reporting of uncertainty.

. Clear communication about quality of information determining stock status and

management advice

Where possible, reports of stock assessments should include sections about key
uncertainties, how they were addressed, and which uncertainties remain. These
uncertainties include:

* Qualification and quantification of uncertainties.
(a) Data quality.
(b) Model/population: structural uncertainty (note the use of ”structural”

here refers to models with different likelihoods, rather than different
parameter values).

(c) Key parameters (parameter and estimation uncertainty).

¢ Key uncertainties and potential impacts: qualification of how these
uncertainties (listed above) influence management advice.

. Based on identified uncertainties, develop a set of research recommendations to

address key uncertainties.

To improve assessments and reduce uncertainty and risk over time, uncertainties
need to be clearly identified and ranked in their importance for determining risk
in management advice.

. A review of timelines and capacity for tuna stock assessment

The review of timelines may be required to allow sufficient time and capacity
to adequately address uncertainty. Sufficient time is also needed to enable the
provision of management advice that is consistent with the application of the
precautionary approach, as outlined in the WCPFC convention text. A similar
review was recently conducted for shark stock assessments, which may provide
a precedent to further develop the tuna stock assessment process.

5.3 Further development and future research

We further suggest that the SC consider recommending the following suggestions:
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* The provision a project to develop a standardised reporting template for
uncertainty and risk reporting that accounts for recommendations made in the
present review, and

¢ further development of methodology and idealised simulations to develop
principled model ensemble approaches, in particular to consider the ability of
alternative model diagnostics to identify model plausibility and weights.
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APPENDIXA SIMULATION EXPERIMENTS: MODEL DETAIL

For the simulation-estimation experiments, we developed a length-based, age-
structured model, which followed the MULTIFAN-CL model (Fournier et al. 1990,
Fournier et al. 1998) in a simplified form. The development of the model was motivated
by the need to evaluate the performance of ensemble approaches in the context of the
length-based, age-structured model (Fournier et al. 1998), which was used for a number
of tuna stock assessments. The operating model to simulate data was developed in R
(R Core Team 2021), and the estimation model was developed in Stan (Carpenter et al.
2017) to allow efficient estimation.

The simulation study was conducted in four steps. First, we simulated an age-
structured population dynamics of an albacore-like stock using the age-structured
model. Second, we generated abundance indices and length-frequency data from the
simulated population dynamics. Third, we applied the same age-structured model
to the simulated data, where we assumed two different sets of joint prior probability
distributions (e.g., prior medians matched with true values versus prior medians not
matching true values) for the two focal parameters, steepness and natural mortality, and
estimated management quantities using different ensemble weightings. In the fourth
step, we compared the estimated management quantities with the true values to evaluate
the performance of the different ensemble weightings.

This section provides a description of the age-structured model, developed for this
simulation study. To mimic albacore tuna population dynamics in the South Pacific
Ocean, we used the parameter values from a previous study (Punt et al. 1995). The catch
data for the albacore stock were used to derive annual exploitation rates, and to generate
pseudo data (Q: true values with random error applied?) on abundance index and length
composition. The annual catch data for 1967 to 2019 were obtained from published
literature (Polacheck et al. 1993, International Commission for the Conservation of
Atlantic tunas 2022).

A.1 Modelstructure

The age-structured model was divided into two parts: process models and observation
models (see Tables A-1 and A-2 for definitions of parameters used in these models). The
description here first provides information of process models, where the top hierarchy
describes age-structured transitions of the population, and the bottom hierarchies
describe the life history and mortality processes of the population. Following this
description, the observation models are presented, which were used to link unobserved
quantities (e.g., stock size) in the process models to (simulated) observed quantities (e.g.,
abundance index and length composition data).

44 Addressing uncertainty in WCPFC stock assessments



Table A-1: Definitions for the terms used in the age - structured model. DM, Dirichlet - multinomial.

Notation Description

45

Index for ages.

Maximum age.

Index for length classes (bins).

Bin width.

Index for the last bin.

Index for years.

Index for the last year.

Abundance of fish of age a at year ¢.

Exploitation rate at year ¢.

Yield (i.e., catch in weight) at year ¢.

Abundance of fish of age a at unexploited equilibrium.
Recruitment at unexploited equilibrium.

Recruitment at year ¢.

Variance of recruitment deviations.

Instantaneous rate of natural mortality.

Steepness parameter.

Probability of fish of age a being in length bin j.

Mean length at age a .

von Bertalanffy parameters.

Standard deviation of the length-at-age distribution.

Parameters that determine o,,.

Brody coefficient (i.e., { = e™").

Spawning stock biomass at year ¢.

Spawning stock biomass at unexploited equilibrium.

Mean weight at age a.

Length-weight relationship parameters.

Selectivity at age a.

Selectivity parameters.

Maturity at age a.

Age at 100% maturity.

Vulnerable biomass at year t.

Vulnerable biomass at unexploited equilibrium.

Proportion of females.

Abundance index at year ¢.

Catchability coefficient.

Observation error variance of the abundance index I;.

Vector of number of fish in length bin j at year ¢ in the length composition data.
Total sample size of the length-composition data at year ¢.
Effective sample size of the length-composition data at year ¢.
Vector of the concentration parameters at year ¢ in the DM model.
Concentration parameter of length bin j at year ¢ in the DM model.
Parameter that determines the value of §;; in the DM model and E¢f.
Vector of the model-estimated length-composition proportions at year ¢.
Model-estimated length-composition proportion of length bin j at year ¢.
Model-estimated age-composition proportion of age a at year ¢.
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Table A-2: Prior distributions for the parameters used in this simulation study (not including
steepness h and natural mortality M) .

Description Prior distributions

Recruitment of unexploited equilibrium log(Ry) ~ uniform(13,17)
Catchability coefficient log(q) ~ uniform(—6.908,0)
Observation error variance 72 ~ inverse-gamma(0.001, 0.001)
Dirichlet Multinomial parameter 0 ~ exponential(1)
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A.1.1 Process models

Age-structured dynamics The age-structured dynamics of the population are defined
as:

Ry, fora=1
Na,t = Nafl’tfl . (1 —Su_1- Htfl) . e_M, forl<a< A,
Na—l,t—l . (1 — Sa_1 . Ht—l) . 6_M + Na,t—l . (1 — Sa . Ht—l) . G_M, fora=A

where N, . is the abundance of fish of age a at the beginning of year ¢, R; is the
recruitment at age 1 in year ¢, S, is the time-invariant age-dependent selectivity, H; is
the exploitation rate (0 < H; < 1) in year ¢, A is the maximum age which is the plus
group, and M is the instantaneous rate of natural mortality.

The initial population (i.e., N, 1) was assumed to be at unexploited equilibrium:

Ry, fora=1
N — Na_l-e*M, forl<a< A
a — ~ 7M 9
N. .
ﬁ, fora:A

where N, is the abundance of fish of age a at unexploited equilibrium, R is the
recruitment at age 1 at unexploited equilibrium, M is the instantaneous rate of natural
mortality, and A is the maximum age which is the plus group.

Stock-recruitment relationship The Beverton-Holt stock-recruitment function,
reparameterised in terms of the steepness parameter h (Mace & Doonan 1988), was
used to model the annual recruitment at age 1 R;:

R _ 4.-h- RO . SSBt ) €£t+1_075.(7}2%
1T 1 —h)-SSBy+(5-h—1)-559B, ’

where 5SS B; is the spawning stock biomass in year ¢, S5 By is the spawning stock biomass
at unexploited equilibrium, €; are the annual recruitment deviations, which are normally
distributed with mean 0 and variance 012%, Ry is the recruitment at age 1 at unexploited
equilibrium, and the subtracted term —0.5 - 0% is the bias correction term.

Length-at-age distribution of the catch For simplicity, the length-at-age distribution
of the catch G|, was assumed to be the same as the length-at-age distribution of the
population (i.e., there is no length-dependent selectivity):

JEA (g 02)dL,  forj =1
[_/j r/2 .
Gila =3 20 F(Llla,03)dL,  for1<j<J

1= [B72 §(Ll,, 02)dL, forj =]
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where r is the length bin width, L; is the midpoint of the length bin j, [, is the mean
length-at-age, o, is the standard deviation of the length-at-age distribution, f(L|l,,c2)
is the normal density of the random variable L with mean [, and variance 02, and J is
the last length bin.

The mean length-at-age, [,, was modelled with the von Bertalanffy function:
lyg = Loo - [1 o effi-(afao)]7

where L is the asymptotic length, « is the growth rate, and ay is the theoretical age at
length 0.

The standard deviation of the length-at-age distribution o, was modelled with the
function, which was adopted from the MULTIFAN-CL model (Fournier et al. 1990,

Fournier et al. 1998):
1— Cafl
Oa=A1-€ { 1=¢ :

where \; determines the scale of the standard deviations, Ay determines the length-
dependent increase in the standard deviations, and ( is the Brody growth coefficient

(ie, ¢ =e ).

Length-weight relationship The mean weight-at-age, W,, was modelled with the
length-weight relationship function:

w!
W(l = w1 lua2’

where w; and wy are the two parameters which determine the allometric curve.

Selectivity The age-dependent selectivity, S,, was modelled with a two-parameter
logistic curve:

1

Sa, = 41 + e_(a_aso)/l/7

where as is the age at 50% selectivity, and v is the slope of the curve.

Maturity The sexual maturity-at-age Mat, was assumed to follow a knife-edged
function (Punt et al. 1995):

Mat 0 ifa< AM at
at, = ,
¢ 1 ifa>apae
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where a4 is the age at 100% maturity.

Biomass quantities The spawning stock biomass SSB; and its unexploited value at
equilibrium SS By are:

A A
SSBy=¢-> Nay-Wa-Mate; SSBy=¢-> Ny W, - Mat,,

a=1 a=1

where ¢ is the proportion of females in the stock.

Similarly, the vulnerable (or exploitable) biomass V' B; and its unexploited equilibrium
value V By are:

A A
VBy =Y Nat-Wa-Sa; VBy=» No-Wa-Sa.
a=1

a=1

Exploitation rate We assumed the catch data Y; had no error, thus treating the
exploitation rates H; as derived quantities:

H, =Y;/VB,.

Catch-at-age Based on the exploitation rate H;, population abundance N, and age-
dependent selectivity S,, the model estimated catch-at-age C, ; as:

~

Cat = Na,t : Sa : Ht-

)

A.1.2 Observation models
Abundance index We assumed that the abundance index I; had a log-normal error:
Iy =q-VB;-e" %5 where tid N(0,72),

where ¢ is the catchability coefficient, 7; is the normal observation error with mean 0 and
variance 72, and —0.5 - 72 is the bias correction term.

Length composition In the simulation study, it was assumed that the length
composition data were collected every five years (i.e., t* € {1967,1972,1977,...,2017}
), which were modelled using a Dirichlet-multinomial (DM) distribution (Thorson et al.
2017):

Ny ~ DM(Etn(st*;Pt*)?

49 Addressing uncertainty in WCPFC stock assessments



where n;- is the vector of the number of fish in each length bin j at year ¢* in the length
composition data (i.e., ny = [n14, N2+, ..y 7’L27t*],), E; is the sample size at year t, &
is the vector of concentration parameters at year ¢* (i.e., 0 = [d1¢+, 024, ..., 527t*]' ),
and P;. is the vector of model-estimated length-composition proportions at year ¢ (i.e.,
P, = []51|t*,152|t*, ey PJW}’). Then, the model-estimated length-composition proportion
of length bin j at year ¢ (i.e., Pj;-) was calculated as:

Py = Z Pyt - Gifa
a

where the model-estimated age-composition proportions Pa‘t* were derived by
normalising the model estimated catch-at-age Cl, ;-

A A
. Cui ~ A
Pa|t* = CA,7 ;o Cp= § Ca,t*-
a=1

*

To reduce the number of parameters to be estimated, the concentration parameters d; ;-
were assumed to be proportional to the sample size E;- and the model-estimated length-

composition proportions Pilt* (Thorson et al. 2017):

84 =0 Ey- + Pyyye.
The effective sample size E{ff is then defined as

14+0-E,. 1 9
Bt = - E,. - ,
t 1+6 T R

A.1.3 Priordistribution

Correlation was incorporated between the two parameters h and M by assuming their
transformed forms followed a bivariate normal distribution. Because the steepness h is
bounded by 0.2 and 1, h was transformed to = using the logit transformation:

= logit h—0.2
r=ldt o5 )

Because a log-normal marginal prior distribution was assumed for M, M was log-
transformed to log(M). Thus, the joint prior distribution of = and log(M) was given
by:

~ , 2 )
log(M) Hiog(ar)| [P+ Tz " Olog(M) Tiog(M)

where p; and fiqgps) are the mean of the joint prior distribution of = and log(M),
respectively, o2 and o2 o) are the variance of the joint prior distribution of - and log(M),
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respectively, and p is the correlation between x and log(M) (see Table A-2 for prior
distributions imposed on the other parameters (i.e., Ry, 72,4, 0).

A.2 Estimation

We estimated the model in Stan (Carpenter et al. 2017). The Bayesian model
requires the specification of the full likelihood and the prior probability distributions
of the parameters. The complete joint likelihood (vectors indicated in bold font)
L(©, R|I,n;Y), including the parameters (i.e., ® = [72, h, M, Ry, ¢, 0]') and recruitment
(i.e, R = [R1, Ry, ..., Ry]’) as latent variables, is:

L(©,R|I,n;Y) =n(7%h, M, Ry, q,0)
2019
x [ fa(Blh, Ro, M;Y)
t=1967
2019

x [ fi(1M,q, Ro, h, 7 17)
t=1967
2017

X H fLF(nt*|07M,R07h;}/;f*>a
t*=1967

where I, n, and Y denote the abundance index, length-frequency data, and the
catch, respectively, 7(72, h, M, Ry, q,0) is the full joint prior distribution for the model
parameters, which was derived by the product of the joint prior distribution of = and
log(M) and the priors of the other parameters, fr(R;|h, Ro, M;Y;) is the likelihood of
the recruitment, f;(I;|M, q, Ry, h,72;Y;) is the likelihood of the abundance index data,
and frr(ne-|0, M, Ry, h; Y;+) is the likelihood of the length-frequency data.

A.3 Simulation-estimation experiments

To simulate an albacore-like stock, we obtained most of input parameter values from a
previous study (Punt et al. 1995) (see Table A-3). Some of the input values, such as 6, E,
A1, and A, were chosen arbitrarily for simulation purposes.

The main parameters of interest were steepness h and natural mortality M. For
this reason, the other parameters Ry, ¢, 7, and 6 were estimated with the same
prior distributions across all of simulation-estimation experiments. For the two focal
parameters of interest, we considered two scenarios: (1) the medians of the priors were
set to the true values, and (2) the medians of the priors were set to the slightly biased
values.
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Table A-3: Input parameter values used in the age - structured model for simulation. Values were
either from a previous study by Punt et al. (1995), otherwise were chosen arbitrarily.

Parameter Quantity (unit) Reference

A 12 (years) Punt et al. 1995
asp 3.5 (years) Punt et al. 1995
v 0.2 Punt et al. 1995
aMat 5 (years) Punt et al. 1995
Lo 124.74 (cm) Punt et al. 1995
K 0.228 (year—1!) Punt et al. 1995
ag —0.989 (years) Punt et al. 1995
w1 1.3718 - 107° (kg) Puntetal. 1995
w9 3.0973 Punt et al. 1995
OR 0.385 Punt et al. 1995
%) 0.5

0 0.01

E, 10* vt

A1 2

A2 0.3
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APPENDIXB SIMULATION EXPERIMENTS: ADDITIONAL TABLES AND FIGURES

Table B-1: Probability that the estimated harvest rate H exceeds the simulated value Hg;,,,, for three
scenarios on the prior probability distribution (lower and upper range: 0.025 and 0.975 quantiles of
harvestrate estimates, and P) . Scenarios were: an accurate and precise prior centred on the true value
with a low coefficient of variation (CV) (10%), an accurate but imprecise prior centred on the true
value with a high CV (30%), and an inaccurate but precise prior that was biased high by 0.05 for both
production parameters relative to the true value, with a tight prior (CV 10%).

High acc. & high prec. High acc. & low prec. Low acc. & high prec.
Approach Est. err. Low High P(H > Hsim) Low High P(H > Hsim) Low High P(H > Hsim)
Estimated (single model) Yes 032 0.56 034 033 057 034 030 053 0.22
Estimated (single model) No 0.38  0.56 059 038 0.56 059 027 039 0.00
Grid (prior weights) Yes 028 0.77 055 016 1.19 056 019 0.54 0.10
Grid (prior weights) No 038 0.78 075 025 1.86 075 026 041 0.00
Grid (equal weights) Yes 0.28  0.79 055 016 1.23 053 019 0.55 0.13
Grid (equal weights) No 032  0.78 056 019 1.86 056 021 041 0.00
Monte Carlo ensemble Yes 0.34 0.71 055 0.25 0.91 050 0.23 0.48 0.06
Monte Carlo ensemble No 0.30 0.57 044 0.29 1.05 044 027 0.44 0.00
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B.1 Accurate and precise prior

Plots from the simulations with an accurate and precise prior probability distribution
centred on the true value with a low coefficient of variation (10%) (Figures B-1 to B-4).
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Figure B-1: Time series of spawning stock biomass (SSB) for four assessment approaches using
estimated productivity (filled dark blue), bootstrap Monte Carlo (MC) draws from a productivity prior
(light blue), and prior-weighted and equal -weight factorial uncertainty grids over the productivity
prior. All methods used the same productivity prior, which was centred on the true value with a low
coefficient of variation (10%). Solid lines indicate the median across ensembles (or the posterior
median for the estimated case) . The true simulated time series is shown by the dark blue line.
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Figure B-2: Time series of stock status (spawning stock biomass SSB relative to unfished spawning
biomass SSBg) for four assessment approaches using estimated productivity (filled dark blue),
bootstrap Monte Carlo (MC) draws from a productivity prior (light blue), and prior - weighted and
equal -weight factorial uncertainty grids over the productivity prior. All methods used the same
productivity prior, which is centred on the true value with a low coefficient of variation (10%). Solid
lines indicate the median across ensembles (or the posterior median for the estimated case). The
true simulated time series is shown by the dark blue line.
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Figure B-3: Time series of stock status (biomass B relative to B that produces maximum sustainable
yield (MSY)) for four assessment approaches using estimated productivity (filled dark blue),
bootstrap Monte Carlo (MC) draws from a productivity prior (light blue), and prior - weighted and
equal -weight factorial uncertainty grids over the productivity prior. All methods used the same
productivity prior, which is centred on the true value with a low coefficient of variation (10%). Solid
lines indicate the median across ensembles (or the posterior median for the estimated case). The
true simulated time series is shown by the dark blue line.
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Figure B-4: Time series of harvest rate (H) (relative to H that produces maximum sustainable yield
(MSY)) for four assessment approaches using estimated productivity (filled dark blue), bootstrap
Monte Carlo (MC) draws from a productivity prior (light blue), and prior - weighted and equal - weight
factorial uncertainty grids over the productivity prior. All methods used the same productivity prior,
which is centred on the true value with a low coefficient of variation (10%). Solid lines indicate the
median across ensembles (or the posterior median for the estimated case) . The true simulated time
series is shown by the dark blue line.
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B.2 Accurate butimprecise prior

Plots from the simulations with an accurate but imprecise prior probability distribution
centred on the true value with a high coefficient of variation (30%) (Figures B-5 to B-8).
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Figure B-5: Time series of spawning stock biomass (SSB) for four assessment approaches using
estimated productivity (filled dark blue), bootstrap Monte Carlo (MC) draws from a productivity prior
(light blue), and prior-weighted and equal - weight factorial uncertainty grids over the productivity
prior. All methods used the same productivity prior, which is centred on the true value with a high
coefficient of variation (30%). Solid lines indicate the median across ensembles (or the posterior
median for the estimated case) . T he true simulated time series is shown by the dark blue line.
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Figure B-6: Time series of stock status (spawning stock biomass SSB relative to unfished spawning
biomass SSBg) for four assessment approaches using estimated productivity (filled dark blue),
bootstrap Monte Carlo (MC) draws from a productivity prior (light blue), and prior - weighted and
equal -weight factorial uncertainty grids over the productivity prior. All methods used the same
productivity prior, which is centred on the true value with a high coefficient of variation (30%). Solid
lines indicate the median across ensembles (or the posterior median for the estimated case). The
true simulated time series is shown by the dark blue line.

59 Addressing uncertainty in WCPFC stock assessments



Estimated (single model)

3 4
%
@ 2]
[aa]
14
01 . . T
1980 2000 2020
Year
Grid (prior weights)
3
5
2
@ 2]
[aa]
1 4
01 . . T
1980 2000 2020
Year
Grid (equal weights)
4 4
3 4
%
)
)
1 4
01 . . T
1980 2000 2020
Year
Monte Carlo ensemble
3
%
= 2
a
[an]
11
0

1980 2000 2020
Year

Figure B-7: Time series of stock status (biomass B relative to B that produces maximum sustainable
yield (MSY)) for four assessment approaches using estimated productivity (filled dark blue),
bootstrap Monte Carlo (MC) draws from a productivity prior (light blue), and prior - weighted and
equal -weight factorial uncertainty grids over the productivity prior. All methods used the same
productivity prior, which is centred on the true value with a high coefficient of variation (30%). Solid
lines indicate the median across ensembles (or the posterior median for the estimated case). The
true simulated time series is shown by the dark blue line.
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Figure B-8: Time series of harvest rate (H) (relative to H that produces maximum sustainable yield
(MSY)) for four assessment approaches using estimated productivity (filled dark blue), bootstrap
Monte Carlo (MC) draws from a productivity prior (light blue), and prior - weighted and equal - weight
factorial uncertainty grids over the productivity prior. All methods used the same productivity prior,
which is centred on the true value with a high coefficient of variation (30%). Solid lines indicate the
median across ensembles (or the posterior median for the estimated case) . The true simulated time
series is shown by the dark blue line.
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B.3 Inaccurate but precise prior

Plots from the simulations with an inaccurate but precise prior probability distribution
biased high by 0.05 for both production parameters relative to the true value, with a tight
prior (Coefficient of variation 10%) (Figures B-9 to B-12).
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Figure B-9: Time series of spawning stock biomass (SSB) for four assessment approaches using
estimated productivity (filled dark blue), bootstrap Monte Carlo (MC) draws from a productivity prior
(light blue), and prior-weighted and equal -weight factorial uncertainty grids over the productivity
prior. All methods used the same productivity prior, which is centred on the true value with a low
coefficient of variation (10%). Solid lines indicate the median across ensembles (or the posterior
median for the estimated case) . The true simulated time series is shown by the dark blue line.
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Figure B-10: Time series of stock status (spawning stock biomass SSB relative to unfished spawning
biomass SSBg) for four assessment approaches using estimated productivity (filled dark blue),
bootstrap Monte Carlo (MC) draws from a productivity prior (light blue), and prior - weighted and
equal -weight factorial uncertainty grids over the productivity prior. All methods used the same
productivity prior, which was biased high by 0.05 for both parameters relative to the true value, with
atight prior (coefficient of variation 10%) representing seemingly good understanding of productivity.
Solid lines indicate the median across ensembles (or the posterior median for the estimated case).
The true simulated time series is shown by the dark blue line.
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Figure B-11: Time series of stock status (biomass B relative to B that produces maximum sustainable
yield (MSY)) for four assessment approaches using estimated productivity (filled dark blue),
bootstrap Monte Carlo (MC) draws from a productivity prior (light blue), and prior - weighted and
equal -weight factorial uncertainty grids over the productivity prior. All methods used the same
productivity prior, which is biased high by 0.05 for both parameters relative to the true value, with a
tight prior (coefficient of variation 10%) representing seemingly good understanding of productivity.
Solid lines indicate the median across ensembles (or the posterior median for the estimated case).
The true simulated time series is shown by the dark blue line.
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Figure B-12: Time series of harvest rate (H) (relative to H that produces maximum sustainable yield
(MSY)) for four assessment approaches using estimated productivity (filled dark blue), bootstrap
Monte Carlo (MC) draws from a productivity prior (light blue), and prior - weighted and equal - weight
factorial uncertainty grids over the productivity prior. All methods used the same productivity prior,
whichis biased high by 0.05 for both parameters relative to the true value, with a tight prior (coefficient
of variation 10%) representing seemingly good understanding of productivity. Solid lines indicate the
median across ensembles (or the posterior median for the estimated case) . The true simulated time

series is shown by the dark blue line.
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APPENDIXC A BAYESIAN VIEW ON MODEL ENSEMBLES AND
HYPOTHESIS TREES

A loose theoretical justification for a hypothesis tree approach to ensemble construction
can be provided from a Bayesian hierarchical breakdown of the challenge of model
averaging (Draper 1995, Hoeting et al. 1999, 4).

For any prediction y, derived over a set of models M = {5, 6} from data X, the posterior
predictive probability distribution for y can be split into nested integrals over model
structures S and model parameters 6, with predictions y at any 6 and S (p(y|0, S, X)),
weighted by the joint posterior probability of the model structure and corresponding
parameters (p(S, theta| X)). In full the distribution is:

P M) = [ p(yIM. X)p(M|X) M = /S | p(010.5.X)0(S. thetal x)dps.

The right-hand side of the distribution can be further split to provide a hierarchical
structure (Draper 1995), which provides an approach for model ensembles as an
approximation to the challenge:

//p(yw,S,X)p(S,theta|X)d9dS://p(y\G,S,X)p(thetaw, X)p(S|X)dodS
S Jo S Jo
(G

= c/ /p(y]@, S, X)p(X|theta, S)p(0]S)p(S)dodS
S Jo (C_Z)

This composition can be written in hierarchical (or generative) notation, such that:

S~ p(S), (C-3)

0|S ~ p(015), (C-4)
X|0,S ~ p(X]6,S), (C-5)
y|X7 0)’5’ Np(y|X7 97 S) (C'6)

This notation suggests a generative split into:

1. A prior (decisions) about plausible model structures; i.e., a (set of) hypothesis
(hypotheses) about plausible model structures and their associated weights. In
practice, many plausible structures have weight zero because a limited number of
structures can be feasibly explored. Nevertheless, this limitation can be explicitly
acknowledged.

2. Given the model structure, a prior probability distribution over the associated
parameters is developed. This development may be the same across all structures,
or it may differ depending on the likelihood formulation in the different structures.
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3. The data are viewed as generated from a distribution (likelihood) given the
structure and parameters.

4. Predictions are made from a distribution given the structure, parameters, and data.

The first step will, in practice, usually under-value uncertainty because not all plausible
model structures are evaluated, and most structures are given a weight of zero a priori.
For a discrete set of models, the probability (or weight) for model i can be written as:

p(Si| Xi) oc p(Xi[Si)p(Si) = P(Sz’)/ p(X10:, S;)p(0:]5;)db;,

i

which shows that, in this context, the likelihood p(X16;, S;) is the appropriate model
weighting tool. Nevertheless, in practice, the likelihood surface may be flat with respect
to 6; and S;. In this situation, a prior-weighted ensemble (i.e., assuming a flat distribution
for p(X|0, S) in the hierarchical decomposition) would result in the same outcome as a
full model. This aspect can only be tested by attempting to fit certain parameters within
the model.

The full likelihood weighting also does not apply where likelihoods are not comparable
across structures (i.e., when the data are specific to a given structure). The Bayesian
breakdown, however, provides a useful justification for a hypothesis tree approach that
attempts to, in principle, cover the steps required for a full integration over model and
parameter uncertainty, even if model weighting is often a difficulty that cannot currently
be solved in a theoretically justifiable manner.
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