

SCIENTIFIC COMMITTEE

NINETEETH REGULAR SESSION

Koror, Palau 16–24 August 2023

Trends in the South Pacific albacore longline and troll fisheries

WCPFC-SC19-2023/SA-IP-04

 $25~\mathrm{July}~2023$

Sam McKechnie¹, Peter Williams¹, Graham Pilling¹, and the WCPFC Secretariat

 $^{^1{\}rm Oceanic}$ Fisheries Programme (OFP), Pacific Community (SPC), Noumea, New Caledonia

Executive summary

This paper presents a compendium of fishery indicators for South Pacific albacore tuna, as requested at previous Western and Central Pacific Fisheries Commission (WCPFC) meetings. These indicators include: total catch; catch by gear; and longline effort and nominal troll and longline CPUE trends, along with their spatial patterns. Commentary provided includes comparisons of 2022 values to 2021 and to the average over 2017-2021. Summaries are calculated from data available as of 24 July 2023. Note that catch levels and their distribution among areas may change as more data become available. This paper complements the information provided by Hare, Pilling, and Williams (2023) who summarise the latest trends for the main target species for the fisheries occurring in the WCPFC convention area (WCPFC-CA).

The most recent estimates of stock status (from the 2021 stock assessment for the entire south Pacific, Castillo-Jordan et al. 2021) are included, along with stochastic projections from the full structural uncertainty grid, to provide an indication of future stock status under status quo conditions. Furthermore, transshipment data are available over the period from the inception of transshipment reporting (July 2010) to December 2022. Data presented represent high seas transshipments only; they do not include in-port or in-zone transshipments.

Introduction

At the 7th Technical and Compliance Committee meeting (TCC), members requested the preparation of a paper on South Pacific albacore. That request indicated the paper should contain all available data on catches and transshipments, and should highlight trends in key metrics. The paper was first prepared by the scientific services provider and the WCPFC Secretariat for WCPFC8 in March 2012. It has since been updated regularly, taking into consideration further requests from members.

This paper presents trends in catch, effort and catch per unit effort (CPUE), both spatially and temporally, for the South Pacific albacore (SPA) fishery. Depending on the context, summaries are computed for the South Pacific (all waters south of the equator), for the albacore target longline fishery region (Pacific waters south of 10°S), and also for Exclusive Economic Zones (EEZs) and High Seas regions (HS) within the WCPFC-Convention Area (WCPFC-CA). In addition, information on transshipment patterns is presented, as requested in previous reports (WCPFC and SPC-OFP 2013).

Following the request for further information to assist in the interpretation of key observations, and noting that it is difficult to correctly interpret the stock status-related implications of trends in any indicators in isolation of other data sets and population dynamics models, the potential consequences of recent fishing levels for future South Pacific albacore stock status are evaluated using stochastic projections.

The analyses presented are based on data available to SPC as of 24 July 2023. The overall catch, and its distribution among spatial areas, may change as more data becomes available. This is particularly the case for the eastern Pacific Ocean (EPO), where catch estimates appear to be incomplete for 2022. These will be revised with further data previsions. Please note that the figures may include or exclude specific fleets that are included in summaries made for other purposes (e.g. CMM tables) and therefore the reported values (catch, effort, CPUE, etc.) may not be identical to those presented in other documents. The stock status information is derived from the most recent stock assessment of South Pacific albacore presented in 2021 (Castillo-Jordan et al. 2021).

Patterns of longline and troll fishing

The longline and troll fleets are the two primary groups of commercial vessels exploiting South Pacific albacore. In this section we examine trends in their catch, effort and CPUE. Catch and effort information come primarily from logsheet returns or, particularly for the high seas, from the provision of aggregate data from distant water fishing nations.

Catch

Annual catch estimates for albacore in the South Pacific (south of the equator) as a whole peaked at 94,504 mt (all gears) in 2017 (Figure 1). Catch by longliners represented 95% of the catch weight in 2022 at 73,824 mt. The 2022 longline catch was an 9% increase from 2021. Provisional troll catch (3,777 mt) was a 7% decrease from 2021. Very small amounts of catch by 'other' gears also occurred. The annual contribution of the EPO catch south of the equator has ranged from 11–31% of the total catch over the past 10 years. The provisional estimate for the 2022 EPO share is 11% of the total catch, but it is likely the EPO data are still incomplete.

In comparison, the 2022 total albacore catch within the southern part of the WCPFC-CA ² (Table 1) was 69,248 mt and the longline catch was 65,471 mt. The 2022 longline catch in the southern WCPFC-CA was a 47% increase from 2021. High seas longline catch estimates represent 40% of the 2022 total, and have ranged from 31–53% of the total longline catch since 2010. By flag (or attributed nationality based on charter agreements), China and Chinese Taipei had the highest catch estimates of South Pacific albacore in 2022 (26,220 mt and 10,546 mt respectively), representing 56% of the total longline catch (Table 5), with much of both flag's catch being taken on the high seas (Table 6).

²Note that these annual catch estimate-based tables approximate the southern area of the WCPFC-CA as far as possible, given that some EEZs and high seas areas span the equator. Note also that archipelagic catches are excluded from this table.

Four flag states reported troll catch within the WCPFC-CA during the period 2000 to 2022, namely Canada, the Cook Islands, USA and New Zealand (Table 7) with catch totaling 3,777 mt in 2022. Troll activity in 2022 was exclusively in the New Zealand EEZ and on the high seas (Table 2). Catch estimates for 2022 were 1,400 mt for the high seas and 2,377 mt for the New Zealand EEZ. The total troll catch within the WCPFC-CA in 2022 was a 7% decrease from the 2021 catch.

The spatial pattern of South Pacific albacore catch over the long-term (1950–2016), the last 5 years excluding the most recent year (2017–2021), and 2022 alone, are shown in Figure 2. In recent years, catch has been concentrated in EEZ's and several high seas zones in the 10-20°S latitudinal band. Note that, while 2022 estimates remain provisional, the geographic distribution of catch is generally consistent with that observed in recent years, with the exception of the scarcity of fishing in the EPO, which will most likely change with future data provisions.

Effort

It is challenging to identify the specific species being targeted by longline vessels, particularly within the aggregate data received from some fleets fishing on the high seas. To compare estimates of effort to the declared South Pacific albacore catch, we have considered fishing effort south of 10°S to approximate South Pacific albacore targeting (noting that this will include longline effort targeting swordfish, southern bluefin, and in some cases tropical tunas), in an effort to exclude most of the tropical longline fishery effort.

Raised effort data for the southern WCPFC-CA south of 10°S were available up to 2022 (Figure 3). The longline effort in this region was estimated at 221 million hooks in 2022, although we note there is considerable uncertainty in effort estimates for this most recent year. The number of deployed hooks in 2022 within the WCPFC-CA south of 10°S was a 14% decrease from 2021, and a 34% decrease from the peak of 334 million hooks fished in 2010.

Effort data from VMS provides more 'up to date' information than raised logsheet data, given that logsheet effort for recent years may be incomplete, and the uncertainty in raised annual logsheet effort estimates for 2022 is high. The VMS data reported are restricted to the WCPFC-CA waters south of 10°S, in an effort to again remove fishing targeting tropical tunas. The VMS data represents fishing days which are identified using a fishing activity classification algorithm that accounts for speed and changes in bearing of the vessel. It must be noted that a new algorithm has been adopted since the 2019 version of this report, and this has been applied to all available VMS data. This means that estimates are comparable among years, but not with earlier reports.

VMS data does not explicitly indicate the species targeted by vessels during fishing. In addition, some trends over time may be influenced by increased coverage of VMS across longline vessels in the South Pacific, while data for certain EEZs may be incomplete, or not available. A list of notes on the VMS data and a table of effort by high seas area are provided in Appendix 1. To overcome the absence of VMS data for some EEZs, data were augmented with logsheet information in several of these locations (New Caledonia and French Polynesia).

Effort south of 10°S (VMS fishing days, augmented by logsheet days) both within EEZs and on the high seas generally increased through to 2013, then declined to a lower average level before rebounding in 2019 and 2020. Around 25% of the VMS days occurred within the high seas in 2022 (Table 3). Overall effort has increased in the EEZs and had been decreasing on the high seas until a sharp upturn in 2019 (Table 3). VMS days fished in 2021 and 2022 were lower than in prior years.

Of the VMS days fished within the international waters in 2022, the most important high seas areas were Region I5, which is east of the Line Islands and French Polynesia, and Region I7, which is the region north and northeast of New Zealand (Table 9; Figure 12).

Catch per unit effort

Figure 5 presents nominal South Pacific albacore CPUE series by key longline fleets south of 10° south. Note, the values presented in Hare, Pilling, and Williams (2023) are south of the equator, and are measured in

numbers, rather than weights of fish, and will therefore differ from those presented here. Some key changes in CPUE in the recent periods were:

- Japanese longline CPUE in 2022 (17 kg per 100 hooks) was a 23% increase on 2021, the 2017-2021 average was 13.7 kg per 100 hooks;
- Fiji longline CPUE in 2022 (25.7 kg per 100 hooks) was a 38% increase on 2021, the 2017-2021 average was 17.9 kg per 100 hooks;
- Chinese longline CPUE in 2022 (26.2kg per 100 hooks) was a 103% increase on 2021, the 2017-2021 average was 21.4 kg per 100 hooks;
- Chinese Taipei longline CPUE in 2022 (25.2 kg per 100 hooks) was a 45% increase on 2021, the 2017-2021 average was 24.2 kg per 100 hooks.

Examining longer-term trends, the average nominal CPUE for the Fiji fleet was 23.7 kg per 100 hooks between 1991 and 2000, while that for the Chinese Taipei fleet was 34.9 kg per 100 hooks. In contrast, the Japanese fleet averaged 18 kg per 100 hooks over that time.

The relative spatial pattern of CPUE is presented in Figure 6 for two time periods. Over the period 2000–2019, catch rates were relatively high across much of the southern WCPFC-CA, in particular within high seas areas. Catch rates in the most recent three year period (2020–2022) were mixed when compared to that earlier period, with many $5^{\circ}\times5^{\circ}$ squares showing reduced CPUE, while several squares displayed the opposite trend. In particular, the CPUE in the high seas east of New Zealand was high in the most recent years.

Figure 7 presents nominal South Pacific albacore CPUE series for two troll fleets. The CPUE of the US fleet was highly variable with a general decline over the period 1987 to 2006, with catch rates in the most recent years of activity being comparable to that in the mid-2000s, with the exception of 2019-20 where CPUE was very high. By comparison, the nominal CPUE of the New Zealand fleet has generally been lower, but relatively stable.

Transshipment information

High seas transshipment data are available from July 2010 to the end of 2022, but no in-port or in-zone transshipment data are presented. Fluctuations in reported transshipments may reflect logistical or operational factors, rather than fishing activity. It is noted that South Pacific albacore would have historically been offloaded directly to canneries (e.g. Pago Pago, American Samoa, or Levuka, Fiji) rather than being transshipped on the high seas.

There is a notable peak in transshipment activity around September or surrounding months, in many years (Figure 8). Vanuatu has had the highest transhipment volumes in the past, as averaged over the entire period. The highest peak in the time series was in October 2017 ($\sim 4,000$ mt) (Figure 8), of which, about 2,500 mt was attributable to China and 1,000 mt to Vanuatu. Further transshipment information by flag and month is presented in Appendix 3. It should be noted that transshipment levels are unlikely to be fully reported for the most recent 18 months. Transshipment data for 2022 should, therefore, be considered preliminary and subject to change.

Albacore stock status

A South Pacific albacore stock assessment was completed in 2021 (Castillo-Jordan et al. 2021), and used data up until the end of 2019. The Scientific Committee meeting in 2021 (SC17) provided advice to the Commission based upon the the structural uncertainty grid that was used to characterize uncertainty in the assessment. This included different levels of the recruitment distribution, stock recruitment relationship steepness, the weighting of the input length data, movement estimates (one level was downweighted for this axis) and an axis for growth/natural mortality combinations. Stock status for this uncertainty grid is shown on the Majuro plot in Figure 9.

Across the 72 stock assessment models used within the analysis, the median stock status³ in recent years (2016–2019) was $SB_{recent}/SB_{F=0} = 0.52$ (10-90% quantiles = 0.41–0.57), which is below the interim target reference point ($SB_{recent}/SB_{F=0} = 0.56$) established by the WCPFC in 2018 (WCPFC 2018).

The most recent status quo projections of this stock used catches up to and including 2022. Future catches for the southern longline and troll fisheries up to 2024 were assumed to continue into the future at levels equal to those taken in 2022 (based on the information available to SPC at the time of the projection work). If 2022 catch levels continue into the future, the stock is predicted to continue to decline on average towards the biomass Limit Reference Point ($SB_{recent}/SB_{F=0} = 0.2$) with some risk of falling below it, before starting to recover (Figure 10).

References

Castillo-Jordan, C., H. Xu, J. Hampton, N. Ducharme-Barth, and P. Hamer. 2021. "Stock Assessment of South Pacific Albacore." WCPFC-SC17-2021/ST-WP-02. Electronic meeting, 11–19 August 2021.

Hare, S., G. Pilling, and P. Williams. 2023. "A compendium of fisheries indicators for target tuna stocks in the WCPFC Convention Area." WCPFC-SC19-2023/SA-WP-06. Koror, Palau, 16–24 August 2023.

WCPFC. 2018. "Report of the Scientific Committee fourteenth regular session." Summary Report. Busan, Republic of Korea, 8–16 August 2018: Commission for the Conservation; Management of Highly Migratory Fish Stocks in the Western; Central Pacific Ocean.

WCPFC, and SPC-OFP. 2013. "Regular session of the WCPFC." Summary Report. Cairns, Australia, 2–6 August 2013: Commission for the Conservation; Management of Highly Migratory Fish Stocks in the Western; Central Pacific Ocean.

 $^{^3}$ for the WCPFC-CA component of the stock, using the weighted uncertainty grid accepted by SC17

<u> Fables</u>

Table 1: Annual southern WCPFC-CA albacore longline catch estimates (excluding archipelagic waters) by EEZ and High Seas, since 2010. Note: Available operational and aggregate logsheet data raised to annual catch estimates. EEZ are approximate 200-mile boundaries; High seas is the high seas in the WCPFC Convention Area, south of the equator. Allocation of flag catch to EEZ is approximate due to the lack of operational logsheet data in some cases.

EEZ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
American Samoa	2,838	1,784	2,416	1,769	1,377	1,760	1,511	1,511	1,553	1,062	546	715	1,095
Australia	745	652	702	757	728	945	910	830	751	962	1,158	1,072	1,075
Cook Islands	4,911	5,559	10,627	5,985	4,483	$4,\!556$	4,757	3,316	4,717	5,318	3,724	2,357	7,480
Fiji	5,771	4,165	4,287	3,642	3,916	5,643	4,784	5,871	5,466	5,140	3,913	4,315	5,347
High seas	40,886	23,367	30,287	31,006	20,911	23,936	18,037	39,512	30,737	35,024	31,467	23,314	26,498
Jarvis (USA)	0	0	0	0	0	0	0	0	0	0	0	0	0
Kiribati	1,290	550	1,218	819	1,258	2,540	4,275	394	72	1,174	2,702	582	1,106
Matthew and Hunter	15	9	6	0	0	2	\vdash	2	\vdash	2	2	32	17
New Caledonia	1,932	1,734	1,711	1,713	1,628	1,578	1,745	1,719	1,742	2,009	1,896	1,742	2,142
Niue	196	0	0	362	208	196	88	14	364	386	163	19	П
New Zealand	460	418	266	302	311	223	233	181	239	117	202	102	83
French Polynesia	3,482	3,224	3,591	3,495	3,744	3,418	3,276	2,148	3,058	3,439	2,812	2,689	4,185
PNG	795	294	801	237	310	459	1,191	1,610	1,453	775	970	009	2,856
Solomon Islands	6,021	6,424	8,172	9,074	13,111	6,887	3,777	5,849	7,144	4,499	2,509	2,909	5,555
Tokelau	0	108	250	0	7	1,867	2,447	1,729	632	1,970	1,221	260	1,492
Tonga	22	36	092	1,471	264	710	1,105	788	830	1,343	962	822	883
Tuvalu	675	467	930	1,491	475	406	1,503	1,427	945	1,448	554	178	452
Vanuatu	4,790	6,076	4,281	6,819	6,604	5,419	7,405	7,972	5,602	3,195	4,230	1,706	4,516
Wallis and Futuna	0	က	0	0	0	0	0	0	0	0	0	0	0
Samoa	2,529	1,415	2,038	1,642	800	840	823	1,638	1,364	1,442	849	761	889
Total	77,393	56,282	72,346	70,584	60,135	61,385	57,868	76,511	66,670	69,139	59,714	44,475	65,471
EEZ percent	47	28	28	26	65	61	69	48	54	49	47	48	09
HS percent	53	42	42	44	35	39	31	52	46	51	53	52	40

Table 2: Annual southern WCPFC-CA albacore troll catch estimates by EEZ and High Seas, Since 2010. Note: Available operational and aggregate logsheet data raised to annual catch estimates. EEZ are approximate 200-mile boundaries (excluding archipelagic waters); High seas is the high seas in the WCPFC Convention Area, south of the equator.

EEZ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
High seas	307	472	235	390	466	177	189	855	442	874	1,926	685	1,400
New Zealand	1,832	2,787	2,727	2,836	1,937	2,425	1,969	1,959	2,272	1,907	2,825	3,383	2,377
Total	2,139	3,259	2,962	3,226	2,403	2,602	2,158	2,814	2,714	2,781	4,751	4,068	3,777
EEZ percent	98	98	92	88	81	93	91	20	84	69	59	83	63
HS percent	14	14	∞	12	19	2	6	30	16	31	41	17	37

Table 3: Total longling VMS fishing days (augmented by logsheets for New Caledonia and French Polynesia) by year and geographic area in the WCPFC-CA south of 10° S.

EEZ	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
	70,294	73,452	75,492	76,765	64,034	65,427	71,520	71,519	73,096	76,212	76,492		66,539
High seas	20,771 23,223	23,223	23,347	31,346	27,151	22,719	19,548	23,858	25,533	27,803	32,037	28,054	22,224
	91,065	96,676	98,839	108,111	91,186	88,147	91,068	92,376	98,630	104,015	108,529		88,762
	77	92	92	71	70	74	79	75	74	73	70		75
	23	24		29	30	26	21	25	26	27	30		25

Table 4: Annual total and monthly average transshipment of albacore in the high seas of the WCPFC-CA in metric tonnes. Note that values for 2022 are probably incomplete.

Year	Annual total	Monthly average
2010	4,091	584
2011	$9,\!458$	788
2012	5,976	498
2013	10,228	852
2014	10,760	897
2015	$10,\!264$	855
2016	18,747	1,562
2017	18,434	1,536
2018	23,651	1,971
2019	25,105	2,092
2020	25,045	2,087
2021	18,314	1,526
2022	16,897	1,408

Table 5: Annual southern WCPFC-CA albacore longline catch estimates by Vessel flag (including chartered vessels), 2010 - 2022. Note: Available operational and aggregate logsheet data raised to annual catch estimates (ACE). Differences in annual totals between this table and Table 1 result from rounding errors. Southern WCPFC-CA is approximated - some EEZ and high seas areas span the equator.

Flag	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Australia	745	653	602	773	737	949	916	831	752	208	1,163	1,073	1,075
Belize	2	52	18	7	0	0	0	0	0	0	0	0	0
Cook Islands	2,423	2,182	2,757	1,354	1,186	1,167	1,352	2,562	3,083	2,277	1,194	292	952
China	12,926	11,846	24,523	23,789	14,471	14,494	16,123	29,154	21,130	22,643	20,602	15,975	26,220
Spain (EC)	13	9	33	3	2		2	2	2	2	4	4	21
Fiji	8,603	9,947	$9,\!369$	8,708	7,016	7,016	7,274	9,763	8,854	8,343	6,405	6,248	6,885
FSM	П	Π	156	634	366	1,224	1,966	250	1,461	2,098	431	750	1,248
Japan	2,635	2,057	2,048	1,752	1,151	901	1,578	1,755	1,162	1,103	1,046	807	1,104
Kiribati	99	200	349	40	7	357	509	653	340	1,123	1,854	985	2,158
Republic of Korea	1,027	488	892	292	691	1,013	1,389	1,136	1,065	1,694	571	359	1,028
Marshall Islands	0	0	0	0	0	0	0	0	0	0	0	0	0
New Caledonia	1,939	1,736	1,715	1,714	1,630	1,583	1,747	1,734	1,752	2,011	1,897	1,774	2,158
Niue	97	0	0	0	0	0	0	0	0	0	0	0	0
New Zealand	460	418	266	302	311	223	233	181	239	117	202	102	83
French Polynesia	3,483	3,225	3,594	3,512	3,744	3,418	3,277	2,148	3,058	3,439	2,812	2,689	4,185
PNG	791	245	693	235	308	336	48	627	92	39	18	0	458
Portugal (EC)	0	4	П	29	П	0	0	0	0	0	0	0	0
Solomon Islands	7,716	899	0	0	14,236	11,249	1,695	0	1,918	2,538	1,682	1,865	2,718
Tonga	22	34	20	13	25	29	42	26	23	29	13	10	52
Tuvalu	0	184	432	169	78	97	52	175	121	64	117	57	0
Chinese Taipei	16,977	13,406	12,116	14,686	8,294	$8,\!806$	12,481	16,748	12,814	12,639	13,992	5,672	10,546
USA	4,082	2,555	3,461	2,213	1,543	1,961	1,655	1,539	1,567	1,090	575	764	1,140
Vanuatu	10,817	4,726	7,185	8,202	3,540	5,722	4,582	4,855	5,554	4,482	3,724	3,585	1,990
Wallis and Futuna	0	က	0	0	0	0	0	0	0	0	0	0	0
Samoa	2.529	1,415	2,038	1,642	800	840	947	2,374	1,684	2,610	1,413	991	1.450

Table 6: Annual southern WCPFC-CA albacore longline catch estimates by Vessel flag (including chartered vessels) in each EEZ, 2010 - 2022. Note: Available operational and aggregate logsheet data raised to annual catch estimates (ACE). Differences in annual totals between this table and Table 1 result from rounding errors. Southern WCPFC-CA is approximated - some EEZ and high seas areas span the equator.

EEZ	Flag	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
Am. Samoa	US	2,416	1,769	1,377	1,760	1,511	1,511	1,553	1,062	546	715	1,095
Australia	AU	702	757	728	945	910	830	751	796	1,158	1,072	1,075
	JP	0	0	0	0	1	0	0	0	0	0	0
Cook Islands	CK	2,726	1,223	1,073	1,040	1,267	2,370	2,299	1,196	360	295	245
	CN	2,970	2,223	3,186	2,238	1,542	687	940	2,612	2,887	1,303	$5,\!485$
	FJ	329	80	0	0	0	0	0	0	0	0	0
	FM	134	573	174	1,198	1,945	248	1,437	1,491	407	741	1,235
	KI	244	29	0	0	0	0	0	5	41	0	0
	KR	0	0	0	1	0	0	0	0	0	0	0
	TW	311	0	0	0	0	12	40	14	29	17	515
	US	650	267	40	75	0	0	0	0	0	0	0
	VU	3,263	1,590	10	4	3	0	0	0	0	0	0
Fiji	CN	433	305	201	324	643	214	20	10	4	4	267
	FJ	3,852	$3,\!253$	3,715	5,312	4,139	$5,\!656$	5,443	5,130	3,907	4,311	5,079
	KR	0	38	0	0	2	0	0	0	2	0	1
	TV	0	0	0	0	0	0	0	0	0	0	0
	TW	0	3	1	0	0	0	3	0	0	0	0
	VU	1	43	0	5	0	1	0	0	0	0	0
High seas	AU	7	16	9	4	6	1	1	2	5	1	0
	BZ	14	7	0	0	0	0	0	0	0	0	0
	CK	23	28	0	1	6	110	270	165	320	215	62
	$^{\mathrm{CN}}$	16,262	12,949	$5,\!880$	8,098	3,146	18,482	$11,\!138$	$15,\!430$	10,141	12,007	11,768
	ES	3	3	2	1	2	2	2	2	4	4	21
	FJ	2,468	1,891	1,791	1,039	1,085	1,466	1,512	1,011	1,411	895	461
	$_{\mathrm{FM}}$	21	61	192	25	20	2	24	606	24	9	13
	JP	1,091	1,181	1,089	689	579	663	364	430	702	446	558
	KI	16	3	1	162	13	240	283	147	452	421	1,187
	KR	427	425	163	272	462	638	498	1,187	559	353	962
	MH	0	0	0	0	0	0	0	0	0	0	0
	NC	3	1	2	4	2	14	10	0	0	0	0
	NZ	0	0	0	0	0	0	0	0	0	0	0
	PF	3	17	0	0	1	0	0	0	0	0	0
	PG	0	0	0	0	33	139	0	0	0	0	0
	PT	1	67	1	0	0	0	0	0	706	0	0
	SB	0	0	970	1,644	239	0	17	46	796	0	59
	TO	0	0	1	0	0	1	0	0	110	0	0
	TV	15	10 100	7.519	7.000	1	52	15	4	112	57	0 495
	$_{ m US}^{ m TW}$	$7,039 \\ 395$	10,182 177	7,518 125	7,968 126	9,695	13,570 28	11,523 15	11,841 28	13,487 29	5,363 49	9,485
	VU			3,165	3,902	144	4,072				3,495	45 1 277
	WS	2,498 0	3,987 0	5,105 0	5,902 0	2,597	$\frac{4,072}{34}$	4,958 107	$4{,}105$ 20	3,419	5,495 0	1,877
Jarvis (USA)	US	0	0	0	0	$\frac{5}{0}$	0	0	0	5	0	$\frac{1}{0}$
Kiribati	BZ		0		0	0				0		0
Kiiibati	CN	$\begin{array}{c} 5 \\ 293 \end{array}$	216	$0 \\ 308$	1,330	2,999	0 169	0 4	0	1,322	0 0	63
	FJ	293 41	210	176	1,330 139	143		0	80 50	1,322		
	FM				139		4	0			0	0
	rм JP	0 45	0 8	0	0	$\frac{1}{0}$	$\frac{1}{0}$	0	0	0	0 0	$0 \\ 0$
	JP KI	$\begin{array}{c} 45 \\ 46 \end{array}$	3	6 1	54	406	$\frac{0}{207}$	57	0 971	$0 \\ 1,361$	562	971
	KR	$\frac{40}{335}$	187	351	612	418	11	9	38	1,301	302	13
	TV	333 48	0	331	012	418	0	0	0	0	3 0	13
	TW	328	351	263	199	213	$\frac{0}{2}$	3	35	$\frac{0}{12}$	18	41
	VU	328 78	331 26	$\frac{203}{152}$	$\frac{199}{205}$	$\frac{215}{95}$	0	о 0	39 1	0	0	18
	v U	10	20	192	200	90	U	U	1	U	U	10

Mtlan IIton	T: I	0	0	0	1	1	0	1	0	0	0	1
Mthw-Hunter	FJ NC	9	0	0	1	1	0	1	$0 \\ 2$	0	$\frac{0}{32}$	1 16
	VU	$\begin{array}{c} 1 \\ 0 \end{array}$	0	0	$\frac{1}{0}$	0	1 1	$0 \\ 0$	0	$\frac{1}{0}$	32 0	
New Caledonia	NC	1,711	1,713	1,628	1,578	1,745	1,719	1,742	2,009	1,896	1,742	$\frac{0}{2,142}$
Niue Caledonia	CK	1,711	85	33	1,578	1,745	1,719	362	386	163	1,742	2,142
Niue	FJ	0	277	33 157	193	88	14	0	360 0	103	0	0
	г J NU	0	0	137	193	0	0	0	0	0	0	0
	TW	0	0	18	3	0	0	$\frac{0}{2}$	0	0	0	1
New Zealand	NZ	266	302	311	223	233	181	239	117	202	102	83
F. Polynesia	PF	3,591	3,495	3,744	3,418	3,276	2,148	3,058	3,439	2,812	2,689	4,185
	CN										,	
PNG	JP	0	1	3	105	101	1,000	559 707	20	603	239	1,849
	\overline{PG}	0	0	208	105	998	1,092	797	673	344	361	546
	TW	693	235	308	336	14	488	92	39	18	0	458
C 1 T		108	2	0	19	78	29	6	43	5	1	3
Solomon Is.	CK	5	18	79	0	0	0	0	0	0	1.000	0
	CN	1,737	2,903	239	0	1,511	3,321	3,875	1,753	1,618	1,039	2,827
	FJ	1,305	1,783	130	0	563	163	558	213	1	0	9
	JP	855	563	55	106	0	0	1	0	0	0	0
	KI	0	5	0	0	0	1	0	0	0	2	0
	KR	111	96	57	34	2	40	11	16	2	3	48
	SB	0	0	12,136	6,747	535	0	1,901	2,492	886	1,865	2,659
	TV	0	0	0	0	0	0	0	0	0	0	0
	TW	3,239	2,424	278	0	1,167	2,206	574	1	2	1	6
m 1 1	VU	919	1,282	136	0	0	119	223	23	0	0	6
Tokelau	CK	0	0	0	125	78	82	152	531	351	237	646
	CN	0	0	0	0	5	57	6	0	3	1	2
	FJ	89	0	1	1	0	0	0	0	0	0	0
	KI	26	0	5	140	91	204	0	0	0	0	0
	TV	134	0	0	0	0	0	0	0	0	0	0
	TW	0	0	0	0	267	174	0	0	3	2	53
	VU	0	0	0	1,601	1,886	510	262	291	305	90	31
	WS	0	0	0	0	119	702	212	1,147	559	230	761
Tonga	CN	12	155	107	61	1	7	13	0	0	0	2
	FJ	29	123	1	2	1	0	131	608	329	543	389
	ТО	20	13	24	29	42	25	23	29	13	10	52
	TW	700	1,179	133	618	1,061	756	664	706	455	269	440
Tuvalu	CK	3	0	0	0	0	0	0	0	0	0	0
	CN	0	3	129	148	271	475	153	78	271	163	248
	$_{\rm FJ}$	548	192	149	64	675	383	140	804	278	14	197
	JP	57	0	0	0	0	0	0	0	0	0	0
	KI	17	0	0	0	0	0	0	0	0	0	0
	KR	19	21	120	94	506	446	546	453	1	1	5
	TV	234	159	77	95	51	123	106	60	5	0	0
	TW	0	87	0	0	0	0	0	0	0	0	0
	US	1	0	0	0	0	0	0	0	0	0	0
	VU	51	1,029	0	5	0	0	0	53	0	0	2
Vanuatu	CK	0	0	0	0	0	0	0	0	0	0	0
	$_{\rm CN}$	$2,\!817$	5,034	4,419	2,295	5,904	5,743	4,423	2,660	3,752	1,220	3,709
	FJ	698	1,080	896	265	580	2,077	1,070	527	479	485	748
	$_{\mathrm{SB}}$	0	0	1,130	$2,\!858$	921	0	0	0	0	0	0
	TW	392	459	83	1	0	0	0	0	0	1	3
	VU	374	246	77	0	0	152	110	8	0	0	56
Wal-Futuna	WF	0	0	0	0	0	0	0	0	0	0	0
Samoa	WS	2,038	1,642	800	840	823	1,638	1,364	1,442	849	761	688
								_		_	_	

 $Table\ 7:\ Annual\ South\ Pacific\ albacore\ troll\ catch\ estimates\ in\ the\ southern\ WCPFC-CA,\ by\ flag,\ 2000-2022.$

Year	Canada	Cook Islands	New Zealand	USA	Total
2000	351	335	3,336	2,433	6,455
2001	206	202	2,736	2,107	$5,\!253$
2002	144	166	3,012	1,337	4,661
2003	0	688	3,721	$1,\!574$	5,984
2004	63	376	3,212	960	4,614
2005	72	89	2,855	576	$3,\!592$
2006	135	121	2,043	587	2,886
2007	27	53	1,736	272	2,088
2008	0	0	$3,\!352$	151	3,503
2009	0	0	1,794	237	2,031
2010	0	0	1,832	307	2,139
2011	1	0	2,787	471	$3,\!259$
2012	0	0	2,727	235	2,962
2013	0	0	2,836	390	3,226
2014	0	21	1,937	445	2,403
2015	0	21	2,425	156	2,602
2016	0	21	1,969	168	$2,\!158$
2017	55	0	1,959	800	2,814
2018	0	1	2,272	441	2,714
2019	0	0	1,907	874	2,781
2020	0	0	2,825	1,926	4,751
2021	31	0	3,383	654	4,068
2022	0	0	2,377	1,400	3,777

Figures

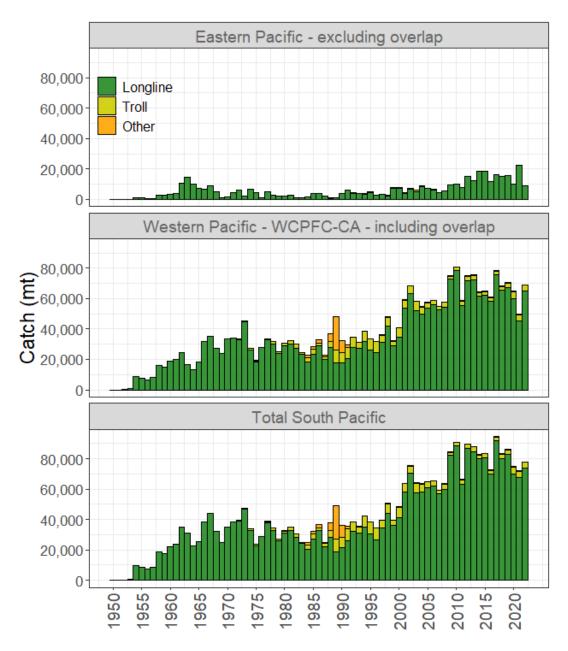


Figure 1: South Pacific albacore catch by gear (all Pacific Ocean waters south of the equator, including archipelagic waters).

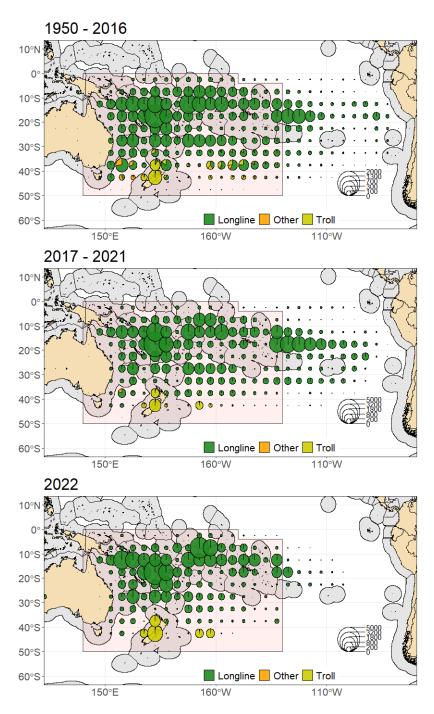


Figure 2: Albacore tuna catch distribution by gear type and $5^{\circ} \times 5^{\circ}$ degree region in the South Pacific Ocean for the period 1950-2016 (top), 2017 -2021 (middle) and 2022 (bottom). Circle size represents total catch volume with maximum circle size presented in the legends.

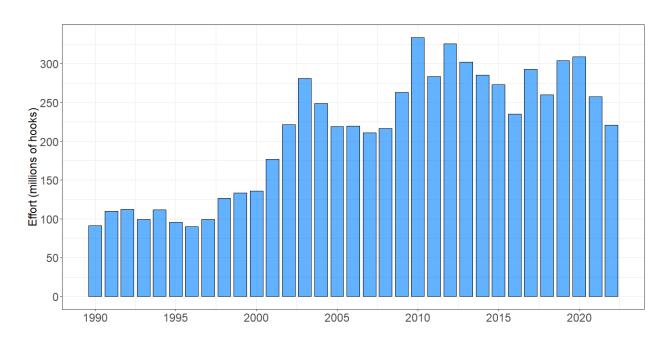


Figure 3: Temporal trends in effort (millions of hooks) in the southern longline fishery (WCPFC-CA south of 10° S).

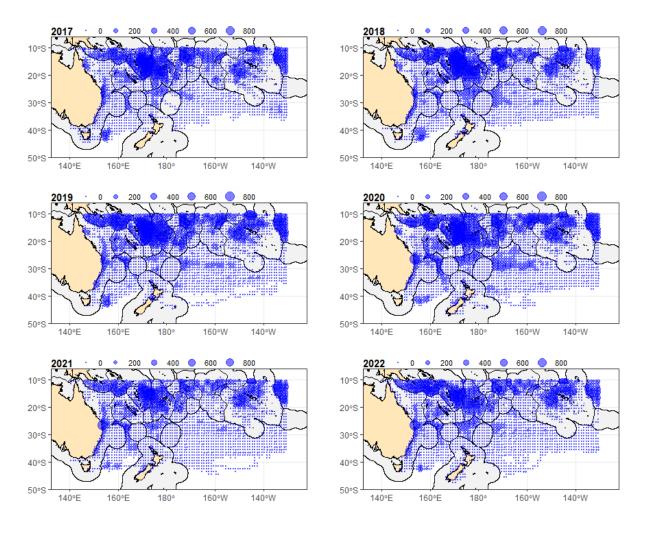


Figure 4: Longline VMS fishing days (augmented by logsheets for New Caledonia and French Polynesia) within the southern WCPFC-CA south of 10°S at the $1^{\circ}\times1^{\circ}$ scale.

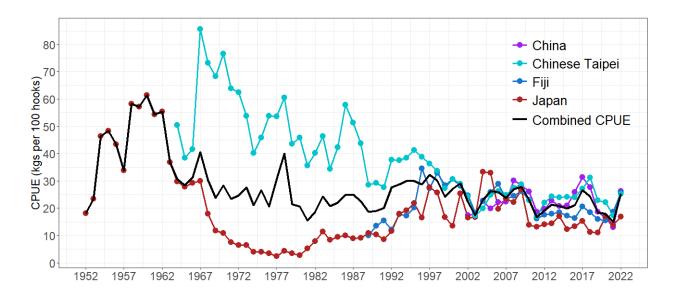


Figure 5: Trends in the nominal CPUE (kg per 100 hooks) over time for key fleets (high, widespread catches) in the southern WCPFC-CA south of 10°S . The black line is the combined CPUE over each of the fleets shown.

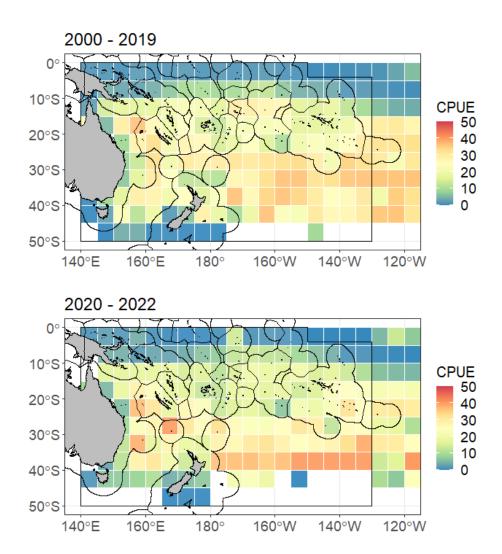


Figure 6: Albacore tuna longline CPUE distribution for the period 2000–2019 (top), and 2020–2022 (bottom). CPUE (kg/100 hooks) for a given $5^{\circ} \times 5^{\circ}$ square is indicated by the colour of the tile.

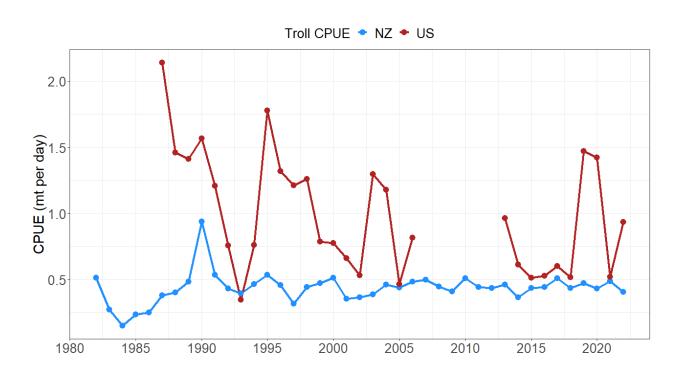


Figure 7: Trends in troll CPUE (albacore $\rm mt/day$) over time in the WCPFC-CA south of 10°S for two troll fleets.

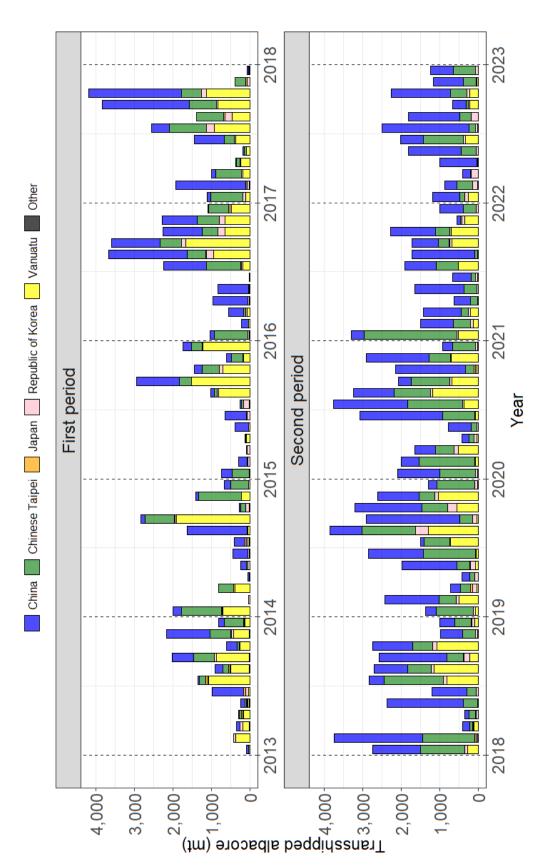


Figure 8: Reported transshipment (mt) by flag and month for 2014 to 2018 (top) and 2019 to 2023 (bottom). Source: WCPFC Transshipment Events Database (12 July 2022).

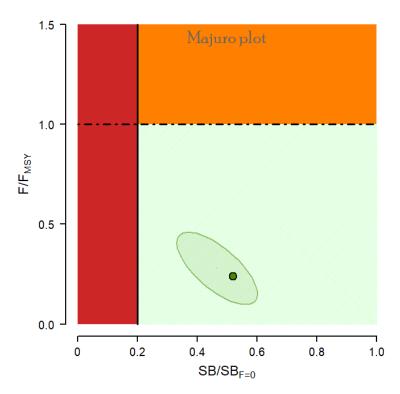


Figure 9: SPA stock status (full south Pacific stock, including EPO), as measured by $SB_{recent}/SB_{F=0}$, and F/F_{MSY} , shown on a Majuro plot. The green point is the median stock status for the 'recent' period and the ellipse indicates the range of uncertainty in stock status from other runs in the structural uncertainty grid.

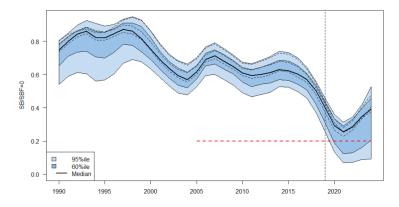


Figure 10: Stochastic projections of adult stock status (WCPFC-CA component of the stock, excluding EPO) from 2019 using actual catch and effort levels between 2020 and 2022, and then through to 2024 assuming 2022 levels continued. The dashed red indicates the limit reference point (20% $SB_{F=0}$). Uncertainty after 2019 represents both structural uncertainty and stochastic recruitment (7,200 simulation runs). The three black dashed lines represent three example trajectories (chosen randomly out of 7,200) from the model grid.

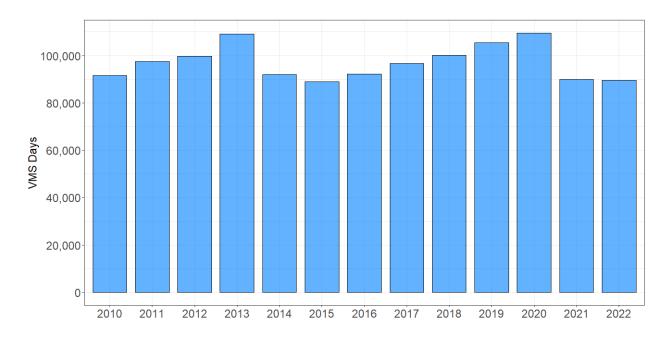


Figure 11: Longline VMS fishing days (augmented by logsheets for New Caledonia and French Polynesia) within the southern WCPFC-CA at the $1^{\circ}\times1^{\circ}$ scale, south of 10° S.

Appendix 1: Notes on the time series of longline VMS information in the South Pacific

This analysis summarises the longline VMS information available to SPC through the FFA and WCPFC over the period 2010-2022, by geographic region of the southern WCPFC-CA. Effort in that database corresponds to fishing days. Please note:

- This analysis uses annual VMS data available up to and including 24 July 2023;
- Effort represents total longline effort, not just that targeted at South Pacific albacore;
- VMS effort presented for EEZs includes that in archipelagic waters;
- Effort data for some countries (e.g. those with domestic longliners not on the FFA VMS system) will not be included within EEZ patterns;
- Effort for some countries (e.g. New Caledonia; French Polynesia) may be incomplete and so data were augmented with logsheets for those two countries;
- Some trends may result from improved VMS coverage of vessels over time;
- EEZ effort excludes the Indonesian EEZ.

Table 8: Total longline VMS fishing days (augmented by logsheets for New Caledonia and French Polynesia) by year for all EEZs and the High Seas (HS), south of 10°S (Figure 12)

Z闰豆	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022
American Samoa	1,648	1,287	1,746	1,661	1,187	937	1,345	2,378	3,185	2,500	2,166	1,735	1,668
Australia	779	1,502	1,274	1,228	1,462	3,447	3,481	4,251	3,883	4,040	4,560	5,573	5,009
Cook Islands	4,358	5,452	9,287	7,488	5,338	3,828	4,884	5,266	4,084	4,639	5,561	4,255	4,807
Fiji	13,516	15,949	17,556	14,262	13,162	13,942	12,668	13,304	14,199	14,412	12,585	11,155	9,832
High seas	20,771	23,223	23,347	31,346	27,151	22,719	19,548	23,858	25,533	27,803	32,037	28,054	22,224
Kiribati	2,390	1,879	2,294	3,564	1,312	1,646	4,040	493	34	1,009	3,126	950	807
Matthew and Hunter	81	106	65	53	92	87	89	54	63	59	1111	102	72
New Caledonia	2,501	2,663	2,696	2,418	2,317	2,266	2,437	2,396	2,479	2,523	2,822	2,738	2,620
Niue	241	25	51	454	387	335	587	420	834	895	826	29	78
New Zealand	320	548	209	269	228	344	295	257	541	831	886	790	744
French Polynesia	5,536	5,814	6,212	7,504	7,875	9,040	9,124	8,334	9,374	9,767	10,085	10,276	11,361
PNG	1,590	757	455	180	52	249	2,156	2,409	3,088	3,827	3,180	3,098	5,679
Solomon Islands	21,362	17,909	15,385	19,341	17,729	14,422	10,259	8,510	14,149	12,458	10,631	9,146	10,690
Tokelau	20	54	37	57	96	1,162	1,512	1,058	458	839	734	604	709
Tonga	131	321	1,944	4,895	1,187	1,738	2,302	1,970	096	2,935	2,398	2,276	1,713
Tuvalu	892	974	634	261	297	302	1,044	1,216	301	508	299	382	323
Vanuatu	14,967	17,998	14,802	12,389	10,903	9,874	12,010	15,648	11,134	11,842	12,730	5,507	8,058
Wallis and Futuna	09	139	225	243	277	300	303	183	156	198	170	140	214
Samoa	26	92	221	497	134	1,508	3,005	3,372	4,175	2,929	2,999	2,077	2,154
Total	91,065	96,676	98,839	108,111	91,186	88,147	91,068	95,376	98,630	104,015	108,529	88,923	88,762
EEZ percent	22	92	92	71	20	74	79	75	74	73	20	89	75
HS percent	23	24	24	29	30	26	21	25	26	27	30	32	25

Table 9: Total VMS fishing days by year in International Waters, south of $10^{\circ} S$ (Figure 12).

2022	286	900,9	12,489	2,637	805	22,224
2021	210	8,745	13,363	4,841	894	28,054
2020	364	8,740	17,672	3,356	1,905	32,037
2019	215	9,689	12,335	3,863	1,702	27,803
2018	574	5,733	13,306	4,622	1,298	25,533
2017	555	8,066	9,243	4,844	1,150	23,858
2016	593	7,348	7,163	3,409	1,036	19,548
2015	380	6,377	11,207	3,062	1,693	22,719
2014	262	7,864	13,136	2,711	3,178	27,151
2013	303	10,474	13,212	2,880	4,478	31,346
2012	248	5,055	10,528	2,295	5,221	23,347
2011	195	4,535	12,559	3,325	2,608	23,223
2010	172	5,505	10,593	2,740	I9 1,760 2,608	20,771
EEZ	12	15	71	18	61	Total

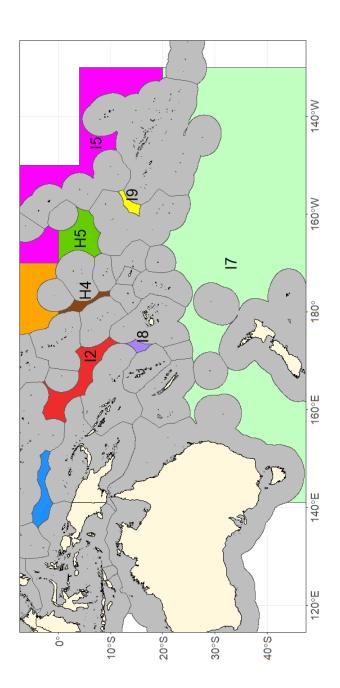


Figure 12: Map of International Waters in the southern WCPFC-CA.

Appendix 2: High Seas transshipment data for albacore based on CMM 2009-06 reporting

The tables below show high seas transshipment data for albacore, by flag, year and month from July 2010–July 2023.

Notes:

- 1. Responsible CCM is the country responsible for reporting for the fishing vessel
- 2. The requirement to report (within 15 days of transshipment) high seas transshipment activities commenced in July 2010.
- 3. The data refer to high seas transshipments inside and outside the WCPFC Convention Area, and it should be noted that a proportion of the catch will likely have been caught within EEZs in the Convention Area and the IATTC Convention area.
- 4. Weights are in metric tonnes.

Table A3-1: Table of albacore transhipments - 2010.

Responsible CCM	Jun	Jul	Aug	Sep	Oct	Nov	Dec
China	0	0	0	166	211	247	17
Chinese Taipei	0	0	115	166	125	148	21
Japan	0	0	1	0	54	35	30
Republic of Korea	0	17	0	22	42	0	6
Vanuatu	0	0	1,435	271	232	522	149
others	0	0	0	0	8	47	6
Total	0	17	1,551	625	672	999	229

Table A3-2: Table of albacore transhipments - 2011.

Responsible CCM	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
China	5	102	25	32	32	30	62	749	35	82	63	28
Chinese Taipei	818	183	899	15	52	194	713	466	347	95	321	407
Japan	11	80	22	0	2	6	1	3	0	32	57	5
Republic of Korea	43	3	46	34	6	17	4	0	1	18	99	6
Vanuatu	100	110	1,020	291	1	14	817	313	62	13	0	341
others	2	0	0	37	8	0	18	2	8	40	0	14
Total	979	478	2,012	409	101	261	1,615	1,533	453	280	540	801

Table A3-3: Table of albacore transhipments - 2012.

Responsible CCM	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
China	68	96	62	151	8	20	306	248	143	29	13	11
Chinese Taipei	100	438	127	92	12	0	327	458	0	53	3	471
Japan	0	31	9	13	2	19	69	97	73	0	13	0
Republic of Korea	4	13	14	5	13	29	34	31	10	6	25	7
Vanuatu	545	108	166	90	2	0	765	185	0	165	105	0
others	3	5	7	0	0	12	1	0	19	9	0	37
Total	720	691	385	351	37	80	1,502	1,019	245	262	159	526

Table A3-4: Table of albacore transhipments - 2013.

Responsible CCM	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
China	59	7	85	25	96	827	30	193	563	283	1,124	159
Chinese Taipei	39	0	5	59	52	2	163	149	541	39	548	499
Japan	0	0	9	38	3	39	60	42	3	15	11	3
Republic of Korea	0	58	61	11	30	83	30	20	38	18	59	19
Vanuatu	0	362	175	165	28	28	1,063	472	865	249	412	130
others	0	0	12	0	20	4	0	20	12	0	7	4
Total	98	427	347	298	229	983	1,346	896	2,022	604	2,161	814

Table A3-5: Table of albacore transhipments - 2014.

Responsible CCM	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
China	228	4	1	32	140	381	278	1,551	116	27	74	178
Chinese Taipei	1,048	2	386	9	32	1	0	0	766	130	1,112	449
Japan	4	3	27	0	2	0	21	0	24	8	0	0
Republic of Korea	34	22	0	12	59	31	47	15	38	84	0	38
Vanuatu	691	0	389	0	0	14	38	59	1,897	1	214	3
others	2	3	0	0	0	8	12	0	0	17	0	0
Total	2,007	34	803	53	233	435	396	1,625	2,841	267	1,400	668

Table A3-6: Table of albacore transhipments - 2015.

Responsible CCM	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
China	274	220	4	0	351	567	32	90	1,102	208	128	231
Chinese Taipei	449	8	13	19	0	10	62	83	330	437	294	275
Japan	2	5	6	2	0	0	1	1	0	6	7	0
Republic of Korea	2	47	61	4	26	68	149	26	0	101	22	22
Vanuatu	9	5	4	92	4	5	9	817	1,508	693	161	1,213
others	0	0	0	0	0	0	0	0	0	0	0	0
Total	736	285	88	117	381	650	253	1,017	2,940	1,445	612	1,741

Table A3-7: Table of albacore transhipments - 2016.

Responsible CCM	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
China	115	189	387	898	783	2	1,116	2,046	1,261	1,028	916	4
Chinese Taipei	874	0	47	6	18	0	902	485	556	400	569	521
Japan	3	0	0	0	0	2	15	12	5	0	10	47
Republic of Korea	37	4	37	29	20	15	27	188	118	189	152	40
Vanuatu	10	28	72	20	0	3	189	937	1,658	642	641	471
others	0	0	0	0	0	0	0	0	0	0	0	0
Total	1,039	221	543	953	821	22	2,249	3,668	3,598	2,259	2,288	1,083

Table A3-8: Table of albacore transhipments - 2017.

Responsible CCM	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
China	91	1,822	109	24	29	772	454	2	2,253	2,404	10	39
Chinese Taipei	841	40	665	95	60	264	972	709	708	526	265	6
Japan	0	0	0	1	0	0	0	34	0	5	43	14
Republic of Korea	72	56	49	18	8	28	193	189	34	130	66	0
Vanuatu	101	13	179	230	80	371	932	461	837	1,122	3	5
others	0	0	0	0	0	0	0	0	0	0	0	0
Total	1,105	1,931	1,002	368	177	1,435	2,551	1,395	3,832	4,187	387	64

Table A3-9: Table of albacore transhipments - 2018.

Responsible CCM	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
China	1,252	2,304	185	118	1,978	907	390	886	1,768	1,043	591	389
Chinese Taipei	1,146	1,365	72	162	367	244	1,549	612	429	515	325	439
Japan	1	30	19	8	0	2	0	0	9	0	0	9
Republic of Korea	74	45	24	56	15	48	87	74	154	107	56	73
Vanuatu	271	5	107	1	0	1	814	$1,\!137$	212	1,074	12	91
others	0	0	0	0	0	0	0	0	0	0	0	0
Total	2,744	3,749	407	345	2,360	1,202	2,840	2,709	2,572	2,739	984	1,001

Table A3-10: Table of albacore transhipments - 2019.

Responsible CCM	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
China	285	1,419	253	198	1,436	1,427	95	824	2,428	1,741	1,070	213
Chinese Taipei	961	433	272	140	333	1,346	666	1,407	332	669	421	991
Japan	0	0	51	0	18	0	0	0	0	0	0	0
Republic of Korea	49	81	110	77	123	15	18	324	121	226	94	69
Vanuatu	72	494	27	2	74	58	716	$1,\!293$	30	558	1,025	18
others	0	0	0	0	0	0	0	0	0	0	0	0
Total	1,367	2,427	713	417	1,984	2,846	1,495	3,848	2,911	3,194	2,610	1,291

Table A3-11: Table of albacore transhipments - 2020.

Responsible CCM	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
China	1,092	454	540	195	605	2,146	1,931	1,066	333	1,826	1,627	268
Chinese Taipei	935	1,462	475	130	138	836	1,423	941	993	228	560	583
Japan	0	0	0	0	0	0	0	0	0	34	0	0
Republic of Korea	47	21	115	71	33	29	53	56	57	43	7	63
Vanuatu	12	60	511	25	1	60	357	1,185	681	23	706	8
others	0	0	0	0	0	0	0	0	0	0	0	0
Total	2,086	1,997	1,641	421	777	3,071	3,764	3,248	2,064	2,154	2,900	922

Table A3-12: Table of albacore transhipments - 2021.

Responsible CCM	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
China	346	865	990	424	1,274	471	801	1,640	682	1,166	108	610
Chinese Taipei	2,401	439	192	194	343	113	576	69	265	367	37	335
Japan	0	0	0	0	0	0	0	0	20	0	0	0
Republic of Korea	45	85	58	7	27	66	9	8	68	40	60	51
Vanuatu	510	115	191	0	0	6	512	3	675	696	353	1
others	0	0	0	0	0	0	0	0	0	0	0	0
Total	3,302	1,504	1,431	625	1,644	656	1,898	1,720	1,710	2,269	558	997

Table A3-13: Table of albacore transhipments - 2022.

Responsible CCM	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
China	710	311	205	966	1,356	603	2,264	1,326	360	1,532	771	594
Chinese Taipei	127	405	22	0	400	1,029	167	303	56	423	333	579
Japan	0	0	0	0	0	0	0	0	0	0	3	0
Republic of Korea	101	138	174	30	47	65	48	181	27	81	27	60
Vanuatu	248	11	0	7	0	327	17	0	222	218	23	0
others	0	0	0	0	0	0	0	0	0	0	0	0
Total	1,186	865	401	1,003	1,803	2,024	2,496	1,810	665	2,254	1,157	1,233