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EXECUTIVESUMMARY
This analysis presents additional work in order to constrain the model grid employed for the
2021 south Pacific blue shark (BSH) stock assessment in theWestern and Central Pacific Ocean
(WCPO). The 2021 stock assessment for BSHwas accepted by the Scientific CommiĴee at SC17.
However, due to a number of uncertainties about the relative merit (model fit, plausibility) of
individual models within the large (3888) model grid, SC17 was hesitant about using such a
large grid to provide management advice. The SC17 recommended improving the manner in
which the grid was selected before approving the results for providing management advice.

The present analysis aĴempted to address these concerns by running a number of standard
diagnostics across all grid model runs to ensure that:

1. models had sufficiently converged and results were robust to jiĴering of starting values;

2. models were consistent and did not show large retrospective paĴerns (as evidenced by
Mohn’s ρ); and

3. models had reasonable predictive skill.

Acknowledging that the stock was not unfished at the start of the assessment, and that
references to unfished biomass may be misleading, as B0 is likely poorly estimated; we also
explored the results using an alternative reference point, namely SB/SBF=0.

Our initial investigation of models in the 2021 assessment grid found that all models appeared
to have converged to global solutions with small gradients for all estimated parameters across
all models, all models had positive definite Hessian solutions, and jiĴering did not lead any
models to find alternative optima, likely due to the low number of estimated parameters.
Retrospective analyses of the 2021 grid showed that only a small number of models had large
retrospective paĴerns, but these models were not consistently associated with a particular
uncertainty axis. The majority of models had Mohn’s ρ values near zero. Filtering by these
diagnostics did not significantly reduce the spread of outcomes from the initial 2021 model
grid.

Given the lack of reduction of over-all uncertainty in the model grid, we further addressed
model assumptions and inputs that were found to drive the spread in uncertainties, namely
CPUE and natural mortality (M ). Assuming low M , for example, accounted for most high
estimates of SB/SBF=0. Alternative CPUE assumptions had high impact, largely driven by
inconsistent trends in early CPUE, and differences in recovery rates in recent CPUE among
alternative indices. The 2021 stock assessment grid ignored process error, thereby placing
high weight on CPUE indices (i.e., assuming high signal and low uncertainty). As a result,
differences in indices were accentuated in grid runs that re-weighted or used alternative CPUE
indices.

Two important decisions lead to a strong reduction in both the number of assessment models
in the grid, as well as the spread of uncertainty in the outcomes. First, estimating M with
an informative prior meant that one structural uncertainty axis could be dropped from the
analysis. An additional two axes that contributed liĴle to over-all outcome uncertainty were
also dropped, resulting in a substantial reduction in the size of the initial (i.e., pre-diagnostic)
grid. In addition, we included allowance for process error in CPUE, which may be large given
unknown reporting trends for sharks. Acknowledging this process error in the models leads
to less extreme trends, for both the diagnostic assessment scenario as well as the new model
grid.
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EstimatingM also allowed for a closer inspection of the relationship between growth andM .
In the previous formulation of the grid, having both growth andM as fixed values allowed for
biologically inappropriate combinations of fast growth and low M . Estimating M alleviated
this to a certain extent however it identified that in order for the fast growth hypothesis to fit
the existing data,M needed to be implausibly large. As a result, the grid was further reduced
by excluding the fast growth scenario.

Lastly, we followed recent analyses that have aĴempted to use various metrics to weight
models in the uncertainty grid. We propose an iterative procedure that first excludes models
that fail diagnostic criteria. We then weighted input axes for remaining models according to
prior probabilities derived from either input analyses or analyst assessments of the relative
utility of different inputs (e.g., CPUE time series). This a priori weighting can then be
supplemented with a posteriori weighting for model fit or predictive skill.

We investigated a range of possible a posterioriweighting measures for the model grid, namely
inverse variance weighting, MASE weights and stacking weights. Using predictive skill in the
form of the MASE criterion did not reduce the outcome space significantly. We suggest that
MASE is largely ameasure of the degree to which a stock is production driven relative to being
recruitment (“regime”) driven. The MASE criterion will likely select for production-driven,
over recruitment driven models, which may or may not be desirable. We show that stacking
weights, weighting the model ensemble directly to maximise model predictive skill, does not
appear to share this property. Over-all none of these model-weighting approaches appeared
to lead to substantial changes in the range of outcomes from the reduced uncertainty grid.
We suggest that more research is required on the topic of model ensemble weighting, and we
therefore formulate our recommendations on the basis of prior (input axis) weighting only.

Taken together, these analyses restrict the number of candidate models from 3888 in the 2021
uncertainty grid, to 228 models in the revised uncertainty grid, and lead to lower uncertainty
compared with the 2021 model grid. Nevertheless, the over-all model conclusions and
recommendations from the 2021 blue shark assessment remain valid. Substantial uncertainties
about inputs and biological parameters remain. Our analyses underscore that for low-
to medium information stocks, such as most sharks, uncertainties in model outcomes are
not necessarily reducible in the short-term. Only improved biological data collection and
recording of interactions with bycatch species will lead to improved precision in stock
assessment. Nevertheless, we suggest that consistency in estimated recent recovery trends,
as well as robustness of these trends to alternative model assumptions provide evidence for
effectiveness of recent non-retention measures for sharks, and BSH in particular.

Although the sensitivity analysis highlighted a number of uncertainties, we found a number
of consistent paĴerns in the outcomes. Based on these consistent trends, and using a restricted,
weighted set of 228 uncertainty grid runs, we conclude that:

• The most influential axis within the reduced uncertainty grid was the initial F
assumption.

• The stock biomass was low throughout the region through the early 2000s following the
expansion of longline fishing effort in the region. But the estimates across the uncertainty
grid of 228 models largely indicated that the stock has been recovering since then.

• All 228 model runs indicate that fishing mortality at the end of the assessment period
was below FMSY and 87% of (weighted) model runs show that the biomass is above
SBMSY (median SBrecent/SBMSY = 1.64 (90th percentiles 0.88 and 1.87; Table 6), with the
median estimated depletion SBrecent/SBF=0 = 0.71 (90th percentiles 0.37 and 0.82), and
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SBrecent/SB0 = 0.80 (90th percentiles 0.43 and 0.90).

• Fishing mortality has declined over the last decade and is currently relatively low with
the median Frecent/FMSY = 0.65 (90th percentiles 0.43 and 0.86; Table 6). This may be a
result of most sharks being released upon capture from by most longline fleets.

• Finally, considered against all conventional reference points the stock on average does
not appear to be overfished and overfishing is not occurring.

Given some of the uncertainties highlighted above, we recommend that SC18 consider:

• Providing more time, either as inter-session projects, or by extending time-frames for
shark analyses. This will allow more thorough investigation of input data quality and
trends, which shape assessment choices. In addition, it would allow input analyses
to be completed in time to be presented to the pre-assessment workshop prior to the
stock assessment. In addition, allowing more time for the assessments themselves will
allow a more thorough investigation of alternative model structures, which may include
comparisons with low-information methods such as spatial risk assessments.

• Increased effort to re-construct catch histories for sharks (and other bycatch species) from
a range of sources. Our catch reconstruction models showed that model assumptions
and formulation can have important implications for reconstructed catches. Additional
data sources, such as log-sheet reported captures from reliably reporting vessels, may
be incorporated into integrated catch-reconstruction models to fill gaps in observer
coverage.

• Additional tagging be carried out using satellite tags in a range of locations, especially
known nursery grounds in South-East Australia and New Zealand, as well as high seas
areas to the north and east of New Zealand, where catch-rates are high. Such tagging
may help to resolve questions about the degree of natal homing and mixing of the stock.

• Tagging may also help to obtain beĴer estimates of natural mortality, if carried out in
sufficient numbers. This could be taken up as part of the WCPFC Shark Research Plan
to assess the feasibility and scale of such an analysis.

• Additional growth studies from a range of locations could help build a beĴer
understanding of typical growth, as well as regional growth differences. Current growth
data are conflicting, despite evidence that populations at locations of current tagging
studies are likely connected or represent individuals from the same population.

• Genetic/genomic studies could be undertaken to augment the tagging work to help
resolve these stock/sub-stock structure paĴerns. To support this work, a strategic tissue
sampling program for sharks is recommended with samples to be stored and curated in
the Pacific Marine Specimen Bank.
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1. INTRODUCTION
Southwest Pacific Blue shark (Prionace glauca) in the Western and Central Pacific Fisheries
Commission Convention Area (WCPFC-CA) were assessed in 2021 (Neubauer et al. 2021a).
That analysis was based on CPUE, reconstructed catch and length frequency analyses
presented in Neubauer et al. (2021b). The assessment, as well as preceeding input analyses,
followed from suggestions in Brouwer and Hamer (2020), stating that conditional on an
appropriate catch reconstruction, an integrated assessment could be aĴempted.

The input data anlyses and stock assessment showed a number of uncertainties that were
captured in the structural uncertainty grid of the assessment. Key uncertainties resulted from
uncertain early fishing mortality (see Neubauer et al. (2021a) for discussion), poor logsheet
reporting and therefore possibly non-representative CPUE, and biolgical assumptions such as
natural mortality and stock structure. As a result of these uncertainties, the stock assessment
produced a large grid ofmodels (3888), which explored these uncertainties in a factorial design.

The large number of uncertainty axes in the 2021 Southwest Pacific blue shark stock assessment
led to a large spread in stock status estimates prompting SC17 to request follow-up work
to scrutinise models within the model grid, as well as to reconsider input assumptions and
reference points, in an effort to constrain the number of models and the spread of outcomes of
the model grid. Specifically, the present project included three objectives: i) a re-examination
of the input data, ii) development of an objective criteria for evaluating the performance of
the proposed models to be included in the final grid used for the management advice, and iii)
evaluation of dynamic reference point for southwest Pacific blue shark.

A preliminary analysis of the 2021 model grid based on a range of diagnostics was
presented to the Pacific Community (SPC) pre-assessment workshop (Hamer 2022). That
analysis suggested that much of the uncertainty in the initial grid was irreducible based on
diagnostics alone, suggesting that the inputs and uncertainty axes themsleves would need to
be reviewed in order to provide a more parsimonious uncertainty grid than that presented in
2021. Following from the initial analysis of the 2021 grid, we therefore revised key model
assumptions that, together, drove much of the spread in outcomes. These changes lead
to a considerable reduction in the over-all structural uncertainty relative to 2021, and we
recommend that stock status estimates (including uncertainty) and trends from the updated
model ensemble be used for management of Southwest Pacific blue shark.

2. METHODS

2.1 Summary of key stock assessment assumptions

Based on inferences from southwest Pacific and global blue shark tagging data, the 2021 stock
assessment for southwest Pacific blue shark was structured into three fleets with respect to
trends in observed length frequencies by fleet, and corresponding trends in CPUE indices:

1. High latitude fleets catching juvenile and mature blue shark south of 35◦South, mainly
in New Zealand and the South Tasman Sea;

2. The EU-Spain fleet fishing at intermediate latitudes to the northeast and northwest of the
New Zealand EEZ, capturing a broad size range from just mature to large individuals
(>250 cm); and

3. Low latitude fleets, capturing largely mature fish, but with a notable absence of large
individuals.
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Catches were reconstructed between 1990 and 2020 using a spatial GLMM model (Neubauer
et al. 2021a). Catch estimates were combined with a model for annual discard rates per flag,
which was used to produce scenarios of total fishing-induced mortalities.

Diagnostic model runs were established on the basis of the CPUE series (Figure 1) that were
found to be the most robust and representative:

1. The New Zealand logsheet CPUE was used to represent relative biomass trends in high
latitudes;

2. EU-Spain CPUE based on reported catches in weight; and,

3. Japanese logsheet CPUE to represent distant water and low-latitude fisheries.

We note here that the diagnostic model in 2021 used estimation error from CPUE as error
on the CPUE index, and indices were therefore initially weighted according to their relative
error (Figure 2). The setup ignored likely process error, a consequence of aĴempts early in the
assessment process to improve fits to CPUE. This assumption is revisited in section 2.3.

2.1.1 2021 structural uncertainty grid

To adequately represent major uncertainties in assessment inputs, the 2021 stock assessment
incorporated nine axes of uncertainty and 3888 models. The grid considered:

1. Catch scenarios: (Table 1) - posterior mean catch (base) and 90th percentile of the
posterior distribution of predicted catches.

2. Discard scenario: (Table 1) - low (25th percentile), mean (base) and high (75th percentile)
estimated discard rates.

3. Initial F: initial fishing mortality associated with equilibrium catch - assuming baseline
F or high (50% higher) initial exploitation.

4. High latitude CPUE: using the New Zealand CPUE series with (base) or without pre-
2004 years (i.e., removing years when logsheet and observer CPUE differ - RM early
New Zealand), or down-weighting both New Zealand and EU-Spain index to 25% of their
original weight in favour of low latitude/high seas indices.

5. Low latitude CPUE: replacing the Japanese index (base) with the Australian low-latitude
index, removing the EU-Spain index.

6. Recruitment deviation: low (σR = 0.2; base), forcing smaller recruitment deviations in
the model (i.e., the model acts more like an age-structured production model; ISC 2018),
or allowing greater variation in recruitment (σR = 0.4).

7. Natural mortality: base (0.2) or low (0.16) M.

8. Survival fraction/density dependent recruitment: Sfrac = 0.391, β = 2 vs. scenarios
described in ISC 2018: Sfrac = 0.378, β = 1 (low) or Sfrac = 0.467, β = 3 (high). Higher
β indicates increased over-compensation.

9. Growth: replacing Manning and Francis (2005) (base) with Joung et al. (2018) growth
equations.
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2.1.2 Referencepoints

Clarke and Hoyle (2014) and Zhou et al. (2018) evaluated methods to derive reference points
for elasmobranchs in the Western and Central Pacific Ocean (WCPO). However, to date,
there are no formally agreed reference points for sharks in the WCPO. Recent assessments
of oceanic whitetip shark, for example, compared fishing mortality to Flim as a tentative limit
reference point for sharks, and to Fcrash, the fishing mortality that would lead to extinction
in the long-term. If one assumes a simple Schaefer surplus production model, then Fcrash =
Rmax, the maximum population growth rate (intuitively, a population cannot be sustained if
fishing removes more individuals than the population can maximally produce), and Flim =
0.75Rmax. Because the versions of these reference points as used in the present assessment
were approximated from integrated stock assessment runs, we use a subscript AS to show
that these are not derived fromRmax, but from Fcrash,AS , as calculated from the stock synthesis
models.

For blue shark, which have higher productivity thanmany other shark species, we also applied
alternative reference points used for target fisheries. These includeMSY based reference points
(i.e., FMSY and SBMSY), as well as spawning biomass relative to spawning biomass at average
initial recruitment levels (SB0) and under current recruitment and F = 0 (SBF=0). We note
that the last reference point is used in tuna and billfish assessments, acknowledging that long-
term average (or unfished) recruitment levels are not necessarily relevant in a dynamic pelagic
environment. In the following we focus on comparisons between SB0 and SBF=0 based
reference points.

2.2 Diagnosing the 2021model grid

Following from comments made by SC17 and subsequent terms of reference for Project 107b:
“Additional work to provide scientific advice for southwest Pacific blue shark (Prionace glauca)
based on the 2021 stock assessment”, we revisited the 2021 structural uncertainty grid in light
of the following criteria:

• Model convergence and stability: the analysis should assess the final gradient (it should
be relatively small; <1e-4), and check that the Hessian matrix is definite. The jiĴer
procedure is applied to verify the stability of the model to evaluate whether the model
has likely converged to a global solution rather than a local minimum.

• Model consistency: Retrospective analysis can be used to check the consistency ofmodel
estimates, for example, the invariance in SB and F as the model is updated with new data
in retrospect.

• Prediction skill: Hindcasting analysis could be done to evaluate the model prediction
skill of the CPUE. When conducting hindcasting, a model is fiĴed to the first part of a
time series and then projected over the period omiĴed in the original fit. Prediction skill
can then be evaluated by comparing the predictions with the observations.

We note that additional information and context was provided by the 2022 CAPAMworkshop
“Model Diagnostics in Integrated Stock Assessments”, held virtually by the Center for the
Advancement of Stock Assessment Methodology between Jan 31th–Feb 3rd 2022.

Goodness-of-fit tests to evaluate whether paĴerns in the residuals of the CPUE and length-
frequency distributions were normally distributed and/or had temporal trends were not used
in a first instance to scrutinise the 2021 model grid. This is due to the poor temporal resolution
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of length frequencies and conflicts in CPUE for some parts of the time-series, which lead
standard diagnostics to provide limited information to scrutinise the models in relative terms.
Nevertheless, the apparent conflicting signals in CPUE make a case for higher process error
than previously assumed in the 2021 BSHmodels. We revisit this issue in the next section and
the Discussion.

2.3 Revisiting thediagnosticmodel input assumptions

Initial scrutiny of the 2021 BSH structural uncertainty grid, as described in the previous section,
did not substantially reduce the model grid based on the proposed diagnostics. However, the
lack of contrast in the model diagnostics with respect to the model grid axes is likely explained
by the stock assessment setup:

• Model convergence and stability: Previous blue shark models employed an iterative
procedure to fix most model parameters, leaving only unfished recruitment and
recruitment deviations to be estimated. It is perhaps not surprising that convergence
and stability are achieved by models with few freely estimated parameters.

• Model consistency: Retrospective paĴerns relate to changes in estimated productivity
as new data is added to the model. Since the 2021 BSHmodel grid fixedmost production
relevant parameters (M, stock recruit parameters, growth), the degree to which the
shape of the estimated production function could changewas also relatively constrained.
Observing only small retrospective paĴerns is therefore not necessarily unexpected.

• Prediction skill: Conflicts in the degree of recent stock rebuilding as well as early CPUE
among the indices included in 2021 BSH models, coupled with low assumed error for
these indices, led to poor predictive performance ofmodels formost indices in allmodels.
However, this is related to fiĴing all indices in the samemodel, highlighting unaccounted
for process error in the assessment model setup.

The last point here is particularly relevant: we previously argued that this acknowledgement
of process error for various input datasets can be made post-hoc (i.e., in interpreting model
fits) — if we acknowledge process and sampling error, then we may be willing to allow
relatively non-satisfactory fits to some datasets, as long as there was sufficient consistency in
the outcomes. However, this argument ignores that the assumed error in the indices will affect
the relative weighting in the stock assessment. As a consequence, the New Zealand CPUE
index, for example, had very high weight relative to other indices, due to low estimation error
in the CPUE standardisation. When applying the procedure advocated by Francis (2011) to
assume total error (estimation plus observation error) – fiĴing a LOESS smoother through the
index and calculating the resulting CV in residuals – the New Zealand index has the highest
total error by a factor of 1.5 relative to high latitude (JP) and EU time-series, which are more
temporally consistent. Consequently, the previous 2021 diagnostic case and model grid may
have over-weighted the New Zealand index, which accounts for a fleet that only accounts for
a relatively small proportion of total fishing mortality.

Based on the above considerations, we applied two important changes to the diagnostic case
model, and re-evaluated the structural uncertainty grid with respect to those changes. First,
we made explicit allowance for process error in indices, as per Francis (2011). We estimated
expected total error by fiĴing a LOESS smootherwith a span of 0.5 to all indices, and calculated
the resulting standard error (in log space). The assumed error for each index was then set to
the maximum of either observation error or total error for each year (i.e., if estimation error
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was higher than the assumed total error for any one year, than that estimation error was used
instead of the total error estimate).

Second, we allowed M to be estimated with an informative prior based on previous
assumptions in the structural uncertainty grid: we previously assumed a base-case value of
0.2 with a sensitivity of 0.16 as a low end of plausible values. To reflect this spread in our prior,
we used a (truncated at zero) normal prior with mean 0.2 and SD 0.025. LeĴing this parameter
be estimated had two important consequences:

1. It allowed us to remove a consequential parameter from the structural uncertainty grid,
and

2. it allows more flexibility in estimated production, as well as allowing trade-offs with
assumed growth.

EstimatingM is oĞen seen as a difficult exercise, butmay be associatedwith smaller assessment
error (Punt et al. 2021). In addition, despite some inconsistencies in CPUE, the stock appears
to react to reductions in catch with increases in all CPUE indices, suggesting that there may be
sufficient contrast in the time-series to estimate natural mortality.

2.4 Structural uncertainty grid for reviseddiagnosticmodel

We sought to revise the 2021 structural uncertainty grid to reduce the number of grid axes and
therefore the number of models. Relative to the previous structural uncertainty grid we note
that:

• Therewas very limiteddifferences betweenmodels runwith different priors forΣR: most
model setups appeared to produce relatively strong recruitment trends, with realisedΣR

usually higher than its prior. Given that this axis did not drive outcomes, it was omiĴed
in the revised (2022) structural uncertainty grid.

• The natural mortality axis was dropped as M was estimated for all models.

• Only high initial F was included as an alternative to assumed initial F values. The
previous assumption of low initial F was regarded as unlikely, and less relevant to
quantify risk of recent harvest levels or future management.

Together, these steps lead to a significant reduction in the total number of initial models from
3888 in 2021 to 648 in 2022. The gridwas then further reduced using diagnostics andweighting
steps in the next section.

2.5 Weighting the structural uncertainty grid

The 2021 presentation of the structural uncertainty grid did not explicitly weight any of the
axes. However, such weighting may be desirable to eliminate implausible models, down-
weight less plausible inputs and to provided a more coherent picture of plausible stock
trajectories. We distinguish three aspects of weighting, the first two weighting axes a priori,
before observing outcomes, and the last weighting a posteriori based on model outcomes.

1. Weighting data inputs or biological axes by their a priori likelihood. Based on our input
analyses, for instance, we can weight axes for catch and discards: low and high estimates
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for these axes correspond to 90% confidence intervals from catch re-construction and
fate (discard) models, respectively. These probabilities can be used directly to weight
outcomes from these uncertainty axes. Weights for these axes are given in table 2.

2. Alternative datasets, such as alternative CPUE indices, may be weighted by analysts
assigning weights to alternative indices. In our case, we may replace the diagnostic-
case index for high-seas/low latitude fisheries based on Japanese high-seas data, with
one based on Australian low latitude (<35 ◦S) fisheries. However, the laĴer index comes
from a more restricted area, and may not reflect the over-all population as well. We
may therefore (arbitrarily) assign a lower weight to models based on this alternative
index. In our case, we initially assigned arbitrary weights of 0.5 to alternative scenarios
in the uncertainty grid, on the basis that the diagnostic case assumptions reflect what we
considered the best available data. It turns out that this weighting has relatively liĴle
influence in the case of the 2022 uncertainty grid, and we therefore did not explore this
weighting any further.

3. Weighting models according to performance criteria is an open research question (e.g.,
Punt 2022). In order for this weighting to be meaningful, a set of objectives needs to be
agreed on, and performance against these objectives measured. Some recent analyses
suggest that predictive ability may be used as an objective measure to judge model
adequacy or to weight models (Kell et al. 2021, Ducharme-Barth et al. 2021). The Mean
Absolute Square Error (MASE) criterion, which measures model predictive skill relative
to a randomwalk, may be used to this end, although a range of other options are available
to weight models based on predictive performance (Dormann et al. 2018). Alternatively
to assessing or weighting individual models based on predictive performance, which
does not guarantee optimal predictive capacity in the resulting ensemble, models may
be weighted such that the resulting ensemble minimises predictive loss functions. The
laĴer approach is known as stacking (Dormann et al. 2018, Yao et al. 2018).

We caution here that the validity of predictivemeasures as tools formodel selection depends on
the context within which these models are employed - in a management seĴing, where long
term responses to harvest policies are of interest, such model selection based on predictive
performance may lead to the selection of sub-optimal harvest or conservation policies
(BoeĴiger 2022). We hypothesize that this phenomenon is due to selection of production-
driven over environmentally (e.g., recruitment regime) driven models. Dynamics of the laĴer
aremore difficult to predict from stock status and productivity alone – they require knowledge
of future environmental states – and may therefore be penalised in such predictive model
selection even in situations where they more truthfully describe the mechanistic process.

Herein we only show how predictive model selection would impact on the a priori weighted
ensemble as an illustrative example. For this purpose, we employed MASE, stacking and
inverse-variance (a model-free weighting procedure, where we used the variance of stock
status estimates to weight models, following Dormann et al. 2018). Stacking was performed
using leave-future-out predictive density, such that weights were determined according to

arg maxKwkf(îxt|ixt, σix),

where îxt is a prediction for index ixt based on a model fiĴed to data from 1 to t − 1. It
therefore selects a set of weights that will optimise predictive performance (weighted by
index uncertainty σix) across all CPUE indices employedwithin the structural uncertainty grid
(within and across models). This formulation is similar to stacking of posterior distributions in
Bayesian models (Yao et al. 2018), but uses index weighting rather than prediction uncertainty
used in Bayesian stacking.
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Given theoretical and practical concerns with predictive model selection, all inferences about
stock status, however, are based on the a prioriweighted ensemble only. Weights for these axes
are given in table 2.

3. RESULTS

3.1 Diagnosing the 2021model grid

Viewing the 2021 structural uncertainty grid in light of SBlatest/SBF=0 rather than
SBlatest/SB0 showed a more consistent grouping of stock status estimates around
SBlatest/SBF=0 =1 (Figure 3). Nevertheless, the model grid also produced a long tail in
status estimates, with SBlatest/SBF=0 of up to 3 and as low as 0.25. The high SBlatest/SBF=0

estimates are possible due to over-compensatory stock-recruit relationships assumed here,
and high status estimates were largely associated with model runs that fixed natural mortality
(M) at low values (Figure 4). Using this alternative reference point therefore did not offer a
consistent reduction in the range of outcomes from the 2021 structural uncertainty grid. We
nevertheless maintained the reference point throughout as it may be regarded as a more ap-
propriate reference point for a stock that was not unfished at the start of our stock assessment
time series, and which is likely subject to long-term fluctuations of the pelagic environment.

Standard convergence and stability diagnostics, such as jiĴering (using a jiĴer fraction of 0.2),
inspecting gradients (Figure 5) and checking for the presence of a positive definite Hessian
suggested that all models converged towards a stable solution.

Retrospective analysis using 6 peels suggested mainly relatively low retrospective trends
in spawning biomass (Figure 6) and fishing mortality (Figure 7), with ρ estimates for both
quantities centered on zero. Very few runs fell outside of thresholds suggested by Hurtado-
Ferro et al. (2015), meaning retrospective analyses do not constrain the 2021 grid runs. Forecast
ability, on the other hand, was found to be relatively poor across all models (all MASE >1;
Figure 8). This result does not come as a surprise given that the model aims to fit three
concurrent CPUE indices, which showdifferent levels of decline and rebuilding in recent years.
As the model fit represents a compromise, no single index it fiĴed particularly well, thereby
compromising the forecast ability of the model for any individual CPUE index.

3.2 Reviseddiagnostic casemodel

The inclusion of additional process error markedly changed the fit to CPUE for the diagnostic
case (Figures 9 vs. Figures 2): relative to the 2021 diagnostic case, which assumed very low
errors for the NZ CPUE index, and which was correspondingly largely driven by that index.
The present analysis provides an improved fit to low-latitude (JP) and EU-Spain CPUE, at the
expense of fit to theNewZealand CPUE index (NZ).While fits to aggregate length-frequencies
did not change (Figures 10), the model is now driven by the CPUE for the fleet which accounts
for the majority of catch and fishing mortality (Figures 11,12).

The updated diagnostic case produced less extreme outcomes than the previous assessment
(Figure 13), largely driven by the more subtle trends in JP CPUE relative to NZ CPUE. The
model estimated a slightly lower initial status, and a substantially lower recent status in terms
of SB0 than the 2021 diagnostic case. As a consequence, the model did not require large
recruitment deviations to explain stock trajectories, with the updated recruitment trajectory
effectively smoothing through previous, much larger fluctuations (Figure 13). This suggests
that themodelwent from amodelwhichwas largely recruitment driven for the 2021 diagnostic
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case, to a model that was largely production driven for the 2022 diagnostic case.

Likelihood profiles revealed that the over-all stock size estimate was still driven by the relative
weighting between the New Zealand and remaining indices (Figure 14), but is now not
dominated by the former. The conflict in CPUE indices therefore supports the continued use
of uncertainty axes that explore relative CPUE weighting. Composition data minima largely
fall in the same area, and slightly lower than those of the aggregate CPUE indices.

Estimated natural mortality was 0.19 (Figure 15), with information mainly derived from
length-frequency data. Similarly to the profile for R0, the CPUE indices were in some
conflict about natural mortality, with the New Zealand index suggesting higher M (near 0.3)
while other CPUE indices favoured lower CPUE near 0.15. Length-frequencies suggested an
intermediate M near 0.2.

MASE suggested limited predictive ability for all indices (Figure 17). Similar to the 2021
outcomes, this is likely a reflection of includingmultiple, not entirely compatible CPUE indices
in the model. Model forecasts are close to naive forecasts, reflecting slow stock variation, but
also reflect the conflict between New Zealand and high latitude series in terms of the degree
of increase in recent years.

3.3 Structural uncertainty grid outcomes

3.3.1 Modelweighting: constraining the uncertainty grid

Applying the same criteria as for the 2021 grid showed similar stability of estimates in terms of
residual gradients, stability to jiĴering of input values, and positive definite Hessian solutions.

The grid results for the updated diagnostic case had a much lower spread of status estimates,
but also showed more diversity in retrospective paĴerns (Figures 18, 19). Many of the most
strongly positive runs had large |ρ| values relative to 2021. Excluding runs with |ρ|>0.2 led
to a reduction of the grid that excluded many models with high stock status. Trends in |ρ|
were not uniquely explained by any one variable, but by combinations of variables (Figure
20). Retrospective bias estimates for SB and F fell either within a cluster relatively close to
zero, or were dispersed away from the main cluster of models at values |ρ| > 0.2. We therefore
used 0.2 as a cutoff value for retrospective paĴerns that were deemed acceptable for inclusion
within the final grid (see also Hurtado-Ferro et al. 2015).

We further found some models had unrealistically high estimates of M (Figures 22), and these
paĴerns were largely associated with assuming fast growing alternative growth curve (i.e.,
Joung et al. 2018). Biological plausibility of M was informed based on reasonable M values
[0.15; 0.27] determined by empirical relationships with growth parameters and maximum age
for large, long lived individuals (Then et al. 2015; see http://barefootecologist.com.au/shiny_m.
html). Models using this growth also had the most extreme recent increases in biomass. Based
on the plausibility of these outcomes, we decided to drop this growthmodel from the analysis.

Restricting the grid tomodelswith relatively small retrospective paĴerns and base growth lead
to a reduction from 648 models to 228 models across the structural uncertainty grid. Notably,
this filtering also removed models with very high estimates of M (Figures 22), leading to a
slightly bi-modal distribution of M estimates for the remaining model runs (Figure 23). While
one mode was centered on the prior (and near the estimate of the diagnostic case of 0.19), a
second mode of M estimates corresponded to slightly higher estimates of M.

Over-all, the reduction in the model grid based on retrospective paĴerns and outcomes for
M and population trajectories, led to a substantial reduction in the range of grid outcomes
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(Figure 25). The procedure did, however, lead to a more strongly apparent bimodal structure
in status estimates for SBlatest/SB0 (top row of Figure 26). Applying weights to the individual
grid axes shows that the peak at lower stock status for SBlatest/SB0 is due to sensitivities
that carry less weight - namely high catch/high initial F estimates. For SBlatest/SBF=0, the
opposite paĴern emerges. For example, while the initial subset by retrospective paĴerns
leads to a more pessimistic picture of status, re-weighting with respect to prior input weights
down-weights lower status estimates. By down-weighting more extreme catch scenarios,
the outcome-density becomes markedly more uni-modal for both reference points, giving a
more consistent picture of likely current depletion levels (middle row in Figure 26). Applying
weights for CPUE axes had relatively liĴle effect on status estimates.

A posteriori weights were not applied in the grid used for management advice, but were
explored as a sensitivity. Weights based on MASE scores for individual models did liĴle
to change the distribution of grid outcomes (Figure 26). Weighting model runs based on
the inverse of the variance for biomass estimates gave a slight emphasis to more pessimistic
model runs, but did not substantially change the over-all picture. Stacking weights had the
comparatively largest impact, effectively further up-weighting outcomeswith low stock status,
though again results were qualitatively similar.

Over-all, our filtering and weighting removed models with the most extreme estimated
recruitment deviations, which also showed themost extreme retrospective paĴerns (Figure 27).
MASE weights favoured models with small average recruitment deviations, whereas stacking
weights did not appear to favour models with low recruitment deviations.

3.3.2 Analysis of theweighteduncertainty grid

Models in the retained grid showed consistent increases for SBF=0 (Figure 28). Models with
larger recruitment deviations were associated with higher recent SBF=0, resulting in lower
estimates of recent status.

Grid models showed high consistency in overall population trajectories (Figure 29, Table 6),
with a median current (latest) stock status at 0.90SB0 (0.79SBF=0), with an 90 percentile range
from 0.49–1.01 SB0 (0.43–0.93SBF=0). Model runs with low current SB were associated with
high initial F estimates, whereas models using the base initial F assumption showed higher
recent status (Figures 30, 32, 33, 31). Relative stock status was only strongly influenced by
these initial F assumptions, with alternative CPUE series axes only accounting for secondary
effects (Figures 31, 32, 33, A-1). Seventy percent of the grid models had a final year biomass
above SBMSY; when accounting formodel weights, the probability that 2020 biomasswas above
MSY was 90%.

MSY varied between amean of 8 400mt for scenarioswith base catch and initial F assumptions,
to up to 25 000 mt for scenarios including high catch and slow growth (Figure 35). The
distribution of MSY had a long tail depending on discard and productivity assumptions, with
90% of weighted grid runs showing aMSY between 7 500 and 16 000 mt.

Fishing mortality reference points were determined by a combination of factors in the grid
models. FMSY was largely driven by the applied stock-recruit assumption, but varied only
slightly from 0.134 to 0.181. Current F relative to FMSY was largely determined by discard
levels and initial F (Figure 35). While the high discard scenario lead to estimates of low F
relative to FMSY (mean 0.33 for those runs), estimates of Flatest/FMSY were as high as 0.66 with
low discard assumptions (Figures 35, 36, 37, 39, 38): Crucially, given relatively low estimated
fishing mortality rates compared to FMSY, no models were estimated to exceed other potential
reference points (Flim,AS, Fcrash,AS; Figures A-2, A-3, A-4, A-5)
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4. DISCUSSION

In this analysis, we aĴempted to constrain a large range of previous models to give a more
consistent picture of Southwest Pacific blue shark stock status based on a subset of plausible
models. To this end, we went beyond simply constraining the initial model grid, and instead
re-defined the diagnostic case on which the model grid was formulated. The rationale for this
decision came from the realisation that; i) model diagnostics provided liĴle contrast to support
the reduction of the initial 2021 structural uncertainty grid, and ii) the lack of contrastwas likely
driven by overly restrictive assumptions in the initial diagnostic case.

These restrictive assumptions for productivity and error associatedwith CPUE time seriesmay
have led to extreme outcomes in the initialmodel grid due tomismatches of parameters among
uncertainty axes. For example, most very high status estimates for SBlatest/SBF=0 in the 2021
model gridwere frommodel runs that had lowM and fast growth, a combination that counters
conventional wisdom that growth and M ought to be correlated (i.e., the M/k invariant).
Such correlations are realised when we estimate M in the revised 2022 grid, highlighting the
implausibility of the high growth model. Consequently, freeing up M in the diagnostic case
served a dual purpose: it not only added additional flexibility to themodel, but it also provided
a diagnostic tool and an additional lens through which assessment grid outcomes could be
further scrutinized for plausibility. In addition, recent advice on estimating M suggests that
it is oĞen beĴer to estimate M than to apply fixed values (Punt et al. 2021), and in our case,
likelihood profiles support the estimation of M.

The most notable difficulty in assessing the merit of shark stock assessments is the difficulty
in judging the usefulness of input data. Many diagnostics (e.g., residuals, predictive model
checks), treat stock assessments input as the ground truth. However, it is oĞen difficult to
know the degree of uncertainty in inputs, especially for bycatch species where inputs are oĞen
derived in a series of more-or-less complex analyses of oĞen poorly representative data. The
degree to which input analyses can overcome fundamental deficiencies in the data, such as
reporting trends, is oĞen difficult to ascertain. As a result, applying standard diagnostics
for model fit to “data” may provide insights into systematic deviations from inputs (e.g.,
systematically poor fits to CPUE), however, the interpretation of such deviations is more
difficult than their statistical formulation suggests. Inconsistencies in CPUE trends for blue
shark, for example, suggest process error affecting one or all series. It is near impossible
to partition the process error robustly between the different CPUE series, yet the amount of
assumed process error will dictate the numerical value or passing of statistical tests (e.g., runs
tests of CPUE residuals).

Here, we reversed previous decisions to not explicitly assign process error, and to account for
process error in the interpretation of model fits. We assigned process error on the basis of
the method proposed in (Francis 2011), but we note that this procedure corresponds to only
one assumption about process error, and it ignores CPUE inconsistencies. Nevertheless, from
a technical and practical perspective, including additional process error in CPUE led to less
extreme trends in model runs, and provided a more consistent set of outcomes.

Selecting the suite of models for advice based on an ensemble of models is an ongoing area
of research. One that is unlikely to be definitively resolved as thresholds for particular
diagnostics, such as retrospective paĴerns, likely depend on life history as well as individual
stock trajectories (Hurtado-Ferro et al. 2015). In addition, in terms of managing risk of
management policies, it is oĞen not clear that the “right” model can be determined from
diagnostics alone, and may only be found from applying management and observing stock
responses over time (Walters 1981, BoeĴiger 2022). In that context it may be more important
to consider alternative productivity assumptions, such as those considered in the structural
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uncertainty grid (Figure 40).

We employed weighting on the basis of prior biological and technical aspects to constrain the
model grid from an initial set of 648 models in the revised 2022 uncertainty grid (reduced from
3888 in 2021) to a set of 228 weighted models. While model consistency from retrospective
analysis is difficult to interpret, it does provide a way to eliminate highly inconsistent models.
Biological plausibility is more easily determined. For example, models with growth modeled
by parameters in Joung et al. (2018) gave estimates ofM that were inconsistent with the prior,
suggesting a mismatch between that data and other biological assumptions. Weighting on
the basis of elicited prior weights, for example from the catch reconstruction, is a reasonably
interpretable and straightforward process given posterior distributions for predicted catch and
discards from the catch reconstruction and fate model, respectively.

Ducharme-Barth et al. (2021) highlighted some of the difficulties with furtherweighting of grid
axes based on model performance, such as predictive performance, noting it is oĞen unclear a
priori how much weight such a measure should carry, especially if more than one measure is
applied. In addition, wedo not understandwell enoughwhat featuresmeasures such asMASE
select for and how such selection interacts with estimates of risk associated with management
decisions (BoeĴiger 2022). We suggest that MASE is largely a measure of the degree to which a
stock is production driven relative to being recruitment (“regime”) driven. TheMASE criterion
will likely select for production-driven, over recruitment driven models, which may or may
not be desirable. We suggest that future research into the application of measures of model
predictive capacity to weight models needs to assess the degree to which these measures may
affect risk estimates for different types of stocks (e.g., production vs. recruitment regimedriven
stocks). For models remaining in the blue shark grid aĞer initial filtering, the three metrics we
explored had liĴle effect.

Over-all, the weighted model grid removed some of the more optimistic models leaving a
set of models with SBlatest/SB0 similar to the initial 2021 grid, but with lower estimates
of SBlatest/SBF=0. Most notably, extreme values of stock status well beyond values of
SBlatest/SBF=0 =1 are not a part of the present grid, and the distribution of stock status
is largely uni-modal with relatively constrained estimates. However, we also note that the
use of dynamic reference points in the context of shark life-histories is poorly explored,
and interpretation of SB/SBF=0 is made more difficult by the assumed stock recruitment
assumption, which is over-compensatory at parameter values used here. This may lead
to non-intuitive outcomes of SB >SBF=0 because recruitment at lower SB is higher than
in the unfished state, leading to non-trivial interactions between fished stock levels and
recruitment dynamics. Reference points based on SBF=0 are conditioned on estimates of the
laĴer, the determination of which places considerable faith in the functional form recruitment
assumptions and deviations. These may be poorly estimated or represent process error that
does not reflect productivity shiĞs, especially in models without age or informative length
data to constrain recruitment estimates. Future assessments could consider switching to
more straightforward stock-recruitment assumptions such as Beverton-Holt (ISC 2022) to
facilitate interpretation of status with respect to dynamic reference points, and explore how
the estimation of dynamic reference points interacts with stock-recruit assumptions.

Uncertainty from the 2022 uncertainty grid did not account for estimation uncertainty
and as a result is an underestimate of total uncertainty from the ensemble. While
mean/median estimates will be largely unaffected, this could impact the level of risk with
overfishing/overfished status (Ducharme-Barth and Vincent in press). We found that, in
practice, estimation uncertainty was small relative to structural uncertainties (Figure 41).
Nevertheless, future assessments should aim to include both types of uncertainty in reporting
from the structural uncertainty grid.
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We further highlight that the restriction of the grid outcomes was largely determined by the
redevelopment of the diagnostic case and associated changes in the spread ofmodel outcomes,
as well as by the application of relatively straightforward filters. Diagnostics and filtering tools
need to be interpreted in the context of the input data and modelling decisions. For sharks,
there will always remain unanswerable questions about input data, and likely a paucity of
biological data on which to structure assessments. We therefore suggest that assessments in
this context need to strike a balance between exploring uncertainty due to input and biological
unknowns, and finding a set of models that is consistent with best available data.

We suggest that our updated model grid and associated weights provide such a set of
models, which acknowledge unknown process error (by varying CPUEweights and dropping
conflicting time series, e.g., early NZ CPUE), uncertainty in production (by estimating M) and
input data (via uncertainty on initial F and catch). The models nevertheless show a consistent
picture of recent rebuilding of the stock due to reductions in catch and associated fishing
mortality. We therefore retain most of our conclusions and recommendations from the 2021
blue shark assessment model presented to SC17.

4.1 MainAssessmentConclusions

• The most influential axis within the reduced uncertainty grid was the initial F
assumption.

• The stock biomass was low throughout the region through the early 2000s following the
expansion of longline fishing effort in the region. But the estimates across the uncertainty
grid of 228 models largely indicated that the stock has been recovering since then.

• All 228 model runs indicate that fishing mortality at the end of the assessment period
was below FMSY and 87% of (weighted) model runs show that the biomass is above
SBMSY (median SBrecent/SBMSY = 1.64 (90th percentiles 0.88 and 1.87; Table 6), with the
median estimated depletion SBrecent/SBF=0 = 0.71 (90th percentiles 0.37 and 0.82), and
SBrecent/SB0 = 0.80 (90th percentiles 0.43 and 0.90).

• Fishing mortality has declined over the last decade and is currently relatively low with
the median Frecent/FMSY = 0.65 (90th percentiles 0.43 and 0.86; Table 6). This may be a
result of most sharks being released upon capture from by most longline fleets.

• Finally, considered against all conventional reference points the stock on average does
not appear to be overfished and overfishing is not occurring.

Given some of the uncertainties highlighted above, we recommend that SC18 consider:

• Providing more time, either as inter-session projects, or by extending time-frames for
shark analyses. This will allow more thorough investigation of input data quality and
trends, which shape assessment choices. In addition, it would allow input analyses
to be completed in time to be presented to the pre-assessment workshop prior to the
stock assessment. In addition, allowing more time for the assessments themselves will
allow a more thorough investigation of alternative model structures, which may include
comparisons with low-information methods such as spatial risk assessments.

• Increased effort to re-construct catch histories for sharks (and other bycatch species) from
a range of sources. Our catch reconstruction models showed that model assumptions
and formulation can have important implications for reconstructed catches. Additional
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data sources, such as log-sheet reported captures from reliably reporting vessels, may
be incorporated into integrated catch-reconstruction models to fill gaps in observer
coverage.

• Additional tagging be carried out using satellite tags in a range of locations, especially
known nursery grounds in South-East Australia and New Zealand, as well as high seas
areas to the north and east of New Zealand, where catch-rates are high. Such tagging
may help to resolve questions about the degree of natal homing and mixing of the stock.

• Tagging may also help to obtain beĴer estimates of natural mortality, if carried out in
sufficient numbers. This could be taken up as part of the WCPFC Shark Research Plan
to assess the feasibility and scale of such an analysis.

• Additional growth studies from a range of locations could help build a beĴer
understanding of typical growth, as well as regional growth differences. Current growth
data are conflicting, despite evidence that populations at locations of current tagging
studies are likely connected or represent individuals from the same population.

• Genetic/genomic studies could be undertaken to augment the tagging work to help
resolve these stock/sub-stock structure paĴerns. To support this work, a strategic tissue
sampling program for sharks is recommended with samples to be stored and curated in
the Pacific Marine Specimen Bank.
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7. TABLES

Table 1: Description of the 8 catch scenarios used in the stock assessment. The scenario used for
the diagnostic case is highlighted in bold. The total mortality is the cumulative mortality assumed
for individuals from the time they are hooked to after they are released back to the water. Further
information, seeNeubauer et al. (2021a).

Catch scenario Catch levels Discard and post-release-mortality

Catch (Post exp) Mean 100%mortality on all catches, inde-
pendently of discard status

Low Disc. (Post exp) Mean 25% quantile of posterior distribu-
tion of annual discard rates; 17%
post-release mortality

Mean Disc. (Post exp) Mean Posterior mean of annual discard
rates; 17% post-release mortality

High Disc. (Post exp) Mean 75% quantile of posterior distribu-
tion of annual discard rates; 17%
post-release mortality

High Catch (90%) 90th quantile 100%mortality on all catches, inde-
pendently of discard status

Low Disc (90%) 90th quantile 25% quantile of posterior distribu-
tion of annual discard rates; 17%
post-release mortality

Mean Disc (90%) 90th quantile Posterior mean of annual discard
rates; 17% post-release mortality

High Disc (90%) 90th quantile 75% quantile of posterior distribu-
tion of annual discard rates; 17%
post-release mortality

Table2: Description of the seven axes for the updated2022 structural uncertainty grid. Base settings
used under the diagnostic case are highlighted in bold. Weights used for alternative values in the
weighting of the grid axes are given in parentheses .

Axis Description

Catch scenario Base (0.9), high (0.1)
Discard scenario Low (0.25), base (0.5), high (0.25)
Initial F base (0.9), high (0.1)
High latitude CPUE Base (1), low weight (0.5), remove

(RM) early New Zealand (0.5)
Low latitude CPUE Japan (1), Australia (0.5), remove

EU CPUE (0.5)
Survival fraction Base, low, high
Growth Manning and Francis (2005), Joung

et al. (2018)
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Table 3: Description of the symbols used in the yield and stock status analyses. In this assessment,
‘recent‘ is the average of themetric over the period 2017–2020, and ‘latest‘ is 2020.

Symbol Description

Clatest Catch in the last year of the assessment (2020)
Crecent Catch in a recent period of the assessment (2017–2020)
MSY Equilibrium yield atMSY
SB0 Equilibrium unfished spawning biomass under average recruitment

SBF=0 Average spawning biomass predicted in the absence of fishing and using
estimated recruitment deviations for the period 2010–2019.

SBMSY Spawning biomass that will produceMSY
SBlatest Spawning biomass in the last year of the assessment (2020)
SBrecent Spawning biomass in a recent period of the assessment (2017–2020)

SBlatest/SB0 Spawning biomass in the latest time period (2020) relative to the equilibrium
spawning biomass under F = 0 and average recruitment

SBrecent/SB0 Spawning biomass in the recent time period (2017–2020) relative to the
equilibrium spawning biomass under F = 0 and average recruitment

SBlatest/SBF=0 Spawning biomass in the latest time period (2020) relative to the average
spawning biomass predicted in the absence of fishing and using estimated
recruitment deviations for the period 2010–2019.

SBrecent/SBF=0 Spawning biomass in the recent time period (2017–2020) relative to the average
spawning biomass predicted in the absence of fishing and using estimated
recruitment deviations for the period 2010–2019.

SBlatest/SBMSY Spawning biomass in the latest time period (2020) relative to that which will
produce the maximum sustainable yield (MSY )

SBrecent/SBMSY Spawning biomass in the recent time period (2017–2020) relative to that which
will produce the maximum sustainable yield (MSY )

FMSY Fishing mortality producing the maximum sustainable yield (MSY )
FlimAS , Fishing mortality resulting in 0.5 of SBMSY

FcrashAS Fishing mortality resulting in population extinction when sustained on the
long-term

Flatest/FMSY Average fishing mortality-at-age for the last year of the assessment (2020)
Frecent/FMSY Average fishing mortality-at-age for a recent period (2017–2020)

Flatest Latest fishing mortality (2020) compared to that producing maximum
sustainable yield (MSY )

Frecent Recent fishing mortality (2017–2020) compared to that producing maximum
sustainable yield (MSY )

Flatest/FlimAS Latest fishing mortality (2020) compared to that resulting in 0.5 of SBMSY

Frecent/FlimAS Recent fishing mortality (2017–2020) compared to that resulting in 0.5 of
SBMSY

Flatest/FcrashAS Latest fishing mortality (2020) compared to that resulting in population
extinction

Frecent/FcrashAS Recent fishing mortality (2017–2020) compared to that resulting in population
extinction
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Table 4: Summary of reference points for the subset of 648 grid models in the structural uncertainty
grid, before sub-setting and re-weighting of grid axes.

Mean Median Min 10% 90% Max

Clatest 6176 6224 3505 3840 8992 9601
Crecent 7085 7429 4133 4508 9301 9864
MSY 27082 12500 8968 9734 114242 133588
SB0 51779 21340 12776 15452 198755 250137
SBF=0 53092 24356 13490 16697 197250 233167
SBMSY 25965 10446 6098 7557 100582 127141
SBlatest 48322 17101 10836 12878 237144 278838
SBrecent 47828 15677 11007 12299 248124 291087
SBlatest/SB0 0.85 0.88 0.42 0.49 1.12 1.23
SBrecent/SB0 0.80 0.82 0.37 0.43 1.07 1.28
SBlatest/SBF=0 0.79 0.79 0.32 0.43 1.18 1.29
SBrecent/SBF=0 0.74 0.74 0.29 0.37 1.14 1.29
SBlatest/SBMSY 1.72 1.79 0.85 0.99 2.32 2.47
SBrecent/SBMSY 1.62 1.69 0.76 0.87 2.12 2.53
FMSY 0.174 0.173 0.134 0.141 0.210 0.231
Flim,AS 0.277 0.274 0.211 0.224 0.336 0.374
Fcrash,AS 0.396 0.393 0.299 0.318 0.479 0.538
Flatest 0.069 0.074 0.003 0.007 0.114 0.153
Frecent 0.084 0.087 0.004 0.008 0.141 0.176
Flatest/FMSY 0.41 0.42 0.01 0.03 0.70 0.78
Frecent/FMSY 0.50 0.52 0.02 0.04 0.88 1.06
Flatest/Flim,AS 0.26 0.26 0.01 0.02 0.44 0.50
Frecent/Flim,AS 0.32 0.33 0.01 0.02 0.55 0.68
Flatest/Fcrash,AS 0.18 0.19 0.01 0.02 0.31 0.35
Frecent/Fcrash,AS 0.22 0.23 0.01 0.02 0.39 0.48
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Table 5: Summary of reference points and stock status for the subset of 228 grid models in
the structural uncertainty grid, after sub-setting the grid for model runs that showed acceptable
retrospective patterns and estimates for naturalmortality, but beforeweighting of grid axes.

Mean Median Min 10% 90% Max

Clatest 6183 6421 3707 3876 8919 9601
Crecent 7042 7514 4322 4513 9247 9577
MSY 13976 13765 8968 9564 18737 25629
SB0 27533 22828 15686 19042 37955 53503
SBF=0 31556 27905 17559 20335 44692 66434
SBMSY 13432 11162 7564 9095 18703 26684
SBlatest 18099 17101 12973 13832 24631 38004
SBrecent 16017 15257 11320 12139 21686 33654
SBlatest/SB0 0.71 0.69 0.42 0.45 0.96 1.19
SBrecent/SB0 0.63 0.60 0.37 0.39 0.84 1.05
SBlatest/SBF=0 0.63 0.60 0.32 0.38 0.89 1.29
SBrecent/SBF=0 0.56 0.53 0.29 0.33 0.79 1.15
SBlatest/SBMSY 1.45 1.44 0.85 0.91 1.94 2.47
SBrecent/SBMSY 1.29 1.25 0.76 0.81 1.71 2.19
FMSY 0.148 0.147 0.134 0.136 0.162 0.181
Flim,AS 0.235 0.232 0.211 0.215 0.255 0.291
Fcrash,AS 0.335 0.331 0.299 0.306 0.367 0.419
Flatest 0.078 0.078 0.039 0.051 0.104 0.120
Frecent 0.098 0.095 0.048 0.065 0.133 0.160
Flatest/FMSY 0.53 0.54 0.24 0.34 0.72 0.78
Frecent/FMSY 0.67 0.65 0.30 0.43 0.94 1.06
Flatest/Flim,AS 0.33 0.34 0.15 0.21 0.46 0.50
Frecent/Flim,AS 0.42 0.41 0.19 0.27 0.60 0.68
Flatest/Fcrash,AS 0.23 0.24 0.11 0.15 0.32 0.35
Frecent/Fcrash,AS 0.30 0.29 0.13 0.19 0.42 0.48
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Table 6: Summary of reference points and stock status for the subset of 228 grid models in
the structural uncertainty grid, after sub-setting the grid for model runs that showed acceptable
retrospective patterns and estimates for natural mortality. Grid axes are weighted by prior input
weights.

Mean Median Min 10% 90% Max

Clatest 5965 5671 3707 3978 7593 9601
Crecent 6912 6744 4322 4596 8926 9577
MSY 11413 9993 8968 9313 16333 25629
SB0 22772 20603 15686 18524 32263 53503
SBF=0 25894 22658 17559 20161 38033 66434
SBMSY 11104 9985 7564 9008 15854 26684
SBlatest 18420 17904 12973 15902 20424 38004
SBrecent 16344 15907 11320 14000 17670 33654
SBlatest/SB0 0.85 0.90 0.42 0.49 1.01 1.19
SBrecent/SB0 0.76 0.80 0.37 0.43 0.90 1.05
SBlatest/SBF=0 0.76 0.79 0.32 0.43 0.93 1.29
SBrecent/SBF=0 0.67 0.71 0.29 0.37 0.82 1.15
SBlatest/SBMSY 1.75 1.84 0.85 1.00 2.10 2.47
SBrecent/SBMSY 1.55 1.64 0.76 0.88 1.87 2.19
FMSY 0.144 0.142 0.134 0.136 0.158 0.181
Flim,AS 0.228 0.225 0.211 0.214 0.248 0.291
Fcrash,AS 0.325 0.320 0.299 0.304 0.351 0.419
Flatest 0.073 0.072 0.039 0.051 0.093 0.120
Frecent 0.094 0.094 0.048 0.065 0.117 0.160
Flatest/FMSY 0.51 0.52 0.24 0.35 0.67 0.78
Frecent/FMSY 0.65 0.65 0.30 0.43 0.86 1.06
Flatest/Flim,AS 0.32 0.33 0.15 0.22 0.43 0.50
Frecent/Flim,AS 0.41 0.41 0.19 0.27 0.55 0.68
Flatest/Fcrash,AS 0.23 0.23 0.11 0.15 0.30 0.35
Frecent/Fcrash,AS 0.29 0.29 0.13 0.19 0.39 0.48
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Figure 1: Standardised (circles with standard error) CPUE indices for CCMs included in the logsheet
CPUE analyses. The Chinese–Taipei observer CPUE is included for comparison. To aid comparison
between high- and low- latitude CPUE series, the high-latitude indices were lagged by 5 years and
re-plotted (blue CPUE) with the low-latitude indices; 4-5 years is the apparent lag given length
frequencies observed in the high latitude fisheries.
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Figure 2: Observed (grey dots) vs. predicted (blue line) CPUE on the log-scale for index longline
fleets under the 2021 diagnostic case, with vertical light grey bands showing the 95% confidence
interval for each year’s index.
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Figure 3: Stock trajectories relative to reference points (SB0 or SBF=0) for model runs in the 2021
structural uncertainty grid (left plots). Latest stock status (SBlatest/SB0 or SBlatest/SBF=0) is
graphed on right panels, and trajectories are coloured by latest stock statuswith regards toSB0.
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Figure4: Decision tree forSBlatest/SBF=0 across the2021structural uncertainty grid for blue shark:
positive (‘yes‘) values for each split are on the left, leafs on the decision tree show themean value of
SBlatest/SBF=0 by leaf, as well as the percentage of records on that leaf.
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Figure 5: Stock trajectories relative to reference points (SB0 or SBF=0) for model runs in the 2021
structural uncertainty grid (left plots). Latest stock status (SBlatest/SB0 or SBlatest/SBF=0) is
graphed on right panels. Trajectories and status are coloured by gradients exceeding an arbitrary
threshold value that appeared to dividemodel runs along growth assumptions.

Figure6: Stock trajectories relative to referencepoints(SBlatest/SB0 orSBlatest/SBF=0)formodel
runs in the 2021 structural uncertainty grid for blue shark, coloured byMohn’s ρ for spawning biomass
estimates.
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Figure7: Stock trajectories relative to referencepoints(SBlatest/SB0 orSBlatest/SBF=0)formodel
runs inthe2021structuraluncertaintygridforblueshark,colouredbyMohn’sρ forfishingmortality(F)
estimates.

Figure8: Stock trajectories relative to referencepoints(SBlatest/SB0 orSBlatest/SBF=0)formodel
runs in the 2021 structural uncertainty grid for blue shark,coloured by averagemean absolute square
error (MASE) across 6 peels used for cross-validation
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Figure 9: Observed ( grey dots) vs. predicted (blue line) CPUE on the log-scale for index long-
line fleets under the 2022 diagnostic case, with vertical light grey bands showing the 95% confidence
interval for each year index.
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Figure 10: Observed (grey bars) vs. predicted (coloured line) catch-at-length for each fleet
aggregated over all years for the 2022diagnostic case.
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Figure 11: Catch by fleet in biomass and numbers for the 2022diagnostic case.
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Figure12: Fishingmortality by fleet estimated for the2022diagnostic caseover the time-spanof the
assessment.
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Figure 13: Total biomass, recruitment and spawning biomass for the 2022diagnostic case estimated
between1995–2020.
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Figure 14: Relative change in log-likelihood for different values of LN(R0) for the 2022 diagnostic
case. The top panel shows the total likelihood and contribution by each component. The bottom
panelsshowindividualcomponentsbyfleet for theCPUE(left)andcatch-at-lengthdata(right). The
dotted line shows the value forLN(R0) estimated under the diagnostic case.
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34 Stock assessment update of Southwest Pacific blue shark



Figure 16: Retrospective patterns of spawning biomass and fishingmortality for the 2022 diagnostic
case, comparedwith estimated uncertainty intervals.
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Figure 17: MASE for predictions from the model (coloured points) relative to a naive prediction
(blue) for the 2022diagnostic case.
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Figure 18: Stock trajectories relative to reference points (SBlatest/SB0 or SBlatest/SBF=0) for
model runs in the 2022 structural uncertainty grid for blue shark, coloured by Mohn’s ρ for spawning
biomass estimates. Models with |ρ| > 0.2were excluded from subsequent analyses.

Figure19: Stock trajectories relative to reference points (SBlatest/SB0 orSBlatest/SBF=0) for 648
model runs in the 2022 structural uncertainty grid for blue shark, coloured by Mohn’s ρ for fishing
mortality (F) estimates. Models with |ρ| > 0.2were excluded from subsequent analyses.
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Figure 20: Decision tree for Mohn’s ρ for spawning biomass (top) and fishing mortality (F; bottom)
across 648 models in the 2022 structural uncertainty grid for blue shark: positive (‘yes‘) values for
each split are on the left, leafs on the decision tree show the mean value of ρ by leaf, as well as the
percentage of records on that leaf.
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Figure 21: Mohn’s ρ for spawning biomass and fishing mortality across the 648 models in the 2022
structural uncertainty grid for blue shark.
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Figure 22: Stock trajectories relative to reference points (SBlatest/SB0 or SBlatest/SBF=0) for
648 model runs in the 2022 structural uncertainty grid for blue shark, coloured by estimated natural
mortality (M)estimates.
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tree show themean value ofM by leaf, as well as the percentage of records on that leaf.
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Figure25: Estimateddepletion level asSBlatest/SB0 orSBlatest/SBF=0 for 648models in the2022
structural uncertainty grid for blue shark before (top), and after discarding model runs based on
retrospective patterns and consideration for M (but before weighting model axes). 228 models
remained after discarding implausiblemodels.
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Figure 26: Three step procedure to constrain andweight the 2022 structural uncertainty grid for blue
shark. In Step 1 (top panels), the initial set of 648 models shown as dashed density of spawning
biomass (SB) relative to reference points (SBlatest/SB0 orSBlatest/SBF=0) is subset by excluding
modelswith strong retrospectivepatterns in spawningbiomass(thinorange line)andfishingmortality
(thickorange line). This subset of(440)models is thenweighted(Step2; second row)according to
a priori weights for grid axes for catch/discard assumptions (thin green line), which down-weights
assumptions of high catch, leading to more constrained distribution of outcomes. CPUE index
assumptionsonlyadjust thisensemble inaminorway(thickgreen line). Modelweights frompredictive
model checks were not applied for further reporting but are illustrated in step 3 (bottom row; MASE -
light grey, inverse variance weighting - mid-grey, stacking weights - dark grey) relative to the a priori
weighted ensemble (green dashed line).
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Figure 27: Mohn’s ρ for spawning biomass and fishing mortality, MASE and stacking weights relative
to the standard deviation of estimated recruitment deviations (realised sigmaR). For stacking
weights, points show stacking weights before applying filtering with respect to ρ andM ; crosses show
re-calculated stacking weights post-filtering. Colours indicate if models were retained (TRUE) or
removed(FALSE)based on retrospective patterns and consideration forM .
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Figure 28: Evolution of dynamic B0 (SBF=0) as a function of realised sigmaR for 228 models
retained in the 2022 structural uncertainty grid for blue shark, with shading indicating model weight.
Corresponding trends inSBlatest/SBF=0 are given for comparison.
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Figure 29: Median and inter-quartile bounds for depletion in spawning biomass for each structural
uncertainty axis, colour-code by the level used for each axis and weighted by input model weights
across228models. Thehorizontal grey linesareplacedat intervalsof25% in the lowerpartof thegraph
to aid visualization.
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Figure 30: Prediction of depletion in spawning biomass for each structural uncertainty grid run, with
onepanel foreachgridaxishighlighting thedifferent levelswithin. Transparency reflectsmodelweights
across228models. Thehorizontal grey linesareplacedat intervalsof25% in the lowerpartof thegraph
to aid visualization.
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Figure 31: Decision trees weighted by input model weights across 228 models in the structural
uncertainty ensemble: positive (‘yes‘) values for each split are on the left, leafs on the decision tree
show themean value (SB0 orSBlatest/SB0 orSBlatest/SBF=0)by leaf, as well as the percentage of
records on that leaf. (RM=remove).
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Figure 32: Median (white bar) and inter-quartile bounds (box) for SBlatest/SBF=0 in the final year
of the assessment for each structural uncertainty axis weighted by input model weights across 228
models in the structural uncertainty ensemble. Thewhiskers extend to 1.5× the interquartile range.
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Figure 33: Median (white bar) and inter-quartile bounds (box) for SBlatest/SB0 in the final year
of the assessment for each structural uncertainty axis weighted by input model weights across 228
models in the structural uncertainty ensemble. Thewhiskers extend to 1.5× the interquartile range.
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Figure 34: Median (white bar) and inter-quartile bounds (box) for SBlatest/SBMSY in the final year
of the assessment for each structural uncertainty axis weighted by input model weights across 228
models in the structural uncertainty ensemble. Thewhiskers extend to 1.5× the interquartile range.
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Figure 35: Decision trees weighted by input model weights across 228 models in the structural
uncertainty ensemble: positive (‘yes‘) values for each split are on the left, leafs on the decision tree
show the mean value (MSY , FMSY and Flatest/FMSY) by leaf, as well as the percentage of records
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Figure36:Median(whitebar)and inter-quartile bounds(box) forFlatest/FMSY in thefinal year of the
assessment foreachstructural uncertaintyaxisweightedby inputmodelweightsacross228models in
the structural uncertainty ensemble. Thewhiskers extend to1.5× the interquartile range. Thedashed
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Figure 37: Kobe plots summarising status in the final year for each of the models weighted by input
model weights (point size) across 228 models in the structural uncertainty ensemble, based on
SBlatest/SBMSY and Flatest/FMSY. The stock is considered to be overfished when SBlatest/SBMSY < 1
and undergoing overfishingwhenFlatest/FMSY > 1.
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Figure 38: Panel plot summarising stock status in the final year for each of the models weighted
by input model weights (point size) across 228 models in the structural uncertainty ensemble
for SBlatest/SBF=0 and Flatest/FMSY. The stock is considered to be undergoing overfishing when
Flatest/FMSY > 1 (beige zone). Guidelines were added in white at SBlatest/SBF=0 = 0.5 and
SBlatest = SBF=0.
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Figure 39: Panel plot summarising stock status in the final year for each of the models weighted
by input model weights (point size) across 228 models in the structural uncertainty ensemble for
SBlatest/SB0 andFlatest/FMSY. Thestock isconsideredtobeundergoingoverfishingwhenFlatest/FMSY

> 1(beige zone). Guidelineswere added inwhite atSBlatest/SBF=0 = 0.5 andSBlatest = SBF=0.
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Figure 40: Yield profiles for Southwest Pacific blue shark for different model assumptions, with FMSY

indicated by dotted vertical lines, andFlim,AS shown as dashed lines.

Figure41: Estimationuncertainty for theupdated2022diagnostic case, derivedusing1000samples
from the posterior distribution ofSB/SB0 using No-U-Turn sampling implemented in the ADNUTS R
package (Monnahan et al. 2019).
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APPENDIXA: Supplementaryfigures

0.0

0.5

1.0

1.5

2.0

base high low

S
B

S
B

M
S

Y

Discard scenario

0.0

0.5

1.0

1.5

2.0

base high

Initial F

0.0

0.5

1.0

1.5

2.0

base low weight RM early NZ

S
B

S
B

M
S

Y

High Lat. CPUE

0.0

0.5

1.0

1.5

2.0

AU JP no−ES

Low Lat. CPUE

0.0

0.5

1.0

1.5

2.0

base high low

S
B

S
B

M
S

Y

Survival frac.

0.0

0.5

1.0

1.5

2.0

base high

Catch scenario

Figure A-1: Median (white bar) and inter-quartile bounds (box) forSBlatest/SBMSY in the final year
of the assessment for each structural uncertainty axis. The whiskers extend to 1.5× the interquartile
range.
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FigureA-2: Panelplotsummarisingstockstatus in thefinalyear foreachof themodels in thestructural
uncertainty grid for SB/SB0 and F/Flim,AS. When F/Flim,AS > 1 (orange zone), the spawning
biomass has declined below 0.5SBMSY . Guidelines were added in white at SBlatest/SBF=0 = 0.5
andSBlatest = SBF=0.
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Figure A-3: Median (white bar) and inter-quartile bounds (box) for F/Flim in the final year of the
assessment for each structural uncertainty axis. The whiskers extend to 1.5× the interquartile range.
The dashed line shows the level whereF = Flim.
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FigureA-4: Panelplotsummarisingstockstatus in thefinalyear foreachof themodels in thestructural
uncertainty grid for SB/SB0 and F/Fcrash,AS. The population is expected to become extinct when
levels of F in excess of Fcrash,AS (i.e. F/Fcrash,AS > 1; pink zone) are maintained on the long-term.
Guidelineswere added inwhite atSBlatest/SBF=0 = 0.5 andSBlatest = SBF=0.
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FigureA-5: Median (white bar) and inter-quartile bounds (box) forF/Fcrash in the final year of the
assessment for each structural uncertainty axis. The whiskers extend to 1.5× the interquartile range.
The dashed line shows the level whereF = Fcrash.
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APPENDIXB: Supplementary tables

TableB-1: Summaryof referencepoints for thesubsetof114gridmodels in thestructuraluncertainty
grid using themedian catch scenario andmedian discards estimates.

Mean Median Min 10% 90% Max

Clatest 5685 5657 3707 4000 7588 7776
Crecent 6698 6744 4322 4600 8850 8926
MSY 10465 9868 8968 9313 12779 18737
SB0 20967 20114 15686 18468 22828 38957
SBF=0 23769 22658 17559 19873 27743 48618
SBMSY 10227 9847 7564 9008 11162 18974
SBlatest 17919 17800 12973 16193 18903 24706
SBrecent 15917 15907 11320 14244 17026 21915
SBlatest/SB0 0.88 0.90 0.42 0.68 1.01 1.19
SBrecent/SB0 0.78 0.80 0.37 0.59 0.90 1.05
SBlatest/SBF=0 0.78 0.81 0.32 0.59 0.93 1.29
SBrecent/SBF=0 0.70 0.71 0.29 0.51 0.82 1.15
SBlatest/SBMSY 1.81 1.84 0.85 1.44 2.10 2.47
SBrecent/SBMSY 1.60 1.64 0.76 1.25 1.87 2.19
FMSY 0.144 0.142 0.134 0.136 0.158 0.181
Flim,AS 0.228 0.225 0.211 0.215 0.248 0.291
Fcrash,AS 0.324 0.320 0.299 0.306 0.351 0.419
Flatest 0.072 0.072 0.039 0.051 0.091 0.120
Frecent 0.093 0.094 0.048 0.065 0.117 0.160
Flatest/FMSY 0.50 0.51 0.24 0.34 0.67 0.78
Frecent/FMSY 0.65 0.65 0.30 0.43 0.86 1.06
Flatest/Flim,AS 0.32 0.32 0.15 0.21 0.43 0.50
Frecent/Flim,AS 0.41 0.41 0.19 0.27 0.55 0.68
Flatest/Fcrash,AS 0.22 0.23 0.11 0.15 0.30 0.35
Frecent/Fcrash,AS 0.29 0.29 0.13 0.19 0.39 0.48
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TableB-2: Summaryof referencepoints for thesubsetof114gridmodels in thestructuraluncertainty
grid using the high catch scenario andmedian discards estimates.

Mean Median Min 10% 90% Max

Clatest 7345 8134 3707 3899 9285 9601
Crecent 7961 8923 4322 4574 9475 9577
MSY 16067 14970 8968 9868 24337 25629
SB0 31643 30135 15686 19346 49454 53503
SBF=0 36333 33467 17559 21166 57049 66434
SBMSY 15414 14723 7564 9445 24456 26684
SBlatest 20881 20104 13209 15153 27435 38004
SBrecent 18440 17453 11626 13396 24316 33654
SBlatest/SB0 0.71 0.70 0.42 0.46 0.96 1.19
SBrecent/SB0 0.63 0.60 0.37 0.41 0.84 1.05
SBlatest/SBF=0 0.63 0.61 0.32 0.39 0.88 1.29
SBrecent/SBF=0 0.55 0.53 0.29 0.34 0.78 1.15
SBlatest/SBMSY 1.46 1.47 0.85 0.93 1.94 2.47
SBrecent/SBMSY 1.29 1.27 0.76 0.82 1.71 2.19
FMSY 0.146 0.144 0.134 0.135 0.159 0.181
Flim,AS 0.230 0.228 0.211 0.213 0.252 0.291
Fcrash,AS 0.327 0.324 0.299 0.301 0.361 0.419
Flatest 0.079 0.081 0.039 0.053 0.099 0.120
Frecent 0.096 0.094 0.048 0.066 0.131 0.160
Flatest/FMSY 0.55 0.57 0.24 0.36 0.72 0.78
Frecent/FMSY 0.67 0.64 0.30 0.46 0.91 1.06
Flatest/Flim,AS 0.35 0.36 0.15 0.22 0.45 0.50
Frecent/Flim,AS 0.42 0.41 0.19 0.29 0.58 0.68
Flatest/Fcrash,AS 0.24 0.25 0.11 0.16 0.32 0.35
Frecent/Fcrash,AS 0.30 0.29 0.13 0.20 0.41 0.48
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TableB-3: Summary of referencepoints for the subset of 76 gridmodels in the structural uncertainty
grid using themedian catch scenario and lowdiscards estimates.

Mean Median Min 10% 90% Max

Clatest 7489 7533 7005 7284 7593 7776
Crecent 8762 8850 8234 8517 8926 8926
MSY 11528 10222 9659 9683 16582 18737
SB0 23078 21624 16920 20114 35247 38957
SBF=0 26815 25076 19873 20923 41854 48618
SBMSY 11240 10553 8145 9859 17134 18974
SBlatest 18238 18650 13209 15912 19035 24706
SBrecent 16277 16740 11626 14055 17127 21915
SBlatest/SB0 0.83 0.87 0.42 0.47 0.98 1.12
SBrecent/SB0 0.74 0.78 0.37 0.42 0.87 0.99
SBlatest/SBF=0 0.72 0.75 0.32 0.39 0.84 1.18
SBrecent/SBF=0 0.64 0.68 0.29 0.35 0.75 1.05
SBlatest/SBMSY 1.70 1.79 0.85 0.96 2.03 2.33
SBrecent/SBMSY 1.51 1.59 0.76 0.86 1.81 2.07
FMSY 0.141 0.138 0.134 0.134 0.155 0.167
Flim,AS 0.222 0.218 0.211 0.211 0.243 0.265
Fcrash,AS 0.315 0.309 0.299 0.299 0.343 0.378
Flatest 0.093 0.091 0.073 0.087 0.104 0.120
Frecent 0.119 0.115 0.089 0.114 0.132 0.160
Flatest/FMSY 0.66 0.67 0.48 0.62 0.72 0.78
Frecent/FMSY 0.85 0.86 0.58 0.77 0.96 1.06
Flatest/Flim,AS 0.42 0.43 0.30 0.39 0.46 0.50
Frecent/Flim,AS 0.54 0.55 0.37 0.49 0.61 0.68
Flatest/Fcrash,AS 0.30 0.30 0.22 0.28 0.32 0.35
Frecent/Fcrash,AS 0.38 0.39 0.26 0.34 0.43 0.48
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TableB-4: Summary of referencepoints for the subset of 76 gridmodels in the structural uncertainty
grid using themedian catch scenario and high discards estimates.

Mean Median Min 10% 90% Max

Clatest 3977 4004 3707 3877 4019 4159
Crecent 4626 4673 4322 4495 4706 4715
MSY 10552 9618 8968 8985 15238 16518
SB0 20906 19346 15686 18468 30718 34974
SBF=0 23170 21356 17559 19088 34680 42183
SBMSY 10205 9445 7564 8933 14904 17450
SBlatest 17641 17731 13704 15634 18752 24682
SBrecent 15576 15672 11840 13720 16643 21870
SBlatest/SB0 0.88 0.93 0.44 0.51 1.05 1.19
SBrecent/SB0 0.78 0.82 0.39 0.45 0.93 1.05
SBlatest/SBF=0 0.80 0.83 0.37 0.45 0.96 1.29
SBrecent/SBF=0 0.71 0.74 0.33 0.40 0.85 1.15
SBlatest/SBMSY 1.80 1.90 0.88 1.06 2.17 2.47
SBrecent/SBMSY 1.59 1.68 0.79 0.92 1.93 2.19
FMSY 0.150 0.147 0.142 0.142 0.164 0.181
Flim,AS 0.238 0.233 0.225 0.225 0.259 0.291
Fcrash,AS 0.340 0.332 0.320 0.320 0.369 0.419
Flatest 0.052 0.051 0.039 0.048 0.057 0.064
Frecent 0.066 0.066 0.048 0.062 0.074 0.084
Flatest/FMSY 0.35 0.35 0.24 0.31 0.38 0.39
Frecent/FMSY 0.44 0.44 0.30 0.39 0.51 0.53
Flatest/Flim,AS 0.22 0.22 0.15 0.20 0.24 0.25
Frecent/Flim,AS 0.28 0.28 0.19 0.24 0.32 0.34
Flatest/Fcrash,AS 0.15 0.16 0.11 0.14 0.17 0.17
Frecent/Fcrash,AS 0.20 0.19 0.13 0.17 0.22 0.24
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TableB-5: Summary of referencepoints for the subset of 96 gridmodels in the structural uncertainty
grid dropping the EU series from themodel.

Mean Median Min 10% 90% Max

Clatest 5963 5606 3806 3974 7776 9601
Crecent 6926 6744 4395 4673 8881 9577
MSY 11984 10188 9857 9868 16468 25496
SB0 23942 21132 19099 20210 33493 53440
SBF=0 25044 22015 19088 20161 35721 58714
SBMSY 11677 10328 9095 9847 16536 26162
SBlatest 19207 18752 12973 15634 23926 38004
SBrecent 17064 16615 11320 13834 21207 33654
SBlatest/SB0 0.84 0.87 0.42 0.48 0.94 1.19
SBrecent/SB0 0.75 0.78 0.37 0.42 0.84 1.05
SBlatest/SBF=0 0.81 0.83 0.38 0.45 0.93 1.29
SBrecent/SBF=0 0.72 0.74 0.33 0.40 0.82 1.15
SBlatest/SBMSY 1.72 1.77 0.85 0.98 1.94 2.47
SBrecent/SBMSY 1.53 1.59 0.76 0.87 1.71 2.19
FMSY 0.145 0.142 0.136 0.138 0.154 0.176
Flim,AS 0.228 0.224 0.215 0.218 0.244 0.280
Fcrash,AS 0.325 0.318 0.306 0.309 0.347 0.403
Flatest 0.070 0.069 0.039 0.048 0.088 0.117
Frecent 0.091 0.091 0.048 0.062 0.115 0.160
Flatest/FMSY 0.49 0.49 0.24 0.33 0.64 0.78
Frecent/FMSY 0.63 0.65 0.30 0.43 0.83 1.06
Flatest/Flim,AS 0.31 0.31 0.15 0.21 0.41 0.50
Frecent/Flim,AS 0.40 0.41 0.19 0.27 0.53 0.68
Flatest/Fcrash,AS 0.22 0.22 0.11 0.14 0.29 0.35
Frecent/Fcrash,AS 0.28 0.29 0.13 0.19 0.37 0.48
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TableB-6: Summaryof referencepoints for thesubsetof108gridmodels in thestructuraluncertainty
grid removing early years (<2005) from theNZCPUE

Mean Median Min 10% 90% Max

Clatest 5932 5645 3707 4000 7604 9601
Crecent 6780 6606 4322 4562 8745 9577
MSY 11080 10023 8968 9046 15155 24091
SB0 21913 20683 15686 16920 31829 53503
SBF=0 26027 23854 17559 18902 37973 66434
SBMSY 10733 9985 7564 8145 15738 26684
SBlatest 18643 18070 13286 15912 23926 38004
SBrecent 16471 15938 11848 14000 21207 33654
SBlatest/SB0 0.89 0.90 0.42 0.52 1.14 1.19
SBrecent/SB0 0.79 0.80 0.38 0.45 1.00 1.05
SBlatest/SBF=0 0.77 0.74 0.32 0.45 1.04 1.29
SBrecent/SBF=0 0.68 0.65 0.29 0.40 0.91 1.15
SBlatest/SBMSY 1.83 1.84 0.85 1.05 2.37 2.47
SBrecent/SBMSY 1.62 1.62 0.76 0.92 2.08 2.19
FMSY 0.152 0.151 0.140 0.142 0.162 0.181
Flim,AS 0.241 0.241 0.222 0.225 0.259 0.291
Fcrash,AS 0.343 0.343 0.316 0.320 0.369 0.419
Flatest 0.074 0.074 0.039 0.051 0.094 0.120
Frecent 0.092 0.093 0.048 0.064 0.116 0.152
Flatest/FMSY 0.49 0.51 0.24 0.33 0.66 0.72
Frecent/FMSY 0.61 0.61 0.30 0.40 0.82 0.91
Flatest/Flim,AS 0.31 0.32 0.15 0.21 0.42 0.46
Frecent/Flim,AS 0.38 0.38 0.19 0.25 0.52 0.58
Flatest/Fcrash,AS 0.22 0.22 0.11 0.14 0.29 0.32
Frecent/Fcrash,AS 0.27 0.27 0.13 0.18 0.36 0.41
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TableB-7: Summaryof referencepoints for thesubsetof126gridmodels in thestructuraluncertainty
grid with high initial fishingmortality.

Mean Median Min 10% 90% Max

Clatest 6361 6262 3707 3868 8919 9022
Crecent 7216 7461 4322 4542 9277 9384
MSY 17119 16402 11924 12672 24190 25629
SB0 33051 32480 18814 19587 48510 53503
SBF=0 38499 38129 20270 22482 57049 66434
SBMSY 16068 15946 8933 9294 23590 26684
SBlatest 17058 15726 12973 13704 23846 24631
SBrecent 15009 13870 11320 11840 20932 21686
SBlatest/SB0 0.54 0.49 0.42 0.44 0.70 0.73
SBrecent/SB0 0.47 0.43 0.37 0.39 0.60 0.63
SBlatest/SBF=0 0.46 0.43 0.32 0.37 0.61 0.68
SBrecent/SBF=0 0.41 0.37 0.29 0.33 0.53 0.59
SBlatest/SBMSY 1.11 1.00 0.85 0.90 1.44 1.54
SBrecent/SBMSY 0.98 0.88 0.76 0.80 1.26 1.33
FMSY 0.148 0.147 0.135 0.136 0.162 0.181
Flim,AS 0.234 0.233 0.212 0.215 0.255 0.291
Fcrash,AS 0.333 0.331 0.301 0.304 0.367 0.419
Flatest 0.083 0.083 0.054 0.055 0.106 0.120
Frecent 0.106 0.105 0.071 0.074 0.137 0.160
Flatest/FMSY 0.57 0.58 0.34 0.38 0.72 0.78
Frecent/FMSY 0.72 0.71 0.42 0.50 0.96 1.06
Flatest/Flim,AS 0.36 0.37 0.21 0.24 0.46 0.50
Frecent/Flim,AS 0.46 0.45 0.26 0.31 0.61 0.68
Flatest/Fcrash,AS 0.25 0.26 0.15 0.16 0.32 0.35
Frecent/Fcrash,AS 0.32 0.32 0.18 0.22 0.43 0.48
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