Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

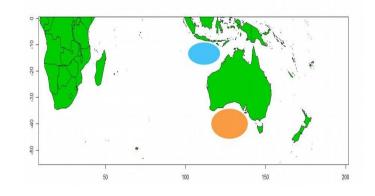
November 16, 2021

Rich Hillary, CSIRO Oceans & Atmosphere Including CKMR in stock assessments: The SBT experience

SBT biology & fishery

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere


- Southern bluefin tuna (SBT) 1 of 3 global popⁿs
- Reasonably fast growing and long-lived (30+)
- Late maturing (50% between 8 to 10 y.o.)
- Caught from 2 y.o. onwards by variety of gears/fleets
- Distributed across SEIO, South Atlantic, Tasman Sea

SBT spawning behaviour

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

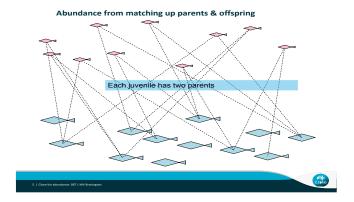
Spawning (blue), summer ages 2 to 4 (orange):

Including CKMR in stock assessments: The SBT experience

Why did we choose SBT for CKMR?

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere


- Status of stock in 2006:
 - 1 Spawning stock biomass (SSB) at 5% of unfished
 - **2** Fishing mortality too high for SSB to increase
 - **3** Weakest recruitments ever seen 1999–2002
 - 4 Substantial historic catch misreporting revealed
- Estimates of SSB₂₀₀₆ highly uncertain
- Catch uncertainty essentially unresolvable
- No other plausible data sources to inform on SSB
- CKMR proposed as a viable way to resolve this

Parent-Offspring Pairs (POPs)

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

Adult-juvenile comparisons (looking for POPs)

Rich Hillary, CSIRO Oceans & Atmosphere Including CKMR in stock assessments: The SBT experience

イロン イヨン イヨン イヨン

Parent-Offspring Pairs (POPs)

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

- Cartoon population dynamics: N_A is adult abundance
- Genotype m_A adults & m_J juveniles
- Chance of finding a parent (mother or father):

$$\mathbb{P}(POP) = \frac{2}{N_A}$$

- You find R POPs (recaptures basically...)
- Estimate of abundance: $\widehat{N}_A = 2m_A m_J/R$
- Precision: CV will be approximately $1/\sqrt{R}$
- **Bonus point**: CV scales with $m_A + m_J$ (not square root)

소리가 소문가 소문가 소문가

Parent-Offspring Pairs (POPs)

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

- Reality more complex than cartoon...
- Bigger/older adults more successful at reproducing
- Factor age (size) into POP probabilities
- Key covariates in SBT case:
 - 1 Juvenile's year of birth/cohort
 - 2 Adult's sampling year
 - 3 Adult's sampling age/size

Half-Sibling Pairs (HSPs)

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

- Juvenile-juvenile comparisons
- You never see the adult
- "Mark": birth of older juvenile
- "Recapture": detection of HSP
- Cartoon: $N_{rachetarrow} = N_{
 m Q} = N_A/2$, mortality M_A
- HSP with a 5 year gap between birth years:

$$\mathbb{P}(HSP) = \frac{e^{-5M_A}}{N_{c^2}} + \frac{e^{-5M_A}}{N_Q} = 4 \times \frac{e^{-5M_A}}{N_A}$$

HSPs have mortality and abundance information

Half-Sibling Pairs (HSPs)

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

- Again, the cartoon gives way to reality...
- Juvenile-juvenile comparisons:
 - **1** Juvenile cohort, *c*, when spawned
 - **2** Covariates: $\{i, i'\}$, $z_i = \{c_i\}$ and $z_{i'} = \{c_{i'}\}$
 - **3 Don't** do within-cohort $(c_i \neq c_{i'})$
- Factors accounted for in $\mathbb{P}(K_{ii'} = HSP | z_i, z_{i'})$:
 - 1 Unknown adult ages $(y = c_{\min} = \min\{c_i, c_{i'}\})$
 - **2** Cumulative **total** mortality $(y = c_{\min}, \ldots, c_{\max})$
 - 3 Increased reproductive output $(y = c_{\min}, \dots, c_{\max})$
 - 4 Time-varying nature of adult abundance
- Eqn^s more complex than POP case (see me later...)

Why POPs and HSPs?

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

- Can't do it all with just POPs
- Disentangling abundance, mortality and age/size
- Having both can undo this demographic Gordian knot
- Able to test key assumptions (e.g. popⁿ structure)
- Reduce sample sizes (you already have the juveniles...)
- Question really is why wouldn't you do both

SBT CKMR "timeline"

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

- Idea proposed in late 2000s
- Phase 1:
 - Use microsatellites; POPs only
 - Incorporated in SBT assessment 2012
- Phase 2:
 - Move to SNPs; both POPs & HSPs
 - Both incorporated in SBT assessment 2017
- CKMR included in revised Management Procedure (2020)

Sample sizes

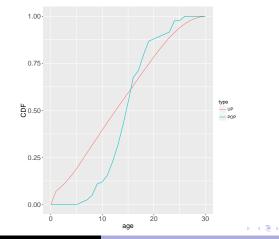
Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

- Number required depends on popⁿ size
- Also depends on what you want from the data
- Since 2006:
 - Adults: almost 10,000 genotyped
 - Juveniles: just over 15,000 genotyped
 - Around 25,000 fish in total: 89 POPs; 115 HSPs
 - Data covers over 10 years of adult dynamics
 - Current rate: about 1,000 adults, 1,000 juveniles p.a.
- Sample harder early: accrue matches slowly then quickly
- Later on modify according to needs/resources

SBT stock assessment structure

Including CKMR in stock assessments: The SBT experience


Rich Hillary, CSIRO Oceans & Atmosphere

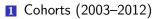
- Data sources:
 - 1 Age/length catch composition
 - 2 Longline CPUE index (mostly on sub-adults)
 - 3 Multi-year mark-recapture (juveniles a = 2, ..., 5)
 - 4 Juvenile (ages 2–4) relative biomass survey
 - **5** Gene-tagging 2 year old absolute abundance index
 - **6** CKMR (POPs and HSPs)
- Model structure: "standard" age and seasonal model
- Key parameters:
 - 1 Annual recruitment
 - 2 Time-varying fishery selectivity
 - 3 Age-dependent natural mortality
 - 4 Length-specific reproductive output (ψ)

Summary of the POP data

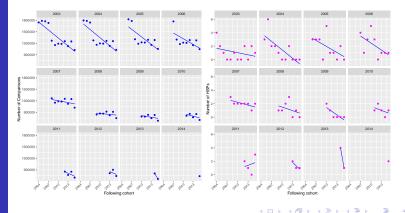
Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere Years (2006–2018), cohorts (2002–2015), age (5+)
 Around 112 million comparisons; 89 POPs

Rich Hillary, CSIRO Oceans & Atmosphere


Including CKMR in stock assessments: The SBT experience

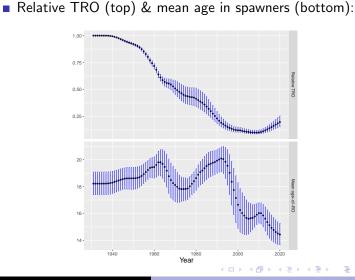
э


Summary of the HSP data

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

2 Around 88 million comparisons; 115 HSPs


Rich Hillary, CSIRO Oceans & Atmosphere

Including CKMR in stock assessments: The SBT experience

Key reproductive popⁿ variables

Including CKMR in stock assessments: The SBT experience

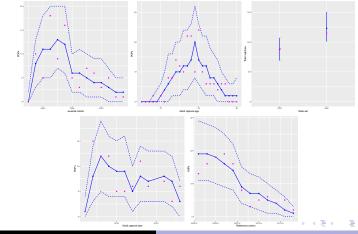
Rich Hillary, CSIRO Oceans & Atmosphere

Rich Hillary, CSIRO Oceans & Atmosphere

Including CKMR in stock assessments: The SBT experience

Fits to the CKMR data

Including CKMR in stock assessments: The SBT experience


Rich Hillary, CSIRO Oceans & Atmosphere

- Data (esp. POPs) basically sparse MR data
- Aggregate data/predictions across covariates
- POP data aggregation:
 - 1 Adult capture age & year (cohort level)
 - 2 Adult capture age & juvenile cohort (age level)
 - 3 Adult capture age and cohort (adult sampling year level)
- HSP data aggregation:
 - 1 Following juvenile cohort (initial cohort level)

Fits to the CKMR data

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere POP cohort (TL), age (TM), year (BL) level; HSP (BR) initial cohort and finally total matches (TR):

Rich Hillary, CSIRO Oceans & Atmosphere

Including CKMR in stock assessments: The SBT experience

What did the CKMR change/tell us?

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

- Spawning population larger, less depleted
- Current depletion: 0.2 (0.16–0.24)
- Sustainable yields essentially unchanged
- Adult mortality lower than previously thought
- Successful sizes/ages of reproduction bigger/older
- However, Big Fecund Female hypothesis not supported

Oversight & engagement

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

- Original project had expert steering committee
- Move from microsats to SNPs reviewed by experts
- Get buy-in from stakeholders, SC and Commission
- Particularly on genetics topic of least familiarity

Lessons learned & future work

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

- Unsurprisingly, this takes time...
- Takes a dedicated inter-disciplinary team
- Important to explore role of length/sexual dimorphism
 - SBT seems OK; exception not the rule?
- Spend a lot of time bringing people along
- CCSBT funded CKMR as ongoing monitoring program
- CKMR data used in CCSBT Management Procedure

Acknowledgements

Including CKMR in stock assessments: The SBT experience

Rich Hillary, CSIRO Oceans & Atmosphere

- Funding: CSIRO, Australian Govt. & Industry, CCSBT
- Support: members and expert panel of CCSBT SC
- All members of CSIRO and Indonesian CKMR team