
 
 

SCIENTIFIC COMMITTEE 
SIXTH REGULAR SESSION 

 
10-19 August 2010 
Nuku’alofa, Tonga 

 
Confidence interval estimation of CPUE year trend in delta-type two- step 

model 
WCPFC-SC6-2010/ME-WP-03 

 
 
 
 
 
 
 
 
 
 
 
 
 

Hiroshi SHONO 1

                                                 
1 National Research Institute of Far Seas Fisheries, Fisheries Research Agency, 5-7-1, Orido, 
Shimizu-ku, Shizuoka-shi, Shizuoka-ken 424-8633, Japan 
 

 
 
  



 



Confidence interval estimation of CPUE year trend
in delta-type two-step model

Hiroshi SHONO*

National Research Institute of Far Seas Fisheries, Fisheries Research Agency, Shizuoka 424-8633,
Japan

ABSTRACT: A procedure is suggested for estimation of the approximate confidence intervals of the
extracted catch per unit effort (CPUE) year trend in the delta-type two-step model used for CPUE
standardization with a lot of zero-catch data. This method is a simple way to combine the Taylor
expansion and delta method and is suitable for practical use. This model was applied to the catch and
effort data with more than 80% zero catch for silky shark in the North Pacific Ocean caught by
Japanese training vessels. As a result, realistic values of the 95% confidence interval of CPUE year
trend are obtained. A method for left–right unsymmetrical interval estimation based on the asymptotic
normality of the natural logarithm of CPUE is also suggested. In the example of silky shark, both
CPUE year trends obtained from these two methods are similar.

KEY WORDS: CPUE standardization, delta method, delta-type two-step model, generalized
linear model, interval estimate, normal approximation, Taylor expansion, zero-catch.

INTRODUCTION

Catch per unit effort (CPUE) standardization is
currently an important and essential concept for
fish stock analysis because the year trends of stan-
dardized CPUE enable us to not only grasp the rela-
tive abundance but also to use the estimates for
stock assessment models as a tuning index.1 As a
statistical method, analysis of covariance (ancova)
called the CPUE–log-normal model, where the
logCPUE model (natural logarithm of CPUE is set
to the response variable) with normal error struc-
ture (normal distribution is assumed as the obser-
vation error) is applied, has been usually used for
CPUE analysis.2 However, this traditional CPUE–
log-normal model cannot be applied to zero-catch
data because the natural logarithm of zero-catch
data is minus infinity. In such a case, the following
three methods have often been applied: (i) ad hoc
method to add a small constant value to all CPUE
values in the above CPUE–log-normal model; (ii)
generalized linear model (GLM) such as catch
model with a Poisson or negative binomial error
structure;3 and (iii) so-called delta-type two-step
model, where the ratio of zero-catch is estimated

using logistic or probit regression in the first step
and the typical model such as CPUE–log-normal or
catch–negative-binomial is applied to the CPUE
without zero data (i.e. CPUE of positive catch) in
the second step.4

The delta-type two-step model generally has
good performance and is easy to handle by
common statistical software such as SAS (SAS
Institute, Cary, NC, USA) or R (The R Project for
Statistical Computing). However, it is difficult to
estimate the confidence intervals of the year trend
of standardized CPUE. In this paper, we suggest a
procedure for estimating the approximate confi-
dence intervals of the CPUE year trend obtained
from this delta-type two-step model using a com-
bination of the delta-method5 and normal approxi-
mation based on the outputs of typical statistical
packages, and also describe a case example of this
simple method to real fishery data.

MATERIALS AND METHODS

Procedure and concept for estimating
confidence interval of CPUE year trend

In this delta-type two-step model for CPUE stan-
dardization, the first step for estimating the zero-
catch rate is formulated as:
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where E, expectation; g, link function (g-1, link
inverse function) (Table 1); p, predicted mean (i.e.
zero-catch rate); z, linear predictor (composite
function); Year, effect of year; Area, effect of area;
Season, seasonal effect (e.g. month, quarter);
Interactions, two–way interaction expressed by the
product of main effects (e.g. Year ¥ Area); and
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Common forms of the link function (g) and link
inverse function (g-1) including the logistic model
are expressed in Table 1.

The second step for computing the CPUE
without zero-catch data (i.e. CPUE in the positive
catch) is shown as:

h Intercept Year Area Season
Interactions error e
U u( ) = = + + + + +

+
. . .

, rrror N∼ 0 2,s( )
where h, scaled function in the second step
(h-1, scaled inverse function), e.g. h(U) = log(U);
U, CPUE of the non-zero part; u, linear predictor
(scaled CPUE); and N(0,s2), normal distribution
with mean 0 and variance s2.

Figure 1 shows the functional relationships in
the two processes. In common statistical packages
such as SAS or R, it is usually outputted that the
point estimate of z and u, ẑ and û, and the variance,

Var(ẑ) and Var(û), obtained from the variance–
covariance matrix of estimate values, ẑ and û.
Therefore, we suggest an approximate method to
estimate the confidence intervals of the estimated
CPUE based on the values of z and u in both steps.
The point estimate of standardized CPUE is shown
in equation 1 under the assumption that q (=1 - p,
non-zero catch rate, first step) and U (CPUE of
positive data, second step) are independent
because the estimated CPUE is usually defined as q
multiplied by U:

CPUE q U� = ˆ ˆ (1)

where CPUE� , q̂ and Û, are the point estimates of
CPUE, q and U, respectively.

Estimated CPUE is shown in equation 2 using
the functions g and h in Figure 1.

CPUE g h= − ( )( ) ( )− −1 1 1z u (2)

where g-1 is the inverse function of g and h-1 is the
inverse function of h.

The variance of CPUE, Var(CPUE), is developed
into a Taylor series up to the first order with respect
to the point estimates of z and u shown in
equation 3.5
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Thus, we can derive equation 4 from equation 3
and the variance of the point estimate of CPUE,

CPUE� , is shown as:
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where s(z) and s(u) are the standard error of z
and u.

We can estimate the (100–a)% confidence inter-
vals of the point estimate of the estimated CPUE
based on normal approximation as follows:
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Table 1 Specific form of link and link inverse function
for common statistical model in the first step of the
delta-type two-step model

Model Link function g()
Link inverse function

g-1()

Logistic log[p/(1 - p)] 1/[1 + exp(–Z)]
Probit F-1(p) F(Z) = F[(x - m)/s]
c-log-log log[–log(1 - p)] 1 - exp[–exp(Z)]

F, cumulative distribution function of standard normal dis-
tribution; c-log-log, complementary log-log.

First step Second step 

q =1 − p (non-zero catch rate) U (CPUE of the non-zero part) 

↓ ↑ h↓ ↑ h–1

p (zero-catch rate)  u (linear predictor: scaled CPUE)

g↓ ↑g–1

z (linear predictor) 

Fig. 1 Relationships between variables and functions
in the two steps (g and h show the link and scaled func-
tions, respectively, function q = 1 - p).
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where Z
α
2( ) is the two-sided a-percentile of

the standard normal distribution and s(CPUE� ) is
the standard deviation of the point estimate of the
CPUE, CPUE� .

Next, we describe the procedure using the
normal approximation of the natural logarithm of
CPUE because the observation error of CPUE
seems not to be normally distributed (i.e. constant)
but log-normally distributed in many cases. The
natural logarithm of the estimated CPUE and its
variance are shown in equations 6 and 7.5

log log logCPUE g h( ) = − ( )[ ]+ ( )[ ]− −1 1 1z u (6)
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The (100 - a)% confidence intervals of point
estimates of the natural logarithm of CPUE,
log CPUE�( ) , is shown in equation 8 based on the
normal approximation:

log log ,

log log
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Thus, we can estimate the (100 - a)% confidence
interval of estimated CPUE as the following
equation 9.
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Data analysis

We calculated the standardized CPUE of catch and
effort data (in which the rate of zero-catch is more
than 80%) for silky shark Carcharhinus falciformis
caught by Japanese training vessels in the North
Pacific Ocean using the delta-type two-step
method as a case example. We applied the logistic

regression model (i.e. link function g is the logit) in
the first step and a CPUE–log-normal model (i.e.
scaled function h is the natural logarithm; the link
function is defined as the identity mapping and
response variable, which is normally distributed,
and is set to the natural logarithm of CPUE) in the
second step. The following explanatory variables
were chosen based on the results of model selec-
tion by the Bayesian information criterion (BIC)6

because the selection performance of consistent
information criterion such as the BIC in large
samples is better than that of the Akaike informa-
tion criterion (AIC) for the variable selection of the
ancova model corresponding to the CPUE stan-
dardization in many cases.7 In the example, we
computed through the GLM and GENMOD
procedures of the SAS/STAT package v9.1 (SAS
Institute).

g Intercept
Year Area Season H
p p p z

i j k a
( ) = −( )( ) = = +

( ) + ( ) + ( ) + ×
log 1

PPB
Area HPB

+
× ( )∗[ ]b j

(10)

h Intercept Year
Area Season HPB
U U u i

j k a
b

( ) = ( ) = = + ( ) +
( ) + ( ) + × +

×

log

AArea HPB error error N 0,j( )∗[ ]+ ( ), ∼ s 2
(11)

where Year, effect of year (1992–2003); Area, effect
of area (1 = 0–20 N, 2 = 20–30 N, 3 = 30–40 N,
4 = 40–50 N); Season, effect of quarter (1 = Jan–
Mar, 2 = Apr–Jun, 3 = Jul–Sep, 4 = Oct–Dec); HPB,
effect of gear (i.e. hooks per basket); a, b, regression
coefficients estimated; Area(j) ¥ HPB, two–way
interaction of effect between area and hooks
per basket; U (CPUE of the non-zero data in the
second step), catch in number per 1000 hooks;

E[X] = p, X ~Binomial(q); and X =
>( )

( ){1 0

0

if Catch

Otherwise
.

Year, Area, Season are assumed as categorical
variables and HPB as a continuous variable.

RESULTS

In this case example for silky shark in the North
Pacific Ocean caught by Japanese training vessels,
the year trends q (non-zero catch rate) in the first
step and U (CPUE of the non-zero-part) in the
second step, q̂ and Û, are shown in Table 2. These
values are derived as the least-square means for
type III sum of squares of the year effects. On the
basis of these estimated values, we can obtain
the point estimates of yearly CPUE using
equation 1.
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Table 3 shows the estimated values of linear pre-
dictor z and u, ẑ and û, which correspond to the
least-squared mean of year effects in the first and
second steps and these dispersions (i.e. standard
errors), s(ẑ) and s(û). We obtain the variance of
yearly CPUE (i.e. estimated CPUE year trend)
based on equation 4 (Table 3).

Point estimates and variances of the yearly
CPUE and the 95% confidence intervals are
shown in Table 4 based on the values of Tables 2
and 3 obtained from equations 1–5. The link and
scaled inverse functions are defined as g-1(z) = 1/
[1 + exp(–z)] and h-1(u) = exp(u). We can obtain
the variances of the estimated CPUE trend by
the derivative of functions g-1 and h-1 as
equation 12.
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Thus, we can obtain the 95% confidence
intervals of the CPUE year trend (Table 4) in

which Z Z
α
2

0 025( ) = ( ). is set to 1.96. Figure 2

shows the 95% confidence intervals.
In this case example, the standard error of the

natural logarithm of yearly CPUE is expressed in
the following equation 13 derived from equation 7
in which the link and scaled functions are defined
as g-1(z) = 1/[1 + exp(–z)] and h-1 (u) = exp(u).

σ
σ

σlog CPUE
z

exp z
u�( )⎡⎣ ⎤⎦ = ( )

+ −( )
⎛
⎝⎜

⎞
⎠⎟ + ( )( )

ˆ
ˆ

ˆ
1

2
2 (13)

Hence, we can estimate the 95% confidence inter-
vals of CPUE year trend (i.e. least-square means of
year effect) based on equation 9 using the values of

equations 7 and 13 where Z
α
2( ) is set to 1.96.

Table 5 and Figure 3 show the 95% confidence
intervals of the estimated yearly CPUE on the basis
of the normal approximation of log(CPUE). The
interval estimates do not show left–right symmetry
but these values are similar to those in Table 4 and
Figure 2. In our case example, these two confidence
intervals shown in Figures 2 and 3 (obtained from
eqns 5 and 9, respectively) seem to be rather similar.

DISCUSSION

As described, this simple method (i.e. two proce-
dures shown in eqns 5 and 9) has many advantages
for interval estimation of the CPUE trend in the
delta-type two-step model with a lot of zero-catch
data. Because this method is based on the asymp-
totic normality of CPUE by the central limit
theorem, it is expected that we estimate reasonable
confidence intervals in many cases especially for
large samples. It is also practical for the computa-
tion to use the outputs directly (e.g., ẑ, û, and the
standard error, s(ẑ) s(û)) from common statistical
packages such as SAS or R.

We recommend the use of the first procedure
based on the normal approximation of CPUE
shown in equation 5. However, the assumption of
an asymptotic log-normal distribution of observed
CPUE seems to be more natural especially in small
samples or in the case of fat-tail distributions. The
choice of the two methods (shown in eqns 5 and 9)

Table 2 Estimated non-zero catch rate (q) and CPUE in
the second step (U) for the example of silky shark

Year q U

1992 0.067 1.427
1993 0.088 1.499
1994 0.057 1.544
1995 0.120 1.881
1996 0.059 1.287
1997 0.087 1.541
1998 0.076 1.511
1999 0.084 1.353
2000 0.067 1.327
2001 0.066 1.295
2002 0.033 1.171
2003 0.049 1.255

Table 3 Estimates of linear predictor in first step (z),
second step (u) and these standard error s(z), s(u) for
the example of silky shark, obtained as outputs
from common statistical packages such as SAS or R

Year z u s(z) s(u)

1992 2.634 0.355 0.169 0.022
1993 2.334 0.405 0.159 0.023
1994 2.809 0.434 0.164 0.025
1995 1.996 0.632 0.160 0.018
1996 2.768 0.252 0.167 0.018
1997 2.356 0.433 0.166 0.027
1998 2.503 0.413 0.170 0.039
1999 2.385 0.302 0.166 0.020
2000 2.635 0.283 0.169 0.019
2001 2.654 0.258 0.173 0.020
2002 3.377 0.158 0.184 0.020
2003 2.971 0.228 0.176 0.022
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is largely dependent on which assumption, i.e.
whether CPUE is normally distributed or log-
normally distributed, is more adequate. It is useful
to illustrate the histogram of the observed CPUE to
decide the model to be used and some information
criteria such as the AIC or BIC can be applied for
model selection.

We conducted a simple simulation to check the
performance of equations 5 and 9 as an approxi-
mate confidence interval of CPUE. A set of data
with 10 000 realizations was generalized from the
delta log-normal model, where p (zero-catch rate)
is set to 0.25, 0.5 and 0.75 in the first step and U
(CPUE of positive data) is the independent and
identical log-normally distributed random vari-
ables with with a mean 0 and variance 1. We
compared the values of maximum log-likelihood
(MLL), which is average of 100 replications,
between the normal and log-normal distributions
(Table 6). Judging from the experiment, the confi-
dence interval shown in equation 5 based on the

normal distribution is better than that in equation
9 from the log-normal distribution if p (zero-catch
ratio) is high, such as 0.75, and the opposite
outcome is obtained if p is low. In our study, MLL
is equivalent to information criteria such as the
AIC or BIC, since the number of parameters and
observations is the same in the two distributions.

In this research, we assumed the independence
of the linear predictors z and u, which means they
are independent of the first and second steps, for
the simplification of calculation. The correlation
coefficient of z and u seem very low (not zero) in
many cases. If we compute the magnitude (i.e.
degree) of the correlation, then we can include the
values of covariance between z and u into equa-
tions 3 and 7. However, it is generally difficult to
integrate the correlation into the model unless we
use a different method for simultaneous estima-
tion of the unknown parameters in the first
and second steps, such as the zero-inflated
model.8 Therefore, we should be careful about the
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Fig. 2 Point estimate of the year trend of standardized
CPUE and its 95% confidence intervals as lower 5% (�),
point estimate (�) and upper 5% (�), which are
obtained from the asymptotic normality of CPUE.
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Fig. 3. Point estimate of the year trend of standardized
CPUE and its 95 % confidence intervals as lower 5% (�),
point estimate (�) and upper 5% (�), which are
obtained from the asymptotic normality of natural
logarithm of CPUE, log(CPUE).

Table 4 Standardized CPUE and its variance, and 95% confidence intervals obtained from simple method based on the
normal approximation of CPUE for the example of silky shark

Year CPUE Var(CPUE) s(CPUE) Lower 5% Upper 5%

1992 0.096 0.0002 0.015 0.066 0.125
1993 0.133 0.0004 0.019 0.094 0.171
1994 0.088 0.0002 0.014 0.061 0.115
1995 0.225 0.0010 0.032 0.162 0.288
1996 0.076 0.0001 0.012 0.052 0.100
1997 0.133 0.0004 0.021 0.093 0.174
1998 0.114 0.0003 0.018 0.078 0.151
1999 0.114 0.0003 0.018 0.080 0.148
2000 0.089 0.0002 0.014 0.061 0.116
2001 0.085 0.0002 0.014 0.058 0.112
2002 0.039 0.0001 0.008 0.024 0.054
2003 0.061 0.0001 0.010 0.041 0.082
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possibility of underestimating the confidence
intervals for CPUE trends obtained from this
method.
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